
ar
X

iv
:1

20
8.

44
49

v1
 [

cs
.D

S]
 2

2
A

ug
 2

01
2

Finding a maximum induced degenerate

subgraph faster than 2n

Marcin Pilipczuk1⋆ and Micha l Pilipczuk2⋆⋆

1 Institute of Informatics, University of Warsaw, Poland
malcin@mimuw.edu.pl

2 Department of Informatics, University of Bergen, Norway
michal.pilipczuk@ii.uib.no

Abstract. In this paper we study the problem of finding a maximum
induced d-degenerate subgraph in a given n-vertex graph from the point
of view of exact algorithms. We show that for any fixed d one can find a
maximum induced d-degenerate subgraph in randomized (2− εd)

nnO(1)

time, for some constant εd > 0 depending only on d. Moreover, our
algorithm can be used to sample inclusion-wise maximal induced d-
degenerate subgraphs in such a manner that every such subgraph is
output with probability at least (2 − εd)

−n; hence, we prove that their
number is bounded by (2− εd)

n.

1 Introduction

The theory of exact computations studies the design of algorithms for
NP-hard problems that compute the answer optimally, however using
possibly exponential time. The goal is to limit the exponential blow-up in
the best possible running-time guarantee. For some problems, like Inde-

pendent Set [1], Dominating Set [1,2], and Bandwidth [3] the re-
search concentrates on achieving better and better constants in the bases
of exponents. However, for many important computational tasks design-
ing even a routine faster than trivial brute-force solution or straight-
forward dynamic program is a challenging combinatorial question; the
answer to this question can provide valuable insight into the structure
of the problem. Perhaps the most prominent among recent developments
in breaking trivial barriers is the algorithm for Hamiltonian Cycle of
Björklund [4], but a lot of effort is put also into less fundamental prob-
lems, like Maximum Induced Planar Graph [5] or a scheduling prob-
lem 1|prec|∑Ci [6], among many others [7,8,9,10,11,12]. However, many

⋆ Partially supported by NCN grant N206567140 and Foundation for Polish Science.
⋆⋆ Partially supported by European Research Council (ERC) Grant “Rigorous Theory

of Preprocessing”, reference 267959.

http://arxiv.org/abs/1208.4449v1

2 Pilipczuk×2

natural and well-studied problems still lack exact algorithms faster than
the trivial ones; the most important examples are TSP, Permanent,
Set Cover, #Hamiltonian Cycles and SAT. In particular, hardness
of SAT is the starting point for the Strong Exponential Time Hypothe-

sis of Impagliazzo and Paturi [13,14], which is used as an argument that
other problems are hard as well [15,16,17,18].

A group of tasks we are particularly interested in in this paper are
the problems that ask for a maximum size induced subgraph belonging
to some class Π. If belonging to Π can be recognized in polynomial time,
then we have an obvious brute-force solution working in 2nnO(1) time
that iterates through all the subsets of vertices checking which of them
induce subgraphs belonging to Π. Note that the classical Independent
Set problem can be formulated in this manner for Π being the class
of edgeless graphs, while if Π is the class of forests then we arrive at
the Maximum Induced Forest, which is dual to Feedback Vertex

Set. For both these problems algorithms with running time of form (2−
ε)n for some ε > 0 are known [1,11,12]. The list of problems admitting
algorithms with similar complexities includes also Π being the classes of
regular graphs [19], graphs of small treewidth [20], planar graphs [5], 2-
or 3-colourable graphs [21], bicliques [22] or graphs excluding a forbidden
subgraph [23].

The starting point of our work is the question raised by Fomin et al.
in [5]. Having obtained an algorithm finding a maximum induced planar
graph in time O(1.7347n), they ask whether their result can be extended
to graphs of bounded genus or even to H-minor-free graphs for fixed H.
Note that all these graph classes are hereditary and consist of sparse

graphs, i.e., graphs with the number of edges bounded linearly in the
number of vertices. Moreover, for other hereditary sparse classes, such as
graphs of bounded treewidth, algorithms with running time (2 − ε)n for
some ε > 0 are also known [20]. Therefore, it is tempting to ask whether
the sparseness of the graph class can be used to break the 2n barrier in a
more general manner.

In order to formalize this question we study the problem of finding
a maximum induced d-degenerate graph. Recall that a graph is called
d-degenerate if each of its subgraphs contains a vertex of degree at most
d. Every hereditary class of graphs with a number of edges bounded lin-
early in the number of vertices is d-degenerate for some d; for exam-
ple, planar graphs are 5-degenerate, graphs excluding Kr as a minor are
O(r

√
log r)-degenerate, while the class of forests is equivalent to the class

of 1-degenerate graphs. However, d-degeneracy does not impose any topo-

Finding a maximum degenerate. . . 3

logical constraints; to see this, note that one can turn any graph into a
2-degenerate graph by subdividing every edge. Hence, considering a prob-
lem on the class of d-degenerate graphs can be useful to examine whether
it is just sparseness that makes it more tractable, or one has to add ad-
ditional restrictions of topological nature [24].

Our results and techniques. We make a step towards understanding the
complexity of finding a maximum induced subgraph from a sparse graph
class by breaking the 2n-barrier for the problem of finding maximum
induced d-degenerate subgraph. The main result of this paper is the fol-
lowing algorithmic theorem.

Theorem 1. For any integer d ≥ 1 there exists a constant εd > 0 and a

polynomial-time randomized algorithm Ad, which given an n-vertex graph

G either reports an error, or outputs a subset of vertices inducing a d-
degenerate subgraph. Moreover, for every inclusion-wise maximal induced

d-degenerate subgraph, let X be its vertex set, the probability that Ad

outputs X is at least (2 − εd)−n.

Let X0 be a set of vertices inducing a maximum d-degenerate sub-
graph. If we run the algorithm (2 − εd)n times, we know that with prob-
ability at least 1/2 in one of the runs the set X0 will be found. Hence,
outputting the maximum size set among those found by the runs gives
the following corollary.

Corollary 2. There exists a randomized algorithm which, given an n-
vertex graph G, in (2 − εd)nnO(1) time outputs a set X ⊆ V (G) inducing

a d-degenerate graph. Moreover, X is maximum with probability at least 1
2 .

As the total probability that Ad outputs some set of vertices is bounded
by 1, we obtain also the following corollary.

Corollary 3. For any integer d ≥ 1 there exists a constant εd > 0 such

that any n-vertex graph contains at most (2−εd)n inclusion-wise maximal

induced d-degenerate subgraphs.

Let us elaborate briefly on the idea behind the algorithm of Theorem 1.
Assume first that G has large average degree, i.e., |E(G)| > λd|V (G)| for
some large constant λ. As d-degenerate graphs are sparse, i.e., the number
of edges is less than d times the number of vertices, it follows that for any
set X inducing a d-degenerate graph G[X], only a tiny fraction of edges
inside G are in fact inside G[X]. Hence, an edge uv chosen uniformly

4 Pilipczuk×2

at random can be assumed with high probability to have at least one
endpoint outside X. We can further choose at random, with probabilities
1/3 each, one of the following decisions: u ∈ X, v /∈ X or u /∈ X, v ∈ X,
or u, v /∈ X. In this manner we fix the status of two vertices of G and, if
λ > 4, the probability that the guess is correct is larger than 1/4. If this
randomized step cannot be applied, we know that the average degree in
G is at most λd and we can apply more standard branching arguments
on vertices of low degrees.

Our algorithm is a polynomial-time routine that outputs an induced
d-degenerate graph by guessing assignment of consecutive vertices with
probabilities slightly better than 1/2. We would like to remark that all
but one of the ingredients of the algorithm can be turned into standard,
deterministic branching steps. The only truly randomized part is the
aforementioned random choice of an edge to perform a guess with en-
hanced success probability. However, to ease the presentation we choose
to present the whole algorithm in a randomized fashion by expressing
classical branchings as random choices of the branch.

Organization. In Section 2 we settle notation and give preliminary results
on degenerate graphs. Section 3 contains the proof of Theorem 1. Section
4 concludes the paper.

2 Preliminaries

Notation. We use standard graph notation. For a graph G, by V (G)
and E(G) we denote its vertex and edge sets, respectively. For v ∈ V (G),
its neighborhood NG(v) is defined as NG(v) = {u : uv ∈ E(G)}. For a
set X ⊆ V (G) by G[X] we denote the subgraph of G induced by X. For
a set X of vertices or edges of G, by G \X we denote the graph with the
vertices or edges of X removed; in case of vertex removal, we remove also
all the incident edges.

Degenerate graphs. For an integer d ≥ 0, we say that a graph G is d-
degenerate if every subgraph (equivalently, every induced subgraph) of G
contains a vertex of degree at most d. Clearly, the class of d-degenerate
graphs is closed under taking both subgraphs and induced subgraphs.
Note that 0-degenerate graphs are independent sets, and the class of 1-
degenerate graphs is exactly the class of forests. All planar graphs are
5-degenerate; moreover, every Kr-minor-free graph (in particular, any
H-minor-free graph for |V (H)| = r) is O(r

√
log r)-degenerate [25,26,27].

Finding a maximum degenerate. . . 5

The following simple proposition shows that the notion of d-degeneracy
admits greedy arguments.

Proposition 4. Let G be a graph and v be a vertex of degree at most d
in G. Then G is d-degenerate if and only if G \ v is.

Proof. As G \ v is a subgraph of G, then d-degeneracy of G implies d-
degeneracy of G \ v. Hence, we only need to justify that if G \ v is d-
degenerate, then so does G. Take any X ⊆ V (G). If v ∈ X, then the
degree of v in G[X] is at most its degree in G, hence it is at most d.
However, if v /∈ X then G[X] is a subgraph of G \ v and G[X] contains a
vertex of degree at most d as well. As X was chosen arbitrarily, the claim
follows. ⊓⊔

Proposition 4 ensures that one can test d-degeneracy of a graph by in
turn finding a vertex of degree at most d, which needs to exist due to the
definition, and deleting it. If in this manner we can remove all the vertices
of the graph, it is clearly d-degenerate. Otherwise we end up with an
induced subgraph with minimum degree at least d+1, which is a sufficient
proof that the graph is not d-degenerate. Note that this procedure can be
implemented in polynomial time. As during each deletion we remove at
most d edges from the graph, the following proposition is straightforward.

Proposition 5. Any n-vertex d-degenerate graph has at most dn edges.

3 The algorithm

In this section we prove Theorem 1. Let us fix d ≥ 1, an n-vertex graph
G and an inclusion-wise maximal set X ⊆ V (G) inducing a d-degenerate
graph.

The behaviour of the algorithm depends on a few constants that may
depend on d and whose values influence the final success probability. At
the end of this section we propose precise values of these constants and
respective values of εd for 1 ≤ d ≤ 6. However, as the values of εd are
really tiny even for small d, when describing the algorithm we prefer to
introduce these constants symbolically, and only argue that there exists
their evaluation that leads to a (2−εd)−n lower bound on the probability
of successfully sampling X.

The algorithm maintains two disjoint sets A,Z ⊆ V (G), consisting of
vertices about which we have already made some assumptions: we seek for
the set X that contains A and is disjoint from Z. Let Q = V (G)\ (A∪Z)
be the set of the remaining vertices, whose assignment is not yet decided.

6 Pilipczuk×2

We start with A = Z = ∅. The description of the algorithm consists
of a sequence of rules; at each point, the lowest-numbered applicable rule
is used. When applying a rule we assign some vertices of Q to the set A
or Z, depending on some random decision. We say that an application of
a rule is correct if, assuming that before the application we have A ⊆ X
and Z ∩X = ∅, the vertices assigned to A belong to X, and the vertices
assigned to Z belong to V (G) \X. In other words, a correct application
assigns the vertices consistently with the fixed solution X.

We start with the randomized rule that is triggered when the graph is
dense. Observe that, since G[X] is d-degenerate, G[X∩Q] is d-degenerate
as well and, by Proposition 5, contains less than d|X ∩Q| edges. Thus, if
|E(G[Q])|/|Q| is significantly larger than d, then only a tiny fraction of
the edges of G[Q] are present in G[X]. Hence, an overwhelming fraction
of edges of G[Q] has at least one of the endpoints outside X, so having
sampled an edge of G[Q] uniformly at random with high probability we
may assume that there are only three possibilities of the behaviour of its
endpoints, instead of four. This observation leads to the following rule.
Let λ > 4 be a constant.

Rule 1. If |E(G[Q])| ≥ λd|Q|, then:

1. choose an edge uv ∈ E(G[Q]) uniformly at random;
2. with probability 1/3 each, make one of the following decisions: either

assign u to A and v to Z, or assign u to Z and v to A, or assign both
u and v to Z.

Lemma 6. Assume that A ⊆ X and Z ∩X = ∅ before Rule 1 is applied.

Then the application of Rule 1 is correct with probability at least λ−1
3λ .

Proof. As |E(G[Q])| ≥ λd|Q|, but |E(G[X ∩ Q])| ≤ d|X ∩ Q| ≤ d|Q|
by Proposition 5, the probability that uv /∈ E(G[X]) is at least λ−1

λ
.

Conditional on the assumption uv /∈ E(G[X]), in the second step of Rule 1
we make a correct decision with probability 1/3. This concludes the proof.

⊓⊔

Note that the bound λ−1
3λ is larger than 1/4 for λ > 4.

Equipped with Rule 1, we may focus on the case when G[Q] has
small average degree. Let us introduce a constant κ > 2λ and let S ⊆ Q
be the set of vertices having degree less than κd in G[Q]. If Rule 1 is
not applicable, then |E(G[Q])| < λd|Q|. Hence we can infer that |S| ≥
κ−2λ
κ

|Q|, as otherwise by just counting the degrees of vertices in Q \ S

we could find at least 1
2 · 2λ

κ
|Q| · κd = λd|Q| edges in G[Q]. Consider

Finding a maximum degenerate. . . 7

any v ∈ S. Such a vertex v may be of two types: it either has at most
d neighbours in A, or at least d + 1 of them. In the first case, we argue
that we may perform a good guessing step in the closed neighbourhood
of v, because the degree of v is bounded and when all the neighbours of
v are deleted (assigned to Z), then one may greedily assign v to A. In
the second case, we observe that we cannot assign too many such vertices
v to A, as otherwise we would obtain a subgraph of G[A] with too high
average degree. Let us now proceed to the formal arguments.

Rule 2. Assume there exists a vertex v ∈ Q such that |NG(v) ∩Q| < κd
and |NG(v)∩A| ≤ d. Let r = |NG(v)∩Q| and v1, v2, . . . , vr be an arbitrary
ordering of the neighbours of v in Q. Let γ = γ(r) ≥ 1 be such that

γ−1 + γ−2 + . . . + γ−r−1 = 1.

Randomly, make one of the following decisions:

1. for 1 ≤ i ≤ r, with probability γ−i assign v1, v2, . . . , vi−1 to Z and vi
to A;

2. with probability γ−r−1 assign all vertices v1, v2, . . . , vr to Z and v
to A.

Note that the choice of γ not only ensures that the probabilities of the
options in Rule 2 sum up to one, but also that γ(r) ≤ γ(⌈κd⌉ − 1) < 2.
We now show a bound on the probability that an application of Rule 2 is
correct.

Lemma 7. Assume that A ⊆ X and Z ∩X = ∅ before Rule 2 is applied.

Then exactly one of the decisions considered in Rule 2 leads to a correct

application. Moreover, if in the correct decision exactly i0 vertices are

assigned to A∪Z, then the probability of choosing the correct one is equal

to γ−i0 .

Proof. Firstly observe that the decisions in Rule 2 contradict each other,
so at most one of them can lead to a correct application.

Assume that (NG(v) ∩ Q) ∩ X 6= ∅ and let vi0 be the vertex from
(NG(v)∩Q)∩X with the smallest index. Then the decision, which assigns
all the vertices of NG(v)∩Q with smaller indices to Z and vi0 to A leads
to a correct application. Moreover, it assigns exactly i0 vertices to A ∪Z
and the probability of choosing it is equal to γ−i0 .

Assume now that (NG(v)∩Q)∩X = ∅. We claim that v ∈ X. Assume
otherwise; then v has at most d neighbours in X, so by Proposition 4
after greedily incorporating it to X we would still have G[X] being a

8 Pilipczuk×2

d-degenerate graph. This contradicts maximality of X. Hence, we infer
that the decision which assigns all the neighbours of v from Q to Z and v
itself to A leads to a correct application, it assigns exactly r + 1 vertices
to A ∪ Z and has probability γ−r−1. ⊓⊔

We now handle vertices with more than d neighbours in A. Intuitively,
there can be at most d|A| such vertices assigned to A, as otherwise A
would have an induced subgraph with too high average degree. Hence, if
there is significantly more than 2d|A| such vertices in total, then picking
one of them at random with probability higher than 1/2 gives a vertex
that needs to be assigned to Z. Let us introduce a constant c > 2.

Rule 3. If there are at least cd|A| vertices in Q that have more than d
neighbours in A, choose one such vertex uniformly at random and assign
it to Z.

Lemma 8. Assume that A ⊆ X and Z ∩X = ∅ before Rule 3 is applied.

Then the application of Rule 3 is correct with probability at least 1− 1/c.

Proof. Let P = {v ∈ Q : |NG(v) ∩ A| > d}. As |P | ≥ cd|A|, to prove the
lemma it suffices to show that |P ∩ X| < d|A|. Assume otherwise, and
consider the set ((P ∩X)∪A) ⊆ X. The number of edges of the subgraph
of G[X] induced by (P ∩X) ∪A is at least

(d+ 1)|P ∩X| = d|P ∩X|+ |P ∩X| ≥ d(|P ∩X|+ |A|) = d|(P ∩X)∪A|.

This contradicts the assumption that G[X] is d-degenerate, due to Propo-
sition 5. ⊓⊔

Note that 1 − 1/c > 1/2 for c > 2.

We now show that if Rules 1, 2 and 3 are not applicable, then |A∪Z| is
large, which means that the algorithm has already made decisions about
a significant fraction of the vertices of the graph.

Lemma 9. If Rules 1, 2 and 3 are not applicable, then |A∪Z| > αn for

some constant α > 0 that depends only on the constants d, λ, κ and c.

Proof. As Rule 1 is not applicable, Q contains at most 2λ
κ
|Q| vertices of

degree at least κd in G[Q]. As Rule 2 is not applicable, the remaining
vertices have more than d neighbours in A. As Rule 3 is not applicable,
we have that

κ− 2λ

κ
|Q| < cd|A| ≤ cd|A ∪ Z|.

Finding a maximum degenerate. . . 9

As Q = V (G) \ (A∪Z), simple computations show that this is equivalent
to

|A ∪ Z|
|V (G)| >

(

cdκ

κ− 2λ
+ 1

)−1

,

and the proof is finished. ⊓⊔

Lemma 9 ensures that at this point the algorithm has already performed
enough steps to achieve the desired success probability. Therefore, we may
finish by brute-force.

Rule 4. If |A ∪ Z| > αn for the constant α given by Lemma 9, for each
v ∈ Q independently, assign v to A or Z with probability 1/2 each, and
finish the algorithm by outputting the set A if it induces a d-degenerate
graph, or reporting an error otherwise.

We now summarize the bound on the success probability.

Lemma 10. The algorithm outputs the set X with probability at least

max

(

√

3λ

λ− 1
, γ(⌈κd⌉ − 1),

c

c− 1

)−αn

2−(1−α)n,

which is equal to (2 − εd)n for some εd > 0.

Proof. Recall that 3λ
λ−1 < 4, γ(⌈κd⌉ − 1) < 2, c

c−1 < 2 and α > 0, by the
choice of the constants and by Lemma 9. Therefore, it suffices to prove
that, before Rule 4 is applied, the probability that A ⊆ X and Z ∩X = ∅
is at least

max

(

√

3λ

λ− 1
, γ(⌈κd⌉ − 1),

c

c− 1

)−|A∪Z|

.

However, this is a straightforward corollary of Lemmata 6, 7 and 8. ⊓⊔

This concludes the proof of Theorem 1. In Table 1 we provide a choice
of values of the constants for small values of d, together with correspond-
ing value of 2 − εd.

4 Conclusions

We have shown that the Maximum d-degenerate Induced Subgraph

problem can be solved in time (2 − εd)nnO(1) for any fixed d ≥ 1. There
are two natural questions arising from our work. First, can the algorithm

10 Pilipczuk×2

d 1
λ 4.0238224
κ 9
c 2.00197442
α 0.050203

2− εd 1.99991

d 2
λ 4.00009156
κ 17/2
c 2.00000763
α 0.01449

2− εd 1.9999999

d 3
λ 4.000000357628
κ 25/3
c 2.0000000298
α 0.0066225

2− εd 1.9999999999

d 4
λ 4.000000001397
κ 33/4
c 2.0000000001164
α 0.0037736

2− εd 1.9999999999996

d 5
λ 4.000000000005457
κ 41/5
c 2.0000000000004548
α 0.0024331

2− εd 1.999999999999999

d 6
λ 4.000000000000021316
κ 49/6
c 2.0000000000000017833
α 0.0016978

2− εd 1.999999999999999997

Table 1. Example values of the constants together with the corresponding success
probability.

be derandomized? Rules 2 and 3 can be easily transformed into appropri-
ate branching rules, but we do not know how to handle Rule 1 without
randomization.

Second, our constants εd are really tiny even for small values of d. This
is mainly caused by two facts: the gain over a straightforward brute-force
algorithm in Rule 2 is very small (i.e., γ(⌊κd⌋) is very close to 2) and
the algorithm falls back to Rule 4 after processing only a tiny fraction
α of the entire graph. Can the running time of the algorithm be signif-
icantly improved? Another interesting question would be to investigate,
whether the Maximum d-degenerate Induced Subgraph problem
can be solved in time (2 − ε)nnO(1) for some universal constant ε that is
independent of d.

Apart from the above questions, we would like to state here a signifi-
cantly more challenging goal. Let G be a polynomially recognizable graph
class of bounded degeneracy (i.e., there exists a constant d such that each
G ∈ G is d-degenerate). Can the corresponding Maximum Induced G-
Subgraph problem be solved in (2− εG)n time for some constant εG > 0
that depends only on the class G? Can we prove some meta-result for
such type of problems?

Our Rules 1 and 3 are valid for any such class G; however, this is not
true for the greedy step in Rule 2. In particular, we do not know how

Finding a maximum degenerate. . . 11

to handle the Maximum Induced G-Subgraph problem faster than 2n

even if the input is assumed to be d-degenerate.

Acknowledgements. We would like to thank Marek Cygan, Fedor V.
Fomin and Pim van ’t Hof for helpful discussions.

References

1. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the
analysis of exact algorithms. J. ACM 56(5) (2009) 1–32

2. van Rooij, J.M.M., Nederlof, J., van Dijk, T.C.: Inclusion/exclusion meets measure
and conquer. In Fiat, A., Sanders, P., eds.: ESA. Volume 5757 of Lecture Notes
in Computer Science., Springer (2009) 554–565

3. Cygan, M., Pilipczuk, M.: Exact and approximate bandwidth. Theor. Comput.
Sci. 411(40-42) (2010) 3701–3713

4. Björklund, A.: Determinant sums for undirected hamiltonicity. In: 51th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), IEEE Computer
Society (2010) 173–182

5. Fomin, F.V., Todinca, I., Villanger, Y.: Exact algorithm for the maximum induced
planar subgraph problem. In Demetrescu, C., Halldórsson, M.M., eds.: ESA. Vol-
ume 6942 of Lecture Notes in Computer Science., Springer (2011) 287–298

6. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Scheduling partially
ordered jobs faster than 2n. In Demetrescu, C., Halldórsson, M.M., eds.: ESA.
Volume 6942 of Lecture Notes in Computer Science., Springer (2011) 299–310

7. Cygan, M., Pilipczuk, M., Wojtaszczyk, J.O.: Capacitated domination faster than
O(2n). In Kaplan, H., ed.: SWAT. Volume 6139 of Lecture Notes in Computer
Science., Springer (2010) 74–80

8. Binkele-Raible, D., Brankovic, L., Cygan, M., Fernau, H., Kneis, J., Kratsch, D.,
Langer, A., Liedloff, M., Pilipczuk, M., Rossmanith, P., Wojtaszczyk, J.O.: Break-
ing the 2n-barrier for irredundance: Two lines of attack. J. Discrete Algorithms
9(3) (2011) 214–230

9. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Solving the 2-disjoint
connected subgraphs problem faster than 2n. In Fernández-Baca, D., ed.: LATIN.
Volume 7256 of Lecture Notes in Computer Science., Springer (2012) 195–206

10. Fomin, F.V., Heggernes, P., Kratsch, D., Papadopoulos, C., Villanger, Y.: Enu-
merating minimal subset feedback vertex sets. In Dehne, F., Iacono, J., Sack, J.R.,
eds.: WADS. Volume 6844 of Lecture Notes in Computer Science., Springer (2011)
399–410

11. Razgon, I.: Exact computation of maximum induced forest. In Arge, L., Freivalds,
R., eds.: SWAT. Volume 4059 of Lecture Notes in Computer Science., Springer
(2006) 160–171

12. Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback
vertex set problem: Exact and enumeration algorithms. Algorithmica 52(2) (2008)
293–307

13. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci.
62(2) (2001) 367–375

12 Pilipczuk×2

14. Calabro, C., Impagliazzo, R., Paturi, R.: The complexity of satisfiability of small
depth circuits. In Chen, J., Fomin, F.V., eds.: IWPEC. Volume 5917 of Lecture
Notes in Computer Science., Springer (2009) 75–85

15. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Woj-
taszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single
exponential time. In Ostrovsky, R., ed.: FOCS, IEEE (2011) 150–159

16. Lokshtanov, D., Marx, D., Saurabh, S.: Known Algorithms on Graphs of Bounded
Treewidth are Probably Optimal. In: Proceedings of the Twenty-Second Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA). (2011) 777–789

17. Pătraşcu, M., Williams, R.: On the possibility of faster SAT algorithms. In:
Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA). (2010) 1065–1075

18. Cygan, M., Dell, H., Lokshtanov, D., Marx, D., Nederlof, J., Okamoto, Y., Pa-
turi, R., Saurabh, S., Wahlström, M.: On problems as hard as CNFSAT. CoRR
abs/1112.2275 (2011)

19. Gupta, S., Raman, V., Saurabh, S.: Fast exponential algorithms for maximum r-
regular induced subgraph problems. In Arun-Kumar, S., Garg, N., eds.: FSTTCS.
Volume 4337 of Lecture Notes in Computer Science., Springer (2006) 139–151

20. Fomin, F.V., Villanger, Y.: Finding induced subgraphs via minimal triangula-
tions. In Marion, J.Y., Schwentick, T., eds.: STACS. Volume 5 of LIPIcs., Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2010) 383–394

21. Angelsmark, O., Thapper, J.: Partitioning based algorithms for some colouring
problems. In Hnich, B., Carlsson, M., Fages, F., Rossi, F., eds.: CSCLP. Volume
3978 of Lecture Notes in Computer Science., Springer (2005) 44–58

22. Gaspers, S., Kratsch, D., Liedloff, M.: On independent sets and bicliques in graphs.
In Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D., eds.: WG. Volume
5344 of Lecture Notes in Computer Science. (2008) 171–182

23. Gaspers, S.: Exponential Time Algorithms: Structures, Measures, and Bounds.
PhD Thesis, University of Bergen (2008)

24. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Kernelization hard-
ness of connectivity problems in d-degenerate graphs. In Thilikos, D.M., ed.: WG.
Volume 6410 of Lecture Notes in Computer Science. (2010) 147–158

25. Kostochka, A.V.: Lower bound of the hadwiger number of graphs by their average
degree. Combinatorica 4(4) (1984) 307–316

26. Thomason, A.: An extremal function for contractions of graphs. Math. Proc.
Cambridge Philos. Soc. 95(2) (1984) 261–265

27. Thomason, A.: The extremal function for complete minors. J. Comb. Theory, Ser.
B 81(2) (2001) 318–338

	Finding a maximum induced degenerate subgraph faster than 2n

