Skip to main content

A 2D Cellular Automaton Biofilm Detachment Algorithm

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7495))

Abstract

A cellular-automaton based two-dimensional biofilm detachment module is developed. The module is an improvement of previously presented methodologies for modeling biofilm detachment under the influence of hydrodynamic forces of the moving fluid in which biofilm develops. It uses biofilm mechanical properties that are variable in time and space and are determined by the percentage of each biofilm solid substance—active biomass, extracellular polymeric substance (EPS) and residual dead biomass—and pores that are contained in each cellular automaton compartment in the biofilm column. A methodology is presented that estimates wall shear stresses applied on the biofilm by the fluid for different hydrodynamic conditions and an association with the biofilm mechanical properties is created to predict its detachment. The module is applied in samples created by the UMCCA model [Laspidou and Rittmann, Water Res 38 (2004), 3362-3372].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Laspidou, C.S., Rittmann, B.E.: Modeling the development of biofilm density including active bacteria, inert biomass and extracellular polymeric substances. Wat. Res. 38(14-15), 3349–3361 (2004)

    Article  Google Scholar 

  2. Laspidou, C.S., Rittmann, B.E.: Evaluating trends in biofilm density using the UMCCA model. Wat. Res. 38(14-15), 3362–3372 (2004)

    Article  Google Scholar 

  3. Laspidou, C.S., Kungolos, A., Samaras, P.: Cellular-Automata and Individual-Based Approaches for the Modeling of Biofilm Structures. Pros. and Cons., Desalination 250, 390–394 (2009)

    Article  Google Scholar 

  4. Stoodley, P., Lewandowski, Z., Boyle, J.D., Lappin-Scott, H.M.: Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: An in situ investigation of biofilm rheology. Biotechnol. Bioeng. 65(1), 83–92 (1999)

    Article  Google Scholar 

  5. Stoodley, P., Jacobsen, A., Dunsmore, B.C., Purevdorj, B., Wilson, S., Lappin-Scott, H.M., Costerton, J.W.: The influence of fluid shear and A1C13 on the material properties of Pseudomonas aeruginosa PAO1 and Desulfovibrio sp. EX265 biofilms. Water Sci. Technol. 43, 113–120 (2001)

    Google Scholar 

  6. Poppele, E.H., Hozalski, R.: Micro-cantilever method for measuring the tensile strength of biofilms and microbial flocs. J. Microbiol. Methods 55, 607–615 (2003)

    Article  Google Scholar 

  7. Körstgens, V., Flemming, H.-C., Wingender, J., Borchard, W.: Uniaxial compression measurement device for investigation of the mechanical stability of biofilms. J. Microbiol. Methods 46, 9–17 (2001)

    Article  Google Scholar 

  8. Klapper, I., Rupp, C.J., Cargo, R., Purvedorj, B., Stoodley, P.: Viscoelastic fluid description of bacterial biofilm material properties. Biotechnol. Bioeng. 80(3), 289–296 (2002)

    Article  Google Scholar 

  9. Vinogradov, A.M., Winston, M., Rupp, C.J., Stoodley, P.: Rheology of biofilms formed from the dental plaque pathogen Streptococcus mutans. Biofilms 1, 49–56 (2004)

    Article  Google Scholar 

  10. Aggarwal, S., Hozalski, R.: Determination of biofilm mechanical properties from tensile tests performed using a micro-cantilever method. Biofouling 26(4), 479–486 (2010)

    Article  Google Scholar 

  11. Aravas, N., Laspidou, C.: On the calculation of the elastic modulus of a biofilm streamer. Biotechnol. Bioeng. 101(1), 196–200 (2008)

    Article  Google Scholar 

  12. Laspidou, C.S., Aravas, N.: Variation in the mechanical properties of a porous multi-phase biofilm under compression due to void closure. Water Sci. Technol. 55(8-9), 447–453 (2007)

    Article  Google Scholar 

  13. Laspidou, C.S., Rittmann, B.E., Karamanos, S.A.: Finite element modeling to expand the UMCCA model to describe biofilm mechanical behavior. Wat. Sci. Tech. 52(7), 161–166 (2005)

    Google Scholar 

  14. Hermanowicz, S.W.: A simple 2D biofilm model yields a variety of morphological features. Math. Biosciences 169, 1–14 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liakopoulos, A.: Fluid Mechanics. Tziolas Publications, Thessaloniki (2010) (in Greek)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Laspidou, C.S., Liakopoulos, A., Spiliotopoulos, M.G. (2012). A 2D Cellular Automaton Biofilm Detachment Algorithm. In: Sirakoulis, G.C., Bandini, S. (eds) Cellular Automata. ACRI 2012. Lecture Notes in Computer Science, vol 7495. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33350-7_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33350-7_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33349-1

  • Online ISBN: 978-3-642-33350-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics