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Abstract. The proliferation of malware in recent years has motivated
the need for tools to detect, analyze, and understand intrusions. Though
analysis and detection can be difficult, malware fortunately leaves arti-
facts of its presence on disk. In this paper, we present DIONE, a flexible
policy-based disk I/O monitoring and analysis infrastructure that can
be used to analyze and understand malware behavior. DIONE interposes
between a system-under-analysis and its hard disk, intercepting disk ac-
cesses and reconstructing a high-level semantic view of the disk and all
operations on it. Since DIONE resides outside the host it is analyzing,
it is resilient to attacks and misdirections by malware that attempts to
mislead or hide from analyzers. By performing on-the-fly reconstruction
of every operation, DIONE maintains a ground truth of the state of the
file system which is always up-to-date—even as new files are created,
deleted, moved, or altered.

DIONE is the first disk monitoring infrastructure to provide rich, up-
to-date, low-level monitoring and analysis for NTFS: the notoriously
complex, closed-source file system used by modern Microsoft Windows
computing systems. By comparing a snapshot obtained by DIONE’s live-
updating capability to a static disk scan, we demonstrate that DIONE
provides 100% accuracy in reconstructing file system operations. Despite
this powerful instrumentation capability, DIONE has a minimal effect
on the performance of the system. For most tests, DIONE results in a
performance overhead of less than 10%—in many cases less than 3%—
even when processing complex sequences of file system operations.

Keywords: Malware Analysis, Instrumentation, File System, Digital
Forensics.

1 Introduction

As the arms race between malware creators and security researchers intensifies,
it becomes increasingly important to develop tools to understand, detect, and
prevent intrusions. The amount of malware has not only proliferated in recent
years, but it has also become more sophisticated, employing methods to hide
from or mislead malware detection mechanisms. As a result, it is critical to obtain
information about malware that is as close to the truth as possible, which often
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means working at the lowest level possible. While researchers have had success
using memory introspection [7J20/22], disk I/O instrumentation is also a critical
tool for the analysis and detection of malware. Disk-level events provide a wealth
of information about the state and history of a system. As a result, a flexible disk
I/0 analysis and instrumentation infrastructure provides key insight to better
understand malware behavior.

In this paper, we present DIONE: A Disk I/O aNalysis Engine. DIONE is
a flexible, policy-based disk monitoring infrastructure which facilitates the col-
lection and analysis of disk I/O. It uses information from a sensor interposed
between a System-Under-Analysis (SUA) and its hard disk. Since it monitors
I/0 outside the reach of the Operating System (OS), it cannot be misdirected
or thwarted by rootkits—even those that have achieved superuser-level privi-
lege. DIONE reconstructs high-level file system operations using only intercepted
metadata and disk sector addresses; while this reconstruction is performed with
a high degree of accuracy, the performance impact of instrumentation is minimal.
DIONE only requires basic disk access information that can be obtained by many
types of sensors, including both physical hardware sensors and virtualization-
based sensors. It can, therefore, be used to analyze and detect malware that
utilizes anti-sandbox or virtualization-evasion techniques, which have become
increasingly common [3I8/19].

Rootkits, which can gain administrator privilege in order to control a system
and hide themselves and other evidence of infection, often leave behind traces
of disk activity, even when they eventually cover their tracks [I4]. Persistent
rootkits make changes to files on disk in order to survive reboots; this may
include modifications to OS configuration files and system binaries. Even non-
persistent rootkits, which reside purely in memory, may still present artifacts
of infection through disk activity. This activity could include loading dynamic
libraries, log-file scrubbing, and file time-stamp tampering [21].

In a simple world, a disk monitor could reside in the OS, where rich, high-
level APIs expose semantics such as files and their properties, as well as the
high-level operations which create, delete, and modify them. Unfortunately, this
is not practical from a security perspective, as it is a well-understood problem
that any malware that has escalated its privilege to the administrator level could
then thwart or misdirect any data collection and analysis. For this reason, it is
more desirable and secure to move the interposer outside the reach of the OS.

Unfortunately, housing a disk instrumentation engine outside the OS prohibits
easy access to high-level constructs and operations. The Semantic Gap problem
occurs when there is no mapping between low-level information (e.g., disk sectors
and raw metadata) and high-level information (e.g., files and their properties).
Fortunately, this challenge has been addressed in previous work with open-source
libraries and drivers [6l26]. However, the Temporal Gap problem, in which low-
level events across time must be reconstructed to identify high-level file system
operations, has not been addressed in detail.

Unlike many low-level disk instrumentation approaches, DIONE analyzes
Windows systems running the NTFS file system. Furthermore, it performs live
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updating, resulting in a view of the file system that is always up-to-date (except
for any delay as writes are flushed to disk). DIONE works by pre-populating its
data structures with a reconstructed view of the file system of the SUA. Then, as
the SUA runs, DIONE intercepts all disk accesses through the use of a sensor. For
each sector accessed, DIONE determines which file it belongs to and whether it
has intercepted file contents or metadata. Next, DIONE determines whether the
file system state changed (e.g., due to a file being created, deleted, etc.). If so,
it updates its high-level view of the file system state. Finally, DIONE determines
if any policies apply to that file, and if so, performs the appropriate action.

In this paper, we evaluate the accuracy, utility, and performance of DIONE.
We integrate DIONE with a popular virtualization infrastructure in order to in-
vestigate the disk I/O of a virtual SUA. We also evaluate the performance of full
disk instrumentation and the accuracy of DIONE’s live updating capability. Fi-
nally, we demonstrate the utility of DIONE by instrumenting real-world malware
samples and using the results to identify and analyze the malware.

2 Related Work

Much of the previous work in disk analysis focused on Intrusion Detection Sys-
tems (IDSs). Kim and Spafford’s Tripwire monitored Unix systems for unautho-
rized modifications to the file system [I5]. Tripwire performed file-level integrity
checks and compared the result to a reference database. While it worked quite
well to discover changes to files, it could only detect modifications between scans.
Stolfo el al. also developed a host-based file system access anomaly detection sys-
tem [27]. They utilized a file system sensor which wrapped around a modified file
system to extract information about each file access. Both host-based solutions
require a trusted OS. Conversely, Pennington et al. implemented a rule-based
storage IDS that resided on an NFS server; their IDS monitored disk accesses
for changes to specified attributes and file system operations [21].

While host-based IDSs are problematic because a privileged rootkit can over-
ride or misdirect malware detectors, IDSs based on Virtual Machine Introspec-
tion (VMI) offer both high visibility and isolation from compromised OSs. Payne
et al. proposed requirements to guide any virtual machine monitoring infrastruc-
ture, and implemented XenAccess to incorporate VMI capabilities [20]. However,
the disk-monitoring in their implementation can only be performed on para-
virtualized OSes, such as Linux. Azmandian et al. used low-level architectural
events and disk and network accesses in their machine learning-based VMI-IDS,
though they did not utilize high-level disk semantics [I]. Zhang et al. presented a
storage-monitoring infrastructure very similar to ours [29]. However, their moni-
toring framework was only implemented for FAT32 file systems, which is far less
complex than NTFS and is rarely used in modern systems.

Jiang et al. also implemented a VMI-IDS, called VMwatcher, which incorpo-
rated disk, memory, and kernel-level events [I2]. They too could not analyze the
ubiquitous NTF'S file system, and instead required that Windows VMs use the
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Linux ext2/ext3 file system. The VMI-IDS of Joshi et al. detected intrusions
before the vulnerability was disclosed [I3]. However, their solution to inspecting
disk accesses required invoking code in the address space of the guest itself, and
subsequently performing a checkpoint and rollback.

Other researchers have acknowledged the role of disk accesses in malware
intrusions by providing rootkit prevention solutions. With Rootkit Resistant
Disks, Butler et al. provided a hardware-based solution to block accesses to
sensitive directories, as long as these directories reside on a separate partition [4].
Chubachi et al. also provided a mechanism to block accesses to disk that could
operate on a file-level granularity [9]. Unfortunately, they need to create a sector-
based “watch-list” before the system boots and do not have a live updating
capability to keep the list current as the system runs.

Previous work has also addressed the role of dynamic analysis and instru-
mentation for malware forensic analysis and classification, and yields informa-
tion about disk activities. In-host solutions include DiskMon [24], part of the
Sysinternals tools, and CWSandbozx [28]; both provide disk access instrumen-
tation capabilities for Windows systems. Similarly, Janus [I1], DTrace [5], and
Systrace [23] provide in-host instrumentation for Unix-based systems through
system call interposition, also providing the ability to instrument disk accesses.

Given that in-host solutions can be misled or thwarted by advanced mal-
ware, more recent work has moved the analysis outside the host. Kruegel et al.’s
TTAnalyze (later renamed Anubis) uses an emulation layer to profile malware,
including file system activities, of a Windows guest [I8]. Similarly, King et al.’s
BackTracker uses a virtualized environment to gather process and file system-
related events that led to a system compromise of a Linux guest [16]. Krishnan
et al. created a whole-system analysis, combining memory, disk, and system call
introspection [I7]. However, their disk monitoring relies on periodic disk scans
to connect blocks to files, and does not perform live updating.

3 DioNE Overview

DIONE is a flexible, policy-based disk I/O monitoring and analyzing infrastruc-
ture. DIONE maintains a view of the file system under analysis. A disk sensor
intercepts all accesses from the System-Under-Analysis (SUA) to its disk, and
passes that low-level information to DIONE. The toolkit then reconstructs the op-
eration, updates its view of the file system (if necessary), and passes a high-level
summary of the disk access to an analysis engine as specified by the user-defined
policies. The rest of this section discusses DIONE in more detail.

3.1 Threat Model and Assumptions

In our threat model, the SUA is untrusted and can be compromised, even by
by malware with administrator-level privileges that can hide its presence from
host-level detection mechanisms.

We assume that there is a sensor that interposes between the SUA and its hard
disk and provides disk access information. This sensor can be a software sensor
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Fig. 1. High-level overview of DIONE Architecture

(e.g., a virtualization layer) or a hardware sensor. We assume that both the
sensor providing the disk access information and the Analysis Machine (that is,
the machine which runs DIONE) are trusted. Therefore, in a virtualization-based
solution, neither the hypervisor nor the virtual analysis domain is compromised.

3.2 DIONE Operation

There are four discrete components to DIONE: A sensor, a processing engine, an
analysis engine, and the DIONE Manager. The DIONE architecture is shown in
Figure [l

The Sensor interposes between the SUA and its disk. It intercepts each disk
access, and summarizes the access in terms of a sector address, a count of con-
secutive sectors, the operation (read/write), and the actual contents of the disk
access (data being read, or data being written). The sensor type is flexible. It
can be a physical sensor, which interposes between a physical SUA and the anal-
ysis machine, and extracts the disk access information from the protocol (e.g.,
SATA) command headers to send to DIONE. It can also be a virtual sensor, such
as a hypervisor, which intercepts the disk I/O of a virtual SUA.

The Processing Engine is a daemon on the analysis machine. The multi-
threaded DIONE daemon interacts with both the user and the sensor. It receives
disk access information from the sensor, and performs three steps. The first step
is Disk Access Classification; for each sector, it determines which file it belongs
to (if known) and whether the access was to file content or metadata. In the
Live Updating phase, it compares the intercepted metadata to its view of the file
system to determine if any high-level changes occurred. It passes the high-level
access summary to the Policy Engine, which determines if any policies apply to
the file accessed. If so, it passes the information along to the analysis engine.
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Table 1. Commands used for communication with the DIONE daemon

Command Description

DECLARE-RULE Declare a new rule for instrumentation. Types of rules include:
— Record: Record an access or file operation
— Timestamp Alert: Alert if a timestamp is reversed.
— Hide Alert: Alert if a file is hidden
— MBR Alert: Alert if the master boot record is accessed.

DELETE-RULE Delete a previously-declared rule

LIST List all rules

APPLY Bulk-apply declared rules to File Record data structures

SCAN Perform a full scan of a disk image (or mounted disk partition),

creating all File Records from the raw bytes and automatically
applying all declared rules

SAVE Save the state of the DIONE File Record hierarchy to a file to be
loaded from later
LOAD Load the DIONE File Record hierarchy from a previously-saved

configuration file

The Analysis Engine performs some action on the information it has re-
ceived from the processing engine. Currently, the analysis engine logs the accesses
to a file, but future work will extend the analysis engine to perform malware clas-
sification or on-the-fly intrusion detection.

The DIONE Manager is a command line program which the user invokes to
send commands to the DIONE daemon. The commands can be roughly divided
into Rule Commands and State Commands and are summarized in Table [Tl

Included in the Rule Command category are commands to declare, delete, list,
or bulk-apply rules. The policies currently supported are summarized in Table [Tl
However, DIONE is built to flexibly support the creation of new rule types. The
State Command category contains rules to load and save a view of the state of
the file system under analysis. The load step is necessary to pre-populate internal
DIONE data structures with a summary of the file system. This step is required
before DIONE will begin monitoring I/O. The goal of this stage is that DIONE
will already know everything about the file system before the SUA boots, so
that it can immediately begin monitoring and analyzing disk I/O. This step can
be accomplished with a disk scan, which reconstructs the file system from the
raw bytes of the disk, or by loading a previously saved configuration file.

3.3 Live Updating

As the SUA boots and runs, new files are created, deleted, moved, expanded,
shrunk, and renamed. As a result, the pre-populated view of the SUA’s file
system, including the mappings between sectors and files, quickly become out-
of-date, reducing the accuracy of the monitoring and logging of disk I/O. The
solution to this problem is Live Updating: an on-the-fly reconstruction of disk
events based solely on the intercepted disk access information.



DioNE: A Flexible Disk Monitoring and Analysis Framework 133

The next sections detail the challenges and solutions to live updating. As
our implementation is initially geared toward Windows systems with the NTFS
file system, and NTFS is a particularly challenging file system to perform live
updating on, we will begin with an introduction to those NTFS concepts which
are necessary for accurately describing the live updating implementation.

NTFS Concepts. Many of the challenges of interpreting NTFS arise from
its scalability and reliability. Scalability is accomplished through a flexible disk
layout and many levels of indirection. Reliability is accomplished through re-
dundancy and by ordering writes in a systematic way to ensure a consistent
result.

The primary metadata structure of NTFS is the Master File Table, or MFT.
The MFT is composed of entries, which are each 1KB in size. Each file or di-
rectory has at least one MFT entry to describe it. The MFT entry is flexible:
The first 42 bytes are the MFT entry header and have a defined purpose and
format, but the rest of the bytes store only what is needed for the particular
file it describes. In NTFS, everything is a file—even file system administrative
metadata. This means that the MFT itself is a file: This file is called $MFT,
and its contents are the entries of the MFT (therefore, the MFT has an entry in
itself for itself). Figure [2] shows a representation of the MFT file, and expands
$MFTs entry (which always resides at index 0 in the MFT).

Everything associated with a file is stored in an attribute. The attribute
types are pre-defined by NTFS to serve specific purposes. For example, the
$STANDARD INFORMATION attribute contains access times and permissions, and
the $FILE NAME attribute contains the file name and the parent directory’s MFT
index. Even the contents of a file are stored in an attribute, called the $DATA
attribute. The contents of a directory are references to its children; these too are
stored in attributes.

Each attribute consists of the standard attribute header, a type-specific header,
and the contents of the attribute. If the contents of an attribute are small, then
the contents will follow the headers and will reside in the MFT entry itself. If the
contents are large, then an additional level of indirection is used. In this case,
a runlist follows the attribute header. A runlist describes all the disk clusterd]
that actually store the contents of the attribute, where a run is described by
a starting cluster address plus a count of consecutive clusters. In the example
MFT of Figure 2], the contents of the $STANDARD INFORMATION and $FILE NAME
attributes are resident. Since the content of the $DATA attribute is large, this
attribute is not resident. Its runlist indicates that the $MFT data content can
be found in clusters 104-107 and 220-221.

It is easy to see that a small file will occupy only the two sectors of its MFT
entry. A large file will occupy the two sectors of its MF'T entry, plus the content
clusters themselves. Consider, then, the problem of a very large file on a highly
fragmented disk: it might take more than the 1024 bytes just to store the content

! In NTFS terminology, a cluster is the minimum unit of disk access, and is generally
eight sectors long in modern systems.
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MFT Entry Header

Signature: FILE

Seq Num: 1
In-Use: 1
Is-Directory: 0 | Attribute Headers | | Attribute Content | | Unused Space |
Base Ref: 0 PEANES e
N SO e
- . .
Pid
Cluster Y » Y ‘ a ¥
104 [T] N
¢ A A
105 Name:
Name: Name:
STANDARD SFILE NAME SDATA
INFORMATION -
106 Type ID: 48 Type ID: 128
Type ID: 16 Resident: 1 Resident: 0
Resident: 1 ’ '
107
Created: Name: SMFT Run 0:
2011 06 06 Parent MFT: 5 Start: 104
20:04:37 Count: 4
File Modified: Run 1:
220 2011 09 06 Start: 220
15:31:32 Count: 2
MFT Modified: :
221 2011 09 06
15:31:32
Accessed:
2011 09 06
15:31:32

Fig. 2. Representation of the MFT, which is saved in a file called $MFT. The first entry
holds the information to describe $MF'T itself; the contents of this entry are expanded
to show the structure and relevant information of a typical MFT entry.

runlist. In this case, NTFS scales with another level of indirection and another
attribute, and multiple non-base MFT entries are allocated (in addition to the
base entry) to store all attributes.

NTFS Live Updating Challenges. There are two big challenges to live up-
dating: overcoming the Semantic Gap and the Temporal Gap. The Semantic Gap
is a well-studied problem in which low-level data must be mapped to high-level
data. In our case, we need to map the raw byte contents of a disk access to files
and their properties. We utilize and build upon the open-source The Sleuth Kit
(TSK) [6] to do much of the work to bridge the semantic gap.

The Temporal Gap occurs when low-level behaviors occurring at different
points in time must be pieced together to reconstruct high-level operations.
The high-level operations that DIONE monitors include file creation, deletion,
expansion, move/rename, and updates in MAC times and the hidden property.

The first challenge of live updating is identifying the fields in an intercepted
MFT entry for which a change indicates a high-level operation. For some
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operations, a combination of changes across multiple intercepted MFT entries
indicates that a certain high-level operation has occurred. Due to file system re-
liability constraints, these changes will be propagated to disk in an inconvenient
ordering. Therefore, DIONE must piece together the low-level changes across time
in order to reconstruct high-level events.

The biggest challenge resulting from the temporal gap is the detection of
file creation. An intercepted MFT entry lacks two critical pieces of information:
the MFT index of that entry, and the full path of the file it describes. For a
static image, it is not a challenge to calculate both. However, in live analysis,
the metadata creation will occur before the $MFT file’s runlist is updated—and
just like any other file, $MFT can expand to a non-contiguous location on disk.
Therefore, it can be impossible to determine (at the time of interception) the
MFT index of a newly created file. In fact, it can be impossible to determine at
interception time whether a file creation actually occurred in the first place.

A similar challenge arises in determining the absolute path of a file. The MF'T
entry contains only the MFT index of that file’s parent, not its entire path. If the
parent’s file creation has not yet been intercepted, or the intercepted parent did
not have an MFT index when its creation was intercepted (due to the previously
described problem), DIONE cannot identify the parent to reconstruct the path
at the time of interception. This situation occurs quite frequently whenever an
application is being installed. In this case, many (up to hundreds or thousands)
of files are created in a very short amount of time. Since the OS bunches writes
to disk in one delayed burst, many hierarchical directory levels are created in
which DIONE cannot determine files’ paths.

The temporal gap also proves a challenge when a file’s attributes are divided
over multiple MFT entries. As DIONE will only intercept one MFT entry at a
time, it will never see the full picture at once. Therefore, it needs to account for
the possibility of only intercepting a partial view of metadata, and to keep track
of non-base entries in addition to base entries.

NTFS Live Updating Operation. Live updating in DIONE occurs in three
steps. First, file metadata is intercepted as it is written to disk. Next, the per-
tinent properties of the file are parsed from the metadata, resulting in a recon-
structed description of the file whose metadata was intercepted. Finally, DIONE
uses the intercepted sector, the existing view of the file system, and the recon-
structed file description from the second step to determine what event occurred.
It updates the internal DIONE data structures to represent the file system change.
After intercepting an access to disk, DIONE looks at the intercepted disk
contents and approximates whether the disk contents “look like” metadata (i.e.,
whether the contents appear to be an intercepted MFT entry). If it looks like
metadata, DIONE parses the raw bytes and extracts the NTFS attributes. It
also attempts to calculate the MFT index by determining where the intercepted
sector falls within DIONE’s copy of the MFT runlist. With this calculated index,
it can attempt to retrieve a File Record. There are two outcomes of this lookup:
either a valid File Record is retrieved, or no File Record matches the index.
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Table 2. Summary of the artifacts for each file system operation. An MFT index is
computed based on the intercepted sector and the known MFT runlist. If a file record
is found with the calculated index, properties of the file record are compared with
properties parsed from the intercepted metadata.

* A replacement is characterized by a file deletion and creation within the same flush
to disk, whereby the same MFT entry is reused.

Operation Artifacts
File Deletion — In-Use flag off in intercepted MFT entry header

) — Creation Time: Intercepted > FileRecord, OR
File Replacement MFT Entry Sequence Number: Intercepted > File Record

File Rename — File Name: Intercepted # FileRecord

File Move — Parent’s MFT Index: Intercepted # FileRecord

) ) — Runlist: Intercepted # FileRecord, OR
File Shrink/Expand  _ Non-base entry created or deleted

Timestamp Reversal —— MAC Times: Intercepted < FileRecord

File Hidden — Hidden flag: Intercepted =1 AND FileRecord =0

If a valid File Record is found, DIONE will compare the extracted attributes to
those attributes found in the existing File Record. If any changes are detected,
it will modify the File Record to reflect the changes. A summary of the semantic
and temporal artifacts of each type of file operation is presented in Table

If a valid File Record is not found, it means one of three things. In the first
case, a new file has just been created, and it has been inserted into a “hole” in
the MFT. The file creation can be verified because the intercepted sector falls
within the known runlist of the MF'T. In the second case, a new file has just been
created, but the MFT was full, and thus it could not be inserted into a hole.
The MFT index cannot be calculated, because the intercepted sector does not
fall in $MFTs runlist. DIONE buffers a reference to this file in a list called the
Wait BuﬁerE Eventually DIONE will intercept the $MFT file’s expansion, the
file creation will be validated, and the MFT index and path can be constructed.
In the final case, the intercepted data had the format of metadata (e.g., the
data looked like an MFT entry), but the data actually turned out to be the
contents of another file. This happens for redundant copies of metadata and for
the journal file $Logfile; additionally, a malicious user could create file contents
which mimic the format of a MFT entry. In any of these cases, a reference to
this suspected file—and the sector at which it was discovered—will be saved in

2 A newly-created file will also be placed in the Wait Buffer if it has a valid MFT index,
but its path cannot be constructed because its parent has yet to be intercepted.
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the Wait Buffer. However, the Wait Buffer will be periodically purged of these
File Records when their corresponding sectors are verified as belonging to a file
which is not $MFT.

The root of trust of DIONE is established and maintained by verifying the
location of the MFT during the initial scan or load (the step described in Sec-
tion B:2). DIONE maintains a list of all sectors that contain metadata via the
runlist of the $MFT file. Since that runlist is only updated when $MFT's meta-
data is intercepted (and the address of this metadata is known and unchanging),
the list of sectors containing valid metadata is always verified. Therefore, when
data that looks like metadata is encountered, it is only processed as metadata if
it falls within this list. The only exception to this rule is for new file creation;
as discussed above, this case is handled through the Wait Buffer. Therefore, a
malicious user cannot forge metadata in order to evade or trick the system.

4 Experimental Results

Next, we evaluate the accuracy and performance of DIONE and demonstrate its
utility using real-world malware. Though DIONE is a flexible instrumentation
framework capable of collecting and analyzing data from both physical and vir-
tual sensors, we use a Xen-based solution which utilizes the virtualization layer
as a data-collecting sensor.

4.1 Experimental Setup

Our virtualization-based solution uses the Xen 4.0.1 hypervisor. Our host system
contains a dual-core Intel Xeon 3060 processor with 4 GB RAM and Intel VMX
hardware virtualization extensions to enable full-virtualization. The 160 GB,
7200 RPM SATA disk was partitioned with a 25 GB partition for the root
directory and a 80 GB partition for the home directory. The virtual machine
SUA runs Windows XP Service Pack 3 with the NTFS file system.

Xen uses a QEMU daemon to handle disk requests for a fully-virtualized (e.g.,
Windows) guest domain; this daemon resides in Domain 0. We implemented a
sensor-side APT (the DiskMonitor), which is linked into the Xen QEMU emulator
code. The only modifications necessary to integrate DIONE with Xen are to
initialize the DiskMonitor and to call a function when performing a disk access.
This function takes as parameters the starting sector address, the consecutive
sector count, the operation type, and the actual disk contents that are read or
will be written. The TrafficMonitor communicates this information to the DIONE
process via shared memory.

4.2 Accuracy Evaluation

In order to gauge the accuracy of live updating, we ran a series of tests to
determine if DIONE correctly reconstructed the file system operations for live
updating. For our tests, we chose installation and uninstallation programs, as
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Table 3. Breakdown of file system operations for each benchmark. The subset of file
creations which wait for the delayed expansion of the MFT are also indicated. Note:
The “All” test is not a sum of the individual tests, because the OS also creates, deletes,
and moves files, and the number of these may differ slightly between tests.

Program Creations (Delayed) Deletions Moves Errors
OpenOffice Install 3934 3930 1 0 0
Gimp Install 1380 1380 0 0 0
Firefox Install 152 135 71 0 0
OpenOffice Uninstall 353 62 3788 3836 0
Gimp Uninstall 5 0 1388 0 0
Firefox Uninstall 6 0 80 0 0
All 6500 6114 5986 3815 0

they perform many file system operations very quickly and stress the live up-
dating system. We chose three open source applications (OpenOffice, Gimp, and
Firefox), and performed both an installation and a uninstallation for each. We
also ran an all-inclusive test that installed all three, then uninstalled all three.

These benchmarks perform a varying number of changes to the file system
hierarchy. Table [J lists each of the seven benchmarks and the number of file
creations, deletions, and moves. As discussed in Section B3] if many new files
are created at once and the MFT does not have enough free space to describe
them, there is a delay between when the file creation is intercepted and when
the file creation can be verified. We include the number of delayed-verification
file creations in Table 3] as these stress DIONE’s live updating accuracy.

For each test, we started from a clean Windows XP SP3 disk image. We
executed one of the seven programs in a VM, instrumenting the file system.
We shutdown the VM, and dumped DIONE’s view of the dynamically-generated
state of the file system to a file. We then ran a disk scan on the raw static disk
image, and compared the results of the static raw disk scan to the results of
the dynamic execution instrumentation. An error is defined as any difference
between the dynamically-generated state and the static disk scan. This includes
a missing file (missed creation), an extraneous file (missed deletion), a misnamed
file, a file with the wrong parent ID or path, a file mislabeled as a file or directory,
a file mislabeled as hidden, a file with any incorrect timestamp, or a file with an
incorrect runlist. Table [J] shows the results of the accuracy tests. In each case,
DIONE maintained a 100% accurate view of the file system, with no differences
between the dynamically-generated view and the static disk scan.

4.3 Performance Evaluation

In order to gauge the performance degradation associated with DIONE’s disk
I/0 instrumentation, we ran two classes of benchmarks: one dominated by file
content reads and writes, and one dominated by file metadata reads and writes.
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Iozone Benchmark. Iozone generates and measures a variety of file opera-
tions. It varies both the file size and the record size (e.g., the amount of data
read/written in a given transaction). Because it creates very large files, reading
and writing to the same file for each test, this is a content-heavy benchmark
with very little metadata being processed.

We ran all Tozone tests on a Windows XP virtual machine with a 16 GB
virtual disk and 512 MB of virtual RAM. We used the Write and Read tests
(which stream accesses through the file), and Random Write and Random Read
(which perform random accesses). We varied the file size from 32 MB to 4 GB,
and chose two record sizes: 64 KB and 16 MB. We ran each test 50 times to
average out some of the variability that is inherent with running a user-space
program in a virtual machine.

For each test, we ran three different instrumentation configurations. For the
Baseline configuration, we ran all the tests without instrumentation (that is,
with DIONE turned off). In the second configuration, called Inst, DIONE is on,
and performing full instrumentation of the system. There are, however, no rules
in the system, so it does not log any of these accesses. This configuration mea-
sures the minimum cost of instrumentation, including live updating. The final
configuration is called Inst+Log. For these tests, DIONE is on and providing in-
strumentation; additionally, a rule is set to record every access to every file on
the disk. Figure [3 shows the results of the tests. Each of the lines represents the
performance with instrumentation, relative to the baseline configuration.

For the Read Iozone tests (Figures[(a) andBl(b)), the slowdown attributed to
instrumentation is near 0 for files 512 MB and smaller. Since the virtual machine
has 512 MB of RAM, Windows prefetches and keeps data in the page cache for
nearly the entire test. Practically, this means that the accesses rarely go to the
virtual disk. Since DIONE only instruments actual I/O to the virtual disk—and
not file I/O within the guest OS’s page cache—DIONE is infrequently invoked.

At larger file sizes, Windows needs to fetch data from the virtual disk, which
Xen intercepts and communicates to DIONE. At this point, the performance of
instrumentation drops relative to the baseline case. In the worst case for stream-
ing reads, DIONE’s no-log instrumentation achieves 97% of the performance of
the uninstrumented execution.

For the random read tests with large file sizes, there is a larger penalty
paid during instrumentation. Recall that DIONE incurs a penalty relative to
the amount of data accessed on the virtual disk. Therefore, the penalty is higher
when more accesses are performed than are necessary. Windows XP utilizes
intelligent read-ahead, in which the cache manager prefetches data from a file
according to some perceived pattern [25]. For random reads, the prefetched data
may be evicted from the cache before it is used, resulting in more accesses than
necessary. This also explains why the penalty is not as high for the tests using
the larger record size (for a given file size). Windows adjusts the amount of data
to be prefetched based on the size of the access, so the ratio of prefetched data to
file size increases with increasing record sizes. With more prefetched data, there
is a higher likelihood that the data will be used before it is evicted from the cache.
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Fig. 3. Performance of instrumentation, normalized to the baseline (no instrumenta-
tion) configuration for Iozone benchmarks for streaming and random read and write
tests

Fortunately, this overhead is unlikely to be incurred in practice, as random-access
of a 2 GB file is rarely performed.

Another observation is that the performance of DIONE actually improves for
streaming and random reads as file sizes grow larger than 1 and 2 GB, respec-
tively. This is explained by considering the multiple levels of memory hierarchy
in a virtualized system. As the file size grows larger than the VM’s RAM, 1/0
must go to the virtual disk. However, the file may still be small enough to fit in
the RAM of the host, as the host will naturally map files (in this case, the VM’s
disk image) to its own page cache. Thus, disk reads are not performed from
the physical disk until the working size of the file becomes larger than available
physical RAM. Since physical disk accesses are very slow, any cost associated
with DIONE’s instrumentation is negligible compared to the cost of going to disk.

The Iozone Write tests (FiguresBl(c) andBl(d)) show some performance degra-
dation at small files sizes. Windows must periodically flush writes to the virtual
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disk, even if the working set fits in the page cache. However, the performance im-
pact is minimal regardless of file size, with a worst-case performance degradation
of 10% (though generally closer to 3%). Additionally, the random write tests do
not have the same penalty associated with random reads. Since Windows only
writes dirty blocks to disk, there are fewer unnecessary accesses to disk.

It is also noticeable that speedup values are sometimes greater than 1 for
the 32 MB file size write tests. This would imply that a benchmark will run
faster with instrumentation than without. In reality, this effect is explained by an
optimization Windows uses when writing to disk. Instead of immediately flushing
writes to disk, writes are buffered and flushed as a burst to disk. With this Lazy-
Writing, one eighth of the dirty pages are flushed to disk every second, meaning
that a flush could be delayed up to eight seconds [25]. From the perspective of the
user—and therefore, the timer—the benchmark is reported to have completed. In
reality, the writes are stored in the page cache and have yet to be flushed to disk.
Most long-running benchmarks will have flushed the majority of their writes to
disk before the process returns. However, a short-running benchmark—such as
the Tozone benchmarks operating on a 32 MB file—may still have outstanding
writes to flush. The time it will take to flush these will vary randomly through
the tests. We reported a 21-24% standard deviation (normalized to the mean)
for the baseline, instrumentation, and logging tests. This effect is examined in
more detail in the next section.

For all tests, the cost of logging all accesses is relatively low, falling anywhere
from 0-8%. For these tests, the root directory (under which the logs were stored)
was on a separate partition than the disk image under instrumentation. There-
fore, logging introduced an overhead, as the disk alternated between writing to
the log file and accessing the VM’s disk image. This performance penalty can be
reduced by storing the log on the same partition as the disk image. Future work
can also reduce the overhead by buffering log messages in memory—performing
a burst write to the log—to reduce the physical movements of the disk.

Installation Benchmarks. In the second set of performance experiments, we
evaluated the overhead of benchmarks that are high in metadata accesses. These
tests will heavily stress the live updating part of DIONE’s execution, which com-
prises the bulk of the computation performed in DIONE. We ran the same six
install/uninstall benchmarks as the accuracy tests listed in Table[Bl We ran each
test ten times to average out variations inherent in running a user-space appli-
cation on a virtual machine. For each run, we started from the same clean disk
image snapshot. We used a Windows XP SP3 virtual machine with an 8 GB
virtual disk and 512 MB of virtual RAM.

We compared the baseline execution (with no instrumentation) to full instru-
mentation with DIONE, with and without logging. Figure dl shows the execution
time for the three configurations, as well as the performance of DIONE’s instru-
mentation relative to the baseline execution. As Figure [4] shows, even when the
workload requires frequent metadata analysis for live updating, the overhead of
instrumentation is low. Without logging, the full instrumentation of the bench-
marks causes a 1-5% performance degradation.
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Fig. 4. Evaluation of DIONE instrumentation for Open Office, Gimp, and Firefox In-
stall/Uninstall benchmarks

The three benchmarks with the least penalty are OpenOffice installation
and uninstallation and Gimp installation. These experience between 1-2% per-
formance degradation for instrumentation without logging. Figure which
graphs the average execution time of the six benchmarks, provides more insight.
These three benchmarks are the longest running of the six benchmarks, which is
important because of how Windows performs writes to disk. As described in the
previous section, writes could be delayed as long as eight seconds before they
are flushed from the VM’s page cache. While the program is reported to have
completed, there are still outstanding writes that need to be flushed to disk.
This effect is especially pronounced in any program with a runtime on the same
order of magnitude as the write delay.

We can see this effect in Figure @(a), which includes error bars showing the
normalized standard deviation for the 10 runs of each benchmark. The 3 longest-
running benchmarks also have the lowest standard deviations. This means that
the results of these three tests are the most precise, and the average reflects
the true cost of instrumentation. While two of the three shortest-running bench-
marks have the highest reported cost of instrumentation, the standard deviation
between tests is greater than the reported performance penalty. The execution
time of the Firefox Uninstall is dwarfed by the time Windows may delay its
writes—as reflected in its high standard deviation. In practice, this means that
a user is unlikely to ever notice a slowdown attributed to disk instrumentation
for short bursts of disk activity.

The Inst+Log tests show a 0-9% performance degradation compared to the
baseline. In these tests, the disk image resided on the same partition as the log
file. Therefore, the cost of logging to a file was lower than for the content tests.
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4.4 Malware Case Studies

Next, we demonstrate the utility of DIONE for forensic analysis by instrument-
ing two real-world malware samples and using the resulting logs to perform
forensic analysis on the intrusion. In each case, we ran unlabeled malware on a
clean, non-networked Windows XP virtual machine and instrumented the mal-
ware installation and the system upon reboot. We instrumented the entire file
system by setting policies to record all accesses, timestamp reversals, and hide-
file operations. We analyzed the logs and identified the samples by searching
malware description databases based on the resulting file system operations and
file names.

We found that DIONE is quite useful for identifying and analyzing malware
based on the intentional effects on the file system, such as the creation of files
and directories. We also found that it is useful for understanding malware based
on the unintentional effects on the file system, such as the loading of system
libraries and the creation of system trace files. While the forensic analysis process
was performed manually, future work looks to automate this process, using the
disk access traces to perform automatic clustering or classification of unknown
malware samples.

Backdoor.Bot The first real-world malware sample we discuss is the Back-
door.Bot malware [2], a Trojan first discovered in 2008. This malware opens a
backdoor to the infected machine. It creates a directory and a process named
spoolsv; since spoolsv is also the name of a legitimate Windows process, this ma-
licious process is able to hide in plain sight from the average user. The malware
is distributed with an image named zmas.jpg.

When the malware is first executed, DIONE observes the creation of several
files and directories. First, it creates the top-level directory, WINDOWS\ Temp
\ spoolsv. This directory is created with the hidden flag already set, so that it
cannot be viewed by the user. In the spoolsv directory, 12 more files are created
with their hidden property already set, including the executable spoolsv.ezxe. Six
other files are also created without their hidden property set, but that reside in
the hidden spoolsv directory anyway. One of these files is the image file xmas.jpg;
it is displayed to the user after the malware installs to deceive the user into
believing that he simply opened an image file.

In addition to detecting infection through the intentional creation of the
spoolsv directory and its contents, DIONE can also deduce that some meaningful
applications are run by the malware though unintentional file system artifacts.
In order to speed up the time to load an application, Windows creates a trace
file to enable fast future loading of the application. These trace files are stored
in the WINDOWS\ Prefetch directory. Therefore, the creation or access of one
of these prefetch files indicates that the corresponding application has been run.
DIONE intercepts and records the creation of two prefetch files corresponding to
cmd.exe and regedit.exe. This indicates that the malware has used cmd to launch
regedit to modify the Windows Registry.
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FakeAlert Defender. The FakeAlert System Defender trojan, identified by
McAfee labs in 2011 [I0], is “scareware” that modifies the file system in order
to scare the user into purchasing an application to clean his system.

A few seconds after the malware has been executed, the user will see several
error messages pop up alerting the user about different types of disk failures.
As the user looks through his folders, all files will appear to have been deleted,
though all directories remain. When the user reboots, the desktop is black, and it
appears as if all files, directories, and even executables are lost. Instrumentation
with DIONE provides insight into how all of these actions are accomplished.

As the malware is executed, DIONE observes that it first renames the origi-
nal malicious file with a randomly-generated name with the extension .exe.tmp.
It moves this file to the Documents and Settings\ %user name%\ Local Settings
directory, which is hidden by default. Next, it creates a randomly-named ex-
ecutable in the Documents and Settings\ All Users\ Application Data directory,
which is also hidden by default. As it does with any newly-loaded application,
Windows creates a prefetch file for the executable in WINDOWS\ Prefetch.

Next, DIONE observes that the malware performs the following steps with
the goal of creating a copy of the file system hierarchy in a temporary folder.
First, it creates a randomly-named directory in Documents and Settings\ %user
name%\ Local Settings\ Temp, and some numerically-named subfolders (e.g., 1,
4). Within these subfolders, the malware creates new directories, maintaining the
hierarchy of the original filesystem. It then iterates through the user’s existing
file system hierarchy, and moves all files (not directories) into the corresponding
directory under the Temp folder. The result is a hidden replication of the original
hierarchy. While the original directory hierarchy also remains, all folders are
empty, so it appears to the user that all his files have disappeared.

Once the user reboots, DIONE observes the malware reversing the timestamp
on the original malware executable. Finally, the malware iterates through every
file and directory in the file system and changes its property to hidden, complet-
ing the deception that every file and directory on the disk has been deleted.

5 Conclusions

In this paper, we introduced DIONE: a flexible, disk I/O instrumentation in-
frastructure for analyzing the ubiquitous Windows NTFS file system. Disk I/O
is intercepted by a sensor, which passes disk access information to DIONE for
analysis. By residing outside the host, DIONE is protected from the malware it is
instrumenting. However, DIONE has to bridge both the semantic and temporal
gaps—not just reconstructing high-level semantics from low-level metadata, but
also reconstructing high-level file operations from low-level events. We discussed
the challenges of reconstructing disk operations, a process we call Live Updating,
which ensures that DIONE always has an up-to-date view of the file system.
We demonstrated that DIONE achieves 100% accuracy in tracking disk op-
erations and reconstructing high-level operations. We showed that despite this
powerful instrumentation capability, DIONE does not suffer from large perfor-
mance degradation. We evaluated DIONE’s performance with workloads that
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generate a large volume of content accesses, as well as workloads that generate
a high rate of metadata accesses and stress the live updating system. DIONE
preserves over 90% of the performance of native execution for most tests. We
demonstrated the utility of DIONE for forensic analysis by instrumenting two
real-world malware intrusions. We showed that DIONE can detect suspicious file
operations that are hidden from the user, including file creations, timestamp
reversals, file hiding, and the launching of applications to alter OS state.
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