
The View-Update Problem for Indefinite Databases

Luciano Caroprese1, Irina Trubitsyna1, Mirosław Truszczyński2, and Ester Zumpano1

1 DEIS, Università della Calabria, 87030 Rende, Italy
caroprese|irina|zumpano@deis.unical.it

2 Department of Computer Science, University of Kentucky, Lexington, KY 40506, USA
mirek@cs.uky.edu

Abstract. This paper introduces and studies a declarative framework for updat-
ing views over indefinite databases. An indefinite database is a database with
null values that are represented, following the standard database approach, by a
single null constant. The paper formalizes views over such databases as indefi-
nite deductive databases, and defines for them several classes of database repairs
that realize view-update requests. Most notable is the class of constrained re-
pairs. Constrained repairs change the database “minimally” and avoid making
arbitrary commitments. They narrow down the space of alternative ways to fulfill
the view-update request to those that are grounded, in a certain strong sense, in
the database, the view and the view-update request.

1 Introduction

A typical database system is large and complex. Users and applications rarely can ac-
cess the entire system directly. Instead, it is more common that access is granted in
terms of a view, a virtual database consisting of relations defined by a query to the
stored and maintained database. Querying a view does not present a conceptual prob-
lem. In contrast, another key task, view updating, poses major challenges.

Example 1. Let D = {q(a,b)} be a database over relation symbols q and r, where the
relation r has arity three and is currently empty. Let us consider the view over D given by
the Datalog program P = {p(X)← q(X ,Y ),r(X ,Y,Z)}. That view consists of a single
unary relation p. Given the present state of D, the view is empty.

To satisfy the request that p(a) holds in the view (as it is now, it does not), one
needs to update the database D. Such update consists of executing update actions that
specify facts to insert to and to delete from D. These update actions (in a simplified
setting that we consider for now) are “signed” facts +F and −G, where +F stands
for “insert F” and −G stands for “delete G.” In our case, the set of update actions
{−q(a,b),+q(a,a),+r(a,a,a)} is a correct update to D. Executing it on D results in
the database D′ = {q(a,a),r(a,a,a)}, which has the desired property that p(a) holds in
the view determined by P. There are also other ways to satisfy the user’s request, for
instance: {+r(a,b,a)} and {+q(c,d),+r(c,d,d)}, where c and d are any elements of
the domain of the database. ¤

As this example suggests, view updating consists of translating a view-update re-
quest, that is, an update request against the view, into an update, a set of update actions



against the stored (extensional) database. The example highlights the basic problem of
view updating. It may be (in fact, it is common), that a view-update request can be ful-
filled by any of a large number of database updates. One of them has to be committed to
and executed. Thus, developing methods to automate the selection process or, at least,
aid the user in making the choice is essential and has been one of the central problems
of view updating [9, 2, 13, 11]. That problem is also the focus of our paper.1

To restrict the space of possible database updates to select from, it is common to
consider only those that accomplish the view-update request and are in some sense min-
imal. That reduces the space of updates. For instance, the update {−q(a,b),+q(a,a),
+r(a,a,a)} in Example 1 is not minimal. We can remove−q(a,b) from it and what re-
mains is still an update that once executed ensures that p(a) holds in the view. Minimal
updates fulfilling the view-update request are commonly called repairs.

Even imposing minimality may still leave a large number of candidate repairs. In
Example 1, updates {+r(a,b,ψ)}, where ψ is any domain element, are repairs, and
there are still more. As long as we insist on the completeness of the repaired database,
there is little one can do at this point but ask the user to select one.

The situation changes if we are willing to allow indefiniteness (incomplete infor-
mation) in databases. Given the “regular” structure of the family of repairs above, one
could represent it by a single indefinite repair, {+r(a,b,ψ)} regarding ψ as a distinct
null value standing for some unspecified domain elements. The choice facing the user
substantially simplifies as possibly infinitely many repairs is reduced to only one.

This approach was studied by Farré et al. [5], where the terminology of Skolem con-
stants rather than null values was used. However, while seemingly offering a plausible
solution to the problem of multiple repairs, the approach suffers from two drawbacks.
First, the use of multiple Skolem constants (essentially, multiple null values) violates
the SQL standard [15]. Second, the approach assumes that the initial database is com-
plete (does not contain null values). Thus, while the approach might be applied once,
iterating it fails as soon as an indefinite database is produced, since no guidance on how
to proceed in such case is given.

We consider the view-update problem in the setting in which both the original and
the updated databases are indefinite (may contain occurrences of null values) and the
database domain is possibly infinite. To be compliant with the SQL standard, we allow
a single null value only. We denote it by ⊥ and interpret it as expressing the existence
of unknown values for each attribute (with possibly infinite domain) it is used for [10].
Typically, a database is represented as a set of facts. We propose to represent indefinite
databases by two sets of facts that we interpret by means of a two-level closed-world as-
sumption tailored to the case of indefinite information. We interpret indefinite databases
in terms of their possible worlds. We extend the possible-world semantics to the setting
of views, which we formalize in terms of indefinite deductive databases, and apply the
resulting formalism to state and study the view-updating problem.

1 In some cases no update satisfies the view-update request. The question whether the lack of an
appropriate update is caused by errors in the design of the view, in the extensional database, or
in the view-update request is interesting and deserves attention, but is outside the scope of the
present work.



We then turn attention to the problem of multiple repairs. In general, using null
values to encode multiple repairs is still not enough to eliminate them entirely (cf. our
discussion above), and some level of the user’s involvement may be necessary. There-
fore, it is important to identify principled ways to narrow down the space of repairs for
the user to consider. We propose a concept of minimality tailored precisely to the new
setting. The primary concern is to minimize the set of new constants introduced by an
update. The secondary concern is to minimize the degree of the semantic change. The
resulting notion of minimality yields the notion of a repair.

Our concept of minimality leads us also to the concept of a relevant repair, an up-
date that introduces no new constants and minimizes the degree of change. In Exam-
ple 1, {+r(a,b,⊥)}, {+r(a,a,⊥),+q(a,a)} and {+r(a,c,⊥),+q(a,c)}, where c is an
element of the database domain other than a and b, are all repairs. The first two are
obviously relevant, the third one is not.

Some occurrences of non-nullary constants in a relevant repair may still be “un-
grounded” or “arbitrary,” that is, replacing them with another constant results in a re-
pair. For instance, replacing in the relevant repair {+r(a,a,⊥),+q(a,a)} the second
and the forth occurrences of a with a fresh constant c yields {+r(a,c,⊥),+q(a,c)}, an
update that is a repair. Intuitively, “arbitrary” occurrences of constants, being replace-
able, are not forced by the information present in the view (deductive database) and in
the view-update request. By restricting relevant repairs to those without arbitrary oc-
currences of constants we arrive at the class of constrained repairs. In the view-update
problem considered in Example 1, there is only one constrained repair, {+r(a,b,⊥)}.

Finally, we study the complexity of the problems of the existence of repairs, relevant
repairs and constrained repairs. We obtain precise results for the first two classes and
an upper bound on the complexity for the last class.

To summarize, our main contributions are as follows. We propose a two-set repre-
sentation of indefinite database that is more expressive than the standard one. We define
the semantics and the operation of updating indefinite databases (Section 2). We define
views over indefinite databases (indefinite deductive databases), and generalize the se-
mantics of indefinite databases to views (Section 3). We state and study the view-update
problem in the general setting when the initial and the repaired databases are indefinite.
We propose a notion of minimality of an update and use it to define the concept of a
repair. We address the problem of multiple repairs by defining relevant and constrained
repairs (Section 4). We study the complexity of problems of existence of repairs, rele-
vant repairs and constrained repairs (Section 5).

2 Indefinite Databases

We consider a finite set Π of relation symbols and a set Dom of constants that includes a
designated element ⊥, called the null value. We define Domd = Dom\{⊥}. Normally,
we assume that Dom is an infinite countable set. However, for the sake of simplicity, in
several of the examples the set Dom is finite.

Some predicates in Π are designated as base (or extensional) predicates and all
the remaining ones are understood as derived (or intensional) predicates. A term is a
constant from Dom or a variable. An atom is an expression of the form p(t1, . . . , tk),



where p ∈ Π is a predicate symbol of arity k and ti’s are terms. An atom is ground if
it does not contain variables. We refer to ground atoms as facts. We denote the set of
all facts by At. We call facts defined in terms of base and derived predicates base facts
and derived facts respectively. A fact is definite if it does not contain occurrences of ⊥.
Otherwise, it is indefinite. Given a set S of atoms, we define Dom(S) (resp. Domd(S)) as
the set of constants in Dom (resp. Domd) occurring in S. For every two tuples of terms
t = (t1, . . . , tk) and t ′ = (t ′1, . . . , t

′
k) and every k-ary predicate symbol p ∈ Π , we write

t ¹ t ′ and p(t)¹ p(t ′) if for every i, 1≤ i≤ k, ti = t ′i or ti =⊥. We say in such case that
t ′ and p(t ′) are at least as informative as t and p(t), respectively. If, in addition, t 6= t ′,
we write t ≺ t ′ and p(t) ≺ p(t ′), and say that t ′ and p(t ′) are more informative than t
and p(t). Sometimes, we say “at most as informative” and “less informative,” with the
obvious understanding of the intended meaning. We also define t and t ′ (respectively,
p(t) and p(t ′)) to be compatible, denoted by t ≈ t ′ (respectively, p(t) ≈ p(t ′)), if for
some k-tuple s of terms, t ¹ s and t ′ ¹ s. Finally, for a set D⊆ At, we define

D⇓= {a | there is b ∈ D s.t. a¹ b} D⇑= {a | there is b ∈ D s.t. b¹ a}
D≈= {a | there is b ∈ D s.t. b≈ a} D∼= D≈ \D⇓.

To illustrate, let q be a binary relation symbol and Dom = {⊥,1,2}. Then:
{q(1,⊥)}⇓ = {q(1,⊥),q(⊥,⊥)} {q(1,⊥)}⇑ = {q(1,⊥),q(1,1),q(1,2)}
{q(1,⊥)}≈ = {q(1,⊥),q(1,1),q(1,2),q(⊥,1),q(⊥,2),q(⊥,⊥)}
{q(1,⊥)}∼ = {q(1,1),q(1,2),q(⊥,1),q(⊥,2)}.

We note also note that D≈ = (D⇑)⇓.
In the most common case, databases are finite subsets of At that contain definite

facts only. The semantics of such databases is given by the closed-world assumption or
CWA [12]: a definite fact q is true in a database D if q ∈ D. Otherwise, q is false in
D. We are interested in databases that may contain indefinite facts, too. Generalizing,
we will for now assume that an indefinite database is a finite set of possibly indefinite
atoms. The key question is that of the semantics of indefinite databases.

Let D be an indefinite database. Clearly, all facts in D are true in D. In addition, any
fact that is less informative than a fact in D is also true in D. Indeed, each such fact
represents an existential statement, whose truth is established by the presence of a more
informative fact in D (for instance, the meaning of p(⊥) is that there is an element c
in the domain of the database such that p(c) holds; if p(1) ∈ D, that statement is true).
Summarizing, every fact in D⇓ is true in D.

By CWA adapted for the setting of indefinite databases [10], facts that are not in D⇓
are not true in D, as D contains no evidence to support their truth. Those facts among
them that are compatible with facts in D (in our notation, facts in D∼), might actually
be true, but the database just does not know that. Of course, they may also be false,
the database does not exclude that possibility either. They are regarded as unknown. By
CWA again, the facts that are not compatible with any fact in D are false in D, as D
provides no explicit evidence otherwise.

The simple notion of an indefinite database, while intuitive and having a clear se-
mantics, has a drawback. It has a limited expressive power. For instance, there is no
database D to represent our knowledge that p(1) is false and that there is some definite
c such that p(c) holds (clearly, this c is not 1). To handle such cases, we introduce a
more general concept of an indefinite database, still using CWA to specify its meaning.



Definition 1. An indefinite database (a database, for short) is a pair I = 〈D,E〉, where
D and E are finite sets of (possibly indefinite) facts. ¤

The intended role of D is to represent all facts that are true in the database 〈D,E〉,
while E is meant to represent exceptions, those facts that normally would be unknown,
but are in fact false (and the database knows it). More formally, the semantics of indef-
inite databases is presented in the following definition.

Definition 2. Let 〈D,E〉 be a database and let q ∈ At be a fact. Then: (1) q is true in
〈D,E〉, written 〈D,E〉 |= q, if q ∈D⇓; (2) q is unknown in 〈D,E〉, if q ∈ (D≈ \D⇓)\E⇑
(= D∼ \E⇑); (3) q is false in 〈D,E〉, denoted 〈D,E〉 |= ¬q, in all other cases, that is, if
q /∈ D≈ or if q ∈ D∼∩E⇑. ¤

The use of E⇑ in the definition (items (2) and (3)) reflects the property that if an
atom a is false then every atom b at least as informative as a must be false, too.

We denote the sets of all facts that are true, unknown and false in a database I =
〈D,E〉 by I t , I u and I f , respectively. Restating the definition we have:

I t = D⇓, I u = D∼ \E⇑, and I f = (At \D≈)∪ (D∼∩E⇑).

Example 2. The knowledge that p(c) holds for some constant c and that p(1) is false
can be captured by the database 〈{p(⊥)},{p(1)}〉. The database 〈{q(⊥,⊥),q(1,1)},
{q(1,⊥)}〉 specifies that the atoms q(1,1), q(1,⊥), q(⊥,1) and q(⊥,⊥) are true, that
all definite atoms q(1,d), with d 6= 1, are false, and that all other atoms q(c,d) are
unknown. While the fact that q(⊥,⊥) is true follows from the fact that q(1,1) is true,
the presence of the former in the database is not redundant, that is, the database without
it would have a different meaning. Namely, q(⊥,⊥) makes all atoms q(a,b) potentially
unknown (with some of them true or false due to other elements of the database). ¤

Definition 3. A set W of definite facts is a possible world for a database I = 〈D,E〉
if I t ⊆W⇓ (W “explains” all facts that are true in I ), W ⊆ I t ∪I u (only definite
facts that are true or unknown appear in a possible world). ¤

Databases represent sets of possible worlds. For a database I , we write W (I ) to
denote the family of all possible worlds for I . Due to the absence of indefinite facts in
W ∈W (I ), every fact in At is either true (if it belongs to W⇓) or false (otherwise) w.r.t.
W . Extending the notation we introduced earlier, for a possible world W and a ∈ At we
write W |= a if a ∈W⇓ and W |= ¬a, otherwise. The following proposition shows that
the semantics of a database can be stated in terms of its possible worlds.

Proposition 1. Let I be a database and q a fact. Then q ∈ I t if and only if W |= q,
for every W ∈W (I ), and q ∈I f if and only if W |= ¬q, for every W ∈W (I ). ¤

Updating a database 〈D,E〉 consists of executing on it update actions: inserting
a base fact a into D or E, and deleting a base fact a from D or E. We denote them
by +aD, +aE , −aD and −aE , respectively. For a set U of update actions, we define
UD

+ = {a |+aD ∈U}, UE
+ = {a |+aE ∈U}, UD− = {a | −aD ∈U}, and UE− = {a | −aE ∈

U}. To be executable, a set U of update actions must not contain contradictory update



actions: +aD and −aD, or +aE and −aE . A contradiction-free set U of update actions
is an update. We denote the set of all updates (in the fixed language we consider) by U .

We now define the operation to update a database, that is, to apply an update to it.

Definition 4. Let I = 〈D,E〉 be an indefinite database and U an update. We define
I ◦U as the database 〈D′,E ′〉, where D′ = (D∪UD

+ )\UD− and E ′ = (E ∪UE
+)\UE− . ¤

3 Indefinite Deductive Databases

Integrity constraints (ICs, for short) are first-order sentences in the language L deter-
mined by the set of predicates Π and by the set Domd of definite constants. A database
with integrity constraints is a pair 〈I ,η〉, where I is a database and η is a set of ICs.
Possible worlds can be regarded as interpretations of the language L with Domd as
their domain. This observation and Proposition 1 suggest a definition of the semantics
of databases with ICs.

Definition 5. Let 〈I ,η〉 be a database with ICs. A possible world W ∈ W (I ) is a
possible world for a database 〈I ,η〉 if W satisfies every integrity constraint in η . We
denote the set of possible worlds of 〈I ,η〉 by W (I ,η). A database with ICs, 〈I ,η〉,
is consistent if W (I ,η) 6= /0. Otherwise, 〈I ,η〉 is inconsistent.

A fact q is true in 〈I ,η〉 if W |= q, for every W ∈W (I ,η); q is false in 〈I ,η〉 if
W |= ¬q, for every W ∈W (I ,η); otherwise, q is unknown in 〈I ,η〉. ¤

Example 3. Let us consider the database I = 〈{p(1), p(2),q(⊥)}, /0〉 (there are no ex-
ceptions) and let η = {∀X(q(X)→ p(X))}. Possible worlds of I include {p(1), p(2),
q(1)}, {p(1), p(2), q(2)} and {p(1), p(2),q(3)}. The first two satisfy the integrity con-
straint, the third one does not. Thus, only the first two are possible worlds of 〈I ,η〉.
Since p(1) belongs to all possible worlds of 〈I ,η〉, p(1) is true in 〈I ,η〉. Further,
p(3) is false in every possible world of I and so also in every possible world of 〈I ,η〉.
Thus, p(3) is false in 〈I ,η〉. Lastly, we note that q(1) and q(2) are unknown in 〈I ,η〉,
while q(3) is false (due to p(3) being false and the integrity constraint). ¤

We note that the possible-world semantics can capture additional information con-
tained in integrity constraints. In Example 3, the semantics derives that q(3) is false in
〈I ,η〉 even though this knowledge is not present in the database I .

The concepts of an update and of the operation to execute an update on a database
extend literally to the case of databases with ICs.

Following Ullman [16], views are safe Datalog¬ programs. We use the standard ter-
minology and talk about (Datalog¬) rules, and bodies and heads of rules. A rule is safe
if each variable occurring in the head or in a negative literal in the body also occurs in a
positive literal in the body. A Datalog¬ program is safe if each rule is safe. We assume
that views do not contain occurrences of ⊥. The semantics of Datalog¬programs is
given in terms of answer sets [6, 7]. A precise definition of that semantics is immaterial
to our study and so we do not provide the details.

Definition 6. An indefinite deductive database (from now, simply, a deductive database)
is a tuple D = 〈I ,η ,P〉, where I is a database, η is a set of integrity constraints, and



P is a safe Datalog¬ program (the specification of a view) such that no predicate oc-
curring in the head of a rule in P is a base predicate. ¤

Clearly, a deductive database with the empty view is a database with ICs, and a
deductive database with the empty view and no ICs is simply a database.

Definition 7. A deductive database D = 〈I ,η ,P〉 is consistent if 〈I ,η〉 is consistent
and for every possible world W ∈ W (I ,η), the program W ∪P has answer sets. We
denote the family of all those answer sets by W (D) or W (I ,η ,P). We call elements
of W (D) possible worlds of D . ¤

There is an alternative to our concept of consistency. One could define a deductive
database 〈I ,η ,P〉 as consistent if for at least one world W ∈ W (I ,η), the program
W ∪P has an answer set. That concept of consistency would allow situations where
for some possible worlds of 〈I ,η〉, one of which could be a description of the real
world, the view P does not generate any meaningful virtual database. Our concept of
consistency is more robust. It guarantees that the user can have a view of a database no
matter how the real world looks like, that is, which of the possible worlds describes it.

Example 4. Let D = 〈I ,η ,P〉 be a deductive database, where I = 〈{p(⊥)}, /0〉, η = /0
and P = {t ← p(1), p(2),not t}, for some derived ground atom t. Every non-empty set
W ⊆{p(u) |u∈Domd} is a possible world of 〈I ,η〉. In particular, the set {p(1), p(2)}
is a possible world of 〈I ,η〉. Since the program P∪{p(1), p(2)} has no answer sets, D
is inconsistent (according to our definition). If D ′ = 〈I ,{p(1)∧ p(2)→⊥},P〉, then
the integrity constraint in D ′ eliminates the offending possible world and one can check
that for every possible world W of 〈I ,{p(1)∧ p(2)→⊥}〉, P∪W has an answer set.
Thus, D ′ is consistent.2 ¤

The concept of an update extends in a natural way to deductive databases. If U is
an update, and D = 〈I ,η ,P〉, we define the result of updating D by U by D ◦U =
〈I ◦U,η ,P〉.

Next, we define the semantics of a deductive database D = 〈I ,η ,P〉, again building
on the characterization given by Proposition 1.

Definition 8. A fact a ∈ At is true in a deductive database D = 〈I ,η ,P〉, denoted by
D |= a, if for every possible world W ∈ W (D), W |= a; a is false in D , denoted by
D |= ¬a, if for every W ∈W (D), W |= ¬a; a is unknown in D , otherwise. We denote
the truth value of a in D by vD (a). ¤
Example 5. Let Dom = {⊥,1,2,3} and D = 〈I ,η ,P〉 be a deductive database, where
I = 〈{p(⊥)}, /0〉, η = {p(2)→⊥} and P = {q(X)← p(X)}.

We have W (I ,η) = {{p(1)},{p(3)}, {p(1), p(3)}}. Each of the possible worlds
in W (I ,η), when extended with the view P, gives rise to a program that has an-
swer sets. Thus, D is consistent. Moreover, the possible worlds for D are {p(1),q(1)},
{p(3),q(3)} and {p(1),q(1), p(3),q(3)} (in this case, one for each possible world
in W (I ,η)). It follows that p(⊥) and q(⊥) are true, p(2) and q(2) are false, and
p(1),q(1), p(3) and q(3) are unknown in D . ¤
2 We point out that in the paper, we overload the notation ⊥. We use it to denote both the single

null value in the language and the falsity symbol in the first-order language used for integrity
constraints. Since the meaning is always clear from the context, no ambiguity arises.



4 View Updating

In the view update problem, the user specifies a request, a list of facts the user learned
(observed) to be true or false, and wants the stored database to be updated to reflect it.3

Definition 9. A request over a deductive database D is a pair S = (S t ,S f ), where
S t and S f are disjoint sets of facts requested to be true and false, respectively. ¤

To fulfill a request we need an update which, when executed, yields a database such
that the view it determines satisfies the request. We call such updates weak repairs.

Definition 10. Let D = 〈I ,η ,P〉 be a deductive database and S a request. An update
U for I is a weak repair for (D ,S ) if U fulfills S , that is, if for every a ∈ S t ,
vD◦U (a) = true and for every a ∈S f , vD◦U (a) = false. ¤

We are primarily interested in updates that do not drastically change the database.
One condition of being “non-drastic” is not to introduce new predicate or constant sym-
bols. That leads us to the notion of a relevant weak repair.

Definition 11. Let D = 〈I ,η ,P〉 be a deductive database and S a request. A constant
is relevant with respect to D and S if it occurs in D , or S , or if it is ⊥. A predicate
is relevant with respect to D and S if it occurs in D or in S . A weak repair U for
(D ,S ) is relevant if every constant and predicate occurring in U is relevant. ¤

More generally, a weak repair is “non-drastic” if it minimizes the change it incurs
[14]. There are two aspects to the minimality of change: (1) minimizing the set of
new predicate symbols and constants introduced by an update to the database (in the
extreme case, no new symbols must be introduced, and we used that requirement to
define relevant weak repairs above); (2) minimizing the change in the truth values of
facts with respect to the database. Following the Ockham’s Razor principle to avoid
introducing new entities unless necessary, we take the minimality of the set of new
symbols as a primary consideration. To define the resulting notion of change minimality,
we assume that the truth values are ordered false ≤ unknown ≤ true. Further, for a
deductive database D , a request set S and an update U ∈U we define NC(D ,S ,U)
as the set of non nullary constants that occur in U and not in D and S .

Definition 12. Let D = 〈I ,η〉 be a database with integrity constraints. For updates
V,U ∈ U , we define U v V if: NC(D ,S ,U) ⊂ NC(D ,S ,V ), or NC(D ,S ,U) =
NC(D ,S ,V ) and for every base atom a

1. if vD (a) = true, then vD◦U (a)≥ vD◦V (a)
2. if vD (a) = false, then vD◦V (a)≥ vD◦U (a)
3. if vD (a) = unknown, then vD◦U (a) = unknown or vD◦V (a) = vD◦U (a).

We also define U @ V if U vV and V 6vU. ¤
3 We do not allow requests that facts be unknown. That is, we only allow definite requests. While

there may be situations when all the user learns about the fact is that it is unknown, they seem
to be rather rare. In a typical situation, the user will learn the truth or falsity of a fact.



We now define the classes of repairs and relevant repairs as subclasses of the re-
spective classes of weak repairs consisting of their v-minimal elements.

Definition 13. Let D = 〈I ,η ,P〉 be a deductive database and S a request. A (relevant)
repair for (D ,S ) is a v-minimal (relevant) weak repair for (D ,S ). ¤

We note that the existence of (weak) repairs does not guarantee the existence of
relevant (weak) repairs. The observation remains true even if the view is empty.

Example 6. Let D = 〈I ,η ,P〉, where I = 〈 /0, /0〉, η = /0 and P = {t ← p(x),q(x)}.
If the request is ({t}, /0), then each repair is of the form {+p(i)D, +q(i)D}, for some
i ∈ Domd . None of them is relevant. (We note that {+p(⊥)D,+q(⊥)D} is not a (weak)
repair. The database resulting from the update would admit possible worlds of the form
{p(i),q( j)}, where i 6= j. Clearly, the corresponding possible world of the view over
any such database does not contain t and so the update does not fulfill the request.) ¤

Some relevant constants are not “forced” by the database and the request, that is,
can be replaced by other constants. If such constants are present in a relevant (weak)
repair, this repair is arbitrary. Otherwise, it is constrained. A formal definition follows.

Definition 14. Let D = 〈I ,η ,P〉 be a deductive database and S a request. A relevant
(weak) repair U for (D ,S ) is constrained if there is no non-nullary constant a in U
such that replacing some occurrences of a in U with a constant b 6= a (b might be ⊥),
results in a weak repair for (D ,S ). ¤
Example 7. Let D = 〈I ,η ,P〉, where I = 〈{p(1),h(2)}, /0〉, η = /0 and P = {t ←
p(X),q(X); s← r(X)}. Let us consider the request S = ({s, t}, /0). The updates Ri =
{+q(1)D,+r(i)D}, i ∈ {⊥,1,2}, and R ′

i = {+q(2)D,+p(2)D,+r(i)D}, i ∈ {⊥,1,2},
are relevant weak repairs. One of them, R⊥, is constrained. Indeed, replacing in R⊥
the unique occurrence of a non-nullary constant (in this case, 1) with any other constant
does not yield a weak repair. On the other hand, Ri, i ∈ {1,2}, and R ′

i , i ∈ {⊥,1,2},
are not constrained. Indeed, replacing with 3 the second occurrence of 1 in R1, or the
occurrence of 2 in R2, or both occurrences of 2 in R ′

i in each case results in a weak re-
pair. Also weak repairs Ri = {+q(1)D,+r(i)D} and R ′

i = {+q(2)D,+p(2)D,+r(i)D},
i ∈ {3, . . .}, are not constrained as they are not even relevant. ¤

We stress that, in order to test whether a relevant (weak) repair R is constrained,
we need to consider every subset of occurrences of non-nullary constants in R. For
instance, in the case of the repair R1 = {q(1),r(1)} from Example 7, the occurrence of
the constant 1 in q(1) is constrained by the presence of p(1). Replacing that occurrence
of 1 with 3 does not result in a weak repair. However, replacing the occurrence of 1 in
r with 3 gives a weak repair and shows that R1 is not constrained.

Example 8. Let Dom = {⊥,1,2, . . .} and D = 〈I ,η ,P〉, where I = 〈{q(1,2),s(1,2,3)},
/0〉, η = /0 and P = {p(X)← q(X ,Y ),r(X ,Y,Z); r(X ,Y,Z)← s(X ,Y,Z), t(X ,Y,Z)}. Let
us consider the request S = ({p(1)}, /0). In this case, our approach yields a unique
constrained repair R = {+t(1,2,3)D}. It recognizes that thanks to s(1,2,3) simply in-
serting t(1,2,3) guarantees r(1,2,3) to be true and, consequently, ensures the presence
of p(1) in the view. There are other repairs and other relevant repairs, but only the one
listed above is constrained. ¤



We observe that every (relevant, constrained) weak repair contains a (relevant, con-
strained) repair.

Proposition 2. Let D = 〈I ,η ,P〉 be a deductive database and S a request. A (rele-
vant, constrained) repair for (D ,S ) exists if and only if a (relevant, constrained) weak
repair for (D ,S ) exists. ¤

5 Complexity

Finally, we discuss the complexity of problems concerning the existence of (weak)
repairs of types introduced above. The results we present here have proofs that are non-
trivial despite rather strong assumptions we adopted.

We assume that the sets of base and derived predicate symbols, the set of integrity
constraints η and the view P are fixed. The only varying parts in the problems are a
database I and a request S . That is, we consider the data complexity setting. More-
over, we assume that Dom = {⊥,1,2, . . .}, and take = and≤, both with the standard in-
terpretation on {1,2, . . .}, as the only built-in relations. We restrict integrity constraints
to expressions of the form: ∃X(∀Y (A1∧ . . .∧Ak → B1∨ . . .∨Bm)), where Ai and Bi are
atoms with no occurrences of ⊥ constructed of base and built-in predicates, and where
every variable occurring in the constraint belongs to X ∪Y , and occurs in some atom Ai
built of a base predicate.

We start by stating the result on the complexity of deciding the consistency of an
indefinite database with integrity constraints. While interesting in its own right, it is also
relevant to problems concerning the existence of repairs, as one of the conditions for U
to be a repair is that the database that results from executing U be consistent.

Theorem 1. The problem to decide whether a database 〈I ,η〉 has a possible world
(is consistent) is NP-complete. ¤

We now turn attention to the problem of checking request satisfaction. Determin-
ing the complexity of that task is a key stepping stone to the results on the complexity
of deciding whether updates are (weak) repairs that are necessary for our results on
the complexity of the existence of (weak) repairs. However, checking request satisfac-
tion turns out to be a challenge even for very simple classes of views. In this paper,
we restrict attention to the case when P is a safe definite (no constraints) acyclic (no
recursion) Horn program, although we obtained Proposition 3 in a more general form.

Proposition 3. The problem to decide whether a ground atom t is true in a deductive
database 〈I ,η ,P〉, where 〈I ,η〉 is consistent and P is a safe Horn program, is in the
class co-NP. ¤

Next, we consider the problem to decide whether a ground atom t is false in a
deductive database 〈I ,η ,P〉. We state it separately from the previous one as our present
proof of that result requires the assumption of acyclicity.

Proposition 4. The problem to decide whether a ground atom t is false (ground literal
¬t is true) in a deductive database 〈I ,η ,P〉, where 〈I ,η〉 is consistent and P is an
acyclic Horn program, is in the class co-NP. ¤



With Propositions 3 and 4 in hand, we move on to study the complexity of the
problems of the existence of weak repairs. First, we establish an upper bound on the
complexity of checking whether and update is a (relevant) weak repair.

Proposition 5. Let D = 〈I ,η ,P〉, where η is a set of integrity constraints, P an acyclic
Horn program, U an update and S a request set. The problem of checking whether an
update U is a weak repair (relevant weak repair) for (D ,S ) is in ∆ P

2 . ¤

With the results above, we can address the question of the complexity of the exis-
tence of repairs. The first problem concerns weak repairs and stands apart from others.
It turns out, that deciding the existence of a weak repair is NP-complete, which may
seem at odds with Proposition 5 (an obvious non-deterministic algorithm guesses an up-
date U and checks that it is a weak repair apparently performing a “Σ P

2 computation”).
However, this low complexity of the problem is simply due to the fact that there are
no relevance, constrainedness or minimality constraints are imposed on weak repairs.
Thus, the question can be reduced to the question whether there is a “small” database
J , in which the request holds. The corresponding weak repair consists of deleting all
elements from I and “repopulating” the resulting empty database so that to obtain J .

Theorem 2. Let D = 〈I ,η ,P〉, where η is a set of integrity constraints, and P an
acyclic Horn program, and let S be a request set. The problem of deciding whether
there is a weak repair for (D ,S ) is NP-complete. ¤

As noted, the case of the existence of weak repairs is an outlier and deciding the
existence of (weak) repairs of other types is much harder (under common assumptions
concerning the polynomial hierarchy).

Theorem 3. Let D = 〈I ,η ,P〉, where η is a set of integrity constraints, and P an
acyclic Horn program, and let S be a request set. The problems of deciding whether
there is a relevant weak repair and whether there is a relevant repair for (D ,S ) are
Σ P

2 -complete. ¤

The last result concerns constrained (weak) repairs. It provides an upper bound on
the complexity of the problem of deciding the existence of constrained repairs. We
conjecture that the upper bound is in fact tight but have not been able to prove it. We
leave the problem for future work.

Theorem 4. Let D = 〈I ,η ,P〉, where η is a set of integrity constraints, and P an
acyclic Horn program, and let S be a request set. The problems of deciding whether
there is a constrained weak repair and whether there is a constrained repair for (D ,S )
are in Σ P

3 . ¤

6 Discussion and conclusion

We presented a declarative framework for view updating and integrity constraint main-
tenance for indefinite databases. The framework is based on the notion of an indefi-
nite deductive database. In our approach, the indefiniteness appears in the extensional



database and is modeled by a single null value, consistent with the standards of database
practice (a condition not followed by earlier works on the view-update problem over in-
definite databases). We defined a precise semantics for indefinite deductive databases
in terms of possible worlds. We used the framework to formulate and study the view-
update problem. Exploiting the concept of minimality of change introduced by an up-
date, we defined several classes of repairs, including relevant and constrained repairs,
that translate an update request against a view into an update of the underlying database.
Finally, we obtained several complexity results concerning the existence of repairs.

Our paper advances the theory of view updating in three main ways. First, it pro-
poses and studies the setting where extensional databases are indefinite both before and
after an update. While introducing indefiniteness to narrow down the class of potential
repairs was considered before [5], the assumption there was that the initial extensional
database was complete. That assumption substantially limits the applicability of the
earlier results. Second, our paper proposes a more expressive model of an indefinite ex-
tensional database. In our model databases are determined by two sets of facts. The first
set of facts specifies what is true and provides an upper bound to what might still be un-
known. By CWA, everything else is false. The second set of facts lists exceptions to the
“unknown range,” that is, facts that according to the first set might be unknown but are
actually false (exceptions). Third, our paper introduces two novel classes or repairs, rel-
evant and constrained, that often substantially narrow down possible ways to fulfill an
update request against a view. Relevant repairs do not introduce any new constants and
minimize change. Constrained repairs in addition do not involve constants that are in
some precise sense “replaceable” and, thus, not grounded in the problem specification.

We already discussed some earlier work on view updating in the introduction as a
backdrop to our approach. Expanding on that discussion, we note that the view-update
problem is closely related to abduction and is often considered from that perspective.
Perhaps the first explicit connection between the two was made by Bry [1] who pro-
posed to use deductive tools as a means for implementing the type of abductive rea-
soning required in updating views. That idea was pursued by others with modifications
that depended on the class and the semantics of the views. For instance, Kakas and
Mancarella [9] exploited in their work on view updates the abductive framework by
Eshghi and Kowalski [4] and were the first to consider the stable-model semantics for
views. Neither of the two works mentioned above was, however, concerned with the
case of updates to views over indefinite databases. Console et al. [2] studied the case in
which requests can involve variables. These variables are replaced by null values and,
in this way, null values eventually end up in repaired databases. However, once there,
they loose their null value status and are treated just as any other constants. Conse-
quently, no reasoning over null values takes place, in particular, they have no special
effect on the notion of minimality. None of the papers discussed studied the complexity
of the view-update problem. Instead, the focus was on tailoring resolution-based deduc-
tive reasoning tools to handle abduction. Some results on the complexity of abduction
for logic programs were obtained by Eiter, Gottlob and Leone [3]. However, again the
setting they considered did not assume incompleteness in extensional databases.

Our paper leaves several questions for future work. First, we considered restricted
classes of views. That suggests the problem to extend our complexity results to the



full case of Horn programs and, later, stratified ones. Next, we considered a limited
class of integrity constraints. Importantly, we disallowed tuple-generating constraints.
However, once they are allowed, even a problem of repairing consistency in an exten-
sional database becomes undecidable. A common solution in the database research is
to impose syntactic restrictions on the constraints [8]. That suggests considering view-
updating in the setting in which only restricted classes of constraints are allowed.

Acknowledgments

The third author was supported by the NSF grant IIS-0913459. We are grateful to Sergio
Greco and Leopoldo Bertossi for helpful discussions.

References

1. François Bry. Intensional updates: Abduction via deduction. In Proceedings of ICLP 1990,
pages 561–575, Cambridge, MA, 1990. MIT Press.

2. Luca Console, Maria Luisa Sapino, and Daniele Theseider Dupré. The role of abduction in
database view updating. J. Intell. Inf. Syst., 4(3):261–280, 1995.

3. Thomas Eiter, Georg Gottlob, and Nicola Leone. Abduction from logic programs: Semantics
and complexity. Theor. Comput. Sci., 189(1-2):129–177, 1997.

4. K. Eshghi and R. A. Kowalski. Abduction compared with negation by failure. In Proceedings
of ICLP 1989, pages 234–254, Cambridge, MA, 1989. MIT Press.

5. Carles Farré, Ernest Teniente, and Toni Urpı́. Handling existential derived predicates in view
updating. In Proceedings of ICLP 2003, volume 2916 of LNCS, pages 148–162. Springer,
2003.

6. Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming.
In Proceedings of ICLP/SLP 1988, pages 1070–1080, 1988.

7. Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunc-
tive databases. New Generation Comput., 9(3/4):365–386, 1991.

8. Sergio Greco, Francesca Spezzano, and Irina Trubitsyna. Stratification criteria and rewriting
techniques for checking chase termination. PVLDB, 4(11):1158–1168, 2011.

9. A. C. Kakas and P. Mancarella. Database updates through abduction. In Proceedings of the
sixteenth international conference on Very large databases, pages 650–661, San Francisco,
CA, USA, 1990. Morgan Kaufmann Publishers Inc.

10. Leonid Libkin. A semantics-based approach to design of query languages for partial infor-
mation. In Semantics in Databases, volume 1358 of LNCS, pages 170–208. Springer, 1995.

11. Enric Mayol and Ernest Teniente. Consistency preserving updates in deductive databases.
IEEE TDKE, 47(1):61–103, 2003.

12. R. Reiter. On closed world data bases. In H. Gallaire and J. Minker, editors, Logic and data
bases, pages 55–76. Plenum Press, 1978.

13. Ernest Teniente and Antoni Olivé. Updating knowledge bases while maintaining their con-
sistency. VLDB J., 4(2):193–241, 1995.

14. Stephen Todd. Automatic constraint maintenance and updating defined relations. In IFIP
Congress, pages 145–148, 1977.

15. Can Türker and Michael Gertz. Semantic integrity support in sql: 1999 and commercial
(object-)relational database management systems. VLDB J., 10(4):241–269, 2001.

16. Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, Volume I. Com-
puter Science Press, 1988.


