
Exploiting Unfounded Sets for HEX-Program Evaluation?

Thomas Eiter, Michael Fink, Thomas Krennwallner, Christoph Redl, and Peter Schüller

Institut für Informationssysteme, Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria

{eiter,fink,tkren,redl,ps}@kr.tuwien.ac.at

Abstract. HEX programs extend logic programs with external computations
through external atoms, whose answer sets are the minimal models of the Faber-
Leone-Pfeifer-reduct. As already reasoning from Horn programs with nonmono-
tonic external atoms of polynomial complexity is on the second level of the
polynomial hierarchy, answer set checking needs special attention; simply comput-
ing reducts and searching for smaller models does not scale well. We thus extend
an approach based on unfounded sets to HEX and integrate it in a Conflict Driven
Clause Learning framework for HEX program evaluation. It reduces the check
to a search for unfounded sets, which is more efficiently implemented as a SAT
problem. We give a basic encoding for HEX and show optimizations by additional
clauses. Experiments show that the new approach significantly decreases runtime.

Keywords: Answer Set Programming, Nonmonotonic Reasoning, Unfounded Sets,
FLP Semantics

1 Introduction

Answer Set Programming (ASP) is a declarative programming approach which due
to expressive and efficient systems like SMODELS, DLV and CLASP, has been gaining
popularity for many applications [2]. Current trends in computing, such as context
awareness or distributed systems, raised the need for access to external sources in a
program, which, e.g., on the Web ranges from light-weight data access (e.g., XML, RDF,
or data bases) to knowledge-intensive formalisms (e.g., description logics).

To cater for this need, HEX-programs [9] extend ASP with so-called external atoms,
through which the user can couple any external data source with a logic program.
Roughly, such atoms pass information from the program, given by predicate extensions,
into an external source which returns output values of an (abstract) function that it
computes. This convenient extension has been exploited for many different applications,
including querying data and ontologies on the Web, multi-context reasoning, or e-
government, to mention a few (cf. [5]). It is highly expressive as recursive data exchange
between the logic program and external sources is possible.

The semantics of HEX-programs is defined in terms of answer sets based on the FLP
reduct [12]: an interpretation A is an answer set of a program Π , iff it is a ⊆-minimal

? This research has been supported by the Austrian Science Fund (FWF) project P20840, P20841,
P24090, and by the Vienna Science and Technology Fund (WWTF) project ICT08-020.

model of the FLP-reduct fΠA of the program wrt. A, which is the set of all rules whose
body is satisfied by A. This semantics is equivalent to the GL-reduct based semantics
of ordinary logic programs [14], but has advantages for extensions with nonmonotonic
aggregates [12] or the more general external atoms in HEX-programs.

Currently, a HEX-program Π is evaluated in two steps as follows. In step 1, external
atoms are viewed as ordinary atoms (replacement atoms) and their truth values are
guessed by added choice rules. The resulting ordinary ASP program Π̂ is evaluated by
an ordinary ASP solver and each answer set Â returned is checked against the external
sources, i.e., the guess is verified. After that, the guess for the non-replacement atoms,
called A, is known to be a model of Π , but it is yet unknown whether A is also a
subset-minimal model of the reduct fΠA. This has to be ensured in step 2 by an FLP
check. A straightforward method, called explicit FLP check, is to compute fΠA and to
check whether it has some model smaller than A. However, this approach is not efficient
in practice, actually the explicit FLP check often dominates the overall runtime.

This calls for alternative methods to do the FLP check efficiently, which we address
in this paper. For ordinary programs, unfounded sets proved to be a fruitful approach [16],
which later had been extended to programs with aggregates [11]: an interpretation is
an FLP-answer set of some program, if and only if it is unfounded-free, i.e., is disjoint
from every unfounded set. Thus to decide whether a candidate is an answer set, one
can simply search for unfounded sets, rather than to explicitly construct the reduct and
enumerate its models in search for a smaller one.

Starting from this idea, we define unfounded sets for HEX-programs following [11]
and explore their efficiency for FLP checking. Briefly, our main contributions are:

• We present an encoding of the unfounded set existence problem to a set of nogoods,
i.e., constraints that have to be satisfied, and show that the solutions correspond 1-1 with
the unfounded sets. They can then be computed using a SAT solver and a post-processing
step which checks that the values of replacement atoms comply with the results of
the external calls. Furthermore, we consider optimizations which hinge on dependency
between external and ordinary atoms, determined in careful analysis. Benchmarks show
that this strategy is already more efficient than the explicit FLP check.
• We consider how information gained in the FLP check can be used in generating

candidate answer sets in step 1. Recently, adopting a Clause Driven Conflict Learning
approach [3], this step has been enhanced by learning [6], in which nogoods describing
the external source behavior are learned during the search (called external behavior
learning or EBL), in order to guide it towards right guesses. We show how step 1 can
learn additional nogoods from unfounded sets that avoid the reconstruction of the same
or related unfounded sets, yielding further gain.

An experimental evaluation of the above techniques for advanced reasoning applica-
tions, including Multi-Context Systems [1, 8], abstract argumentation [4] and UNSAT
testing [11], shows that unfounded sets checking combined with learning methods
from [6] improves HEX-program evaluation considerably. As unfounded-freeness may be
ensured by syntactic criteria in relevant cases (which makes the FLP check obsolete), the
new approach enables significant speedup and enlarges the scope of HEX applicability.
Proofs of our results are given in an extended version [7].

2 Preliminaries
In this section, we start with some basic definitions, and then introduce HEX-programs.

In accordance with [13, 6], a (signed) literal is a positive or a negative formula Ta
resp. Fa, where a is a ground atom of form p(c1, . . . , c`), with predicate p and constants
c1, . . . , c`, abbreviated p(c). For a literal σ=Ta or σ=Fa, let σ denote its opposite, i.e.,
Ta=Fa and Fa=Ta. An assignment is a consistent set of literals Ta or Fa, where Ta
expresses that a∈A and Fa that a /∈A.A is complete, also called an interpretation, if no
assignment A′⊃A exists. We denote by AT = {a | Ta∈A} and AF = {a | Fa∈A}
the set of atoms that are true, resp. false in A, and by ext(q,A) = {c | Tq(c)∈A} the
extension of a predicate q. Furthermore, A|q is the set of all literals over atoms of form
q(c) in A. For a list q = q1, . . . , qk of predicates we write p ∈ q iff qi = p for some
1 ≤ i ≤ n, and let A|q =

⋃
jA|qj .

A nogood is a set {L1, . . . , Ln} of literals Li, 1 ≤ i ≤ n. An interpretation A is a
solution to a nogood δ (resp. a set ∆ of nogoods), iff δ 6⊆ A (resp. δ 6⊆ A) for all δ ∈ ∆.
HEX-Program Syntax. As introduced in [9], HEX-programs are a generalization of
(disjunctive) extended logic programs under the answer set semantics [14]; for details
and background see [9]. HEX-programs extend ordinary ASP programs by external
atoms, which enable a bidirectional interaction between a program and external sources
of computation. External atoms have a list of input parameters (constants or predicate
names) and a list of output parameters. Informally, to evaluate an external atom, the
reasoner passes the constants and extensions of the predicates in the input tuple to the
external source associated with the external atom. The external source computes output
tuples which are with the output list. Formally, a ground external atom is of the form

&g [p](c), (1)
where p = p1, . . . , pk are constant input parameters (predicate names or object con-
stants), and c = c1, . . . , cl are constant output terms.

Ground HEX-programs are then defined similar to ground ordinary ASP programs.

Definition 1 (Ground HEX-programs). A ground HEX-program consists of rules
a1 ∨ · · · ∨ ak ← b1, . . . , bm,not bm+1, . . . ,not bn , (2)

where each ai is an (ordinary) ground atom p(c1, . . . , c`) with constants ci, 1 ≤ i ≤ `,
each bj is either an ordinary ground atom or a ground external atom, and k + n > 0.1

The head of a rule r is H(r) = {a1, . . . , an} and the body is B(r) = {b1, . . . , bm,
not bm+1, . . . ,not bn}. We call b or not b in a rule body a default literal; B+(r) =
{b1, . . . , bm} is the positive body, B−(r) = {bm+1, . . . , bn} is the negative body. For
a program Π , let A(Π) be the set of all ordinary atoms occurring in Π . For a default
literal b, let tb = Ta if b = a for an atom a, and tb = Fa if b = not a. Conversely, fb =
Fa if b = a and fb = Ta if b = not a.

We also use non-ground programs. However, as suitable safety conditions allow for
using a grounding procedure [10], we limit our investigation to ground programs.
HEX-Program Semantics and Evaluation. The semantics of a ground external atom
&g [p](c) wrt. an interpretation A is given by the value of a 1+k+l-ary Boolean oracle

1 For simplicity, we do not formally introduce strong negation but view, as customary, classical
literals ¬a as new atoms together with a nogood {Ta,T¬a}.

function, denoted by f&g following [9], that is defined for all possible values of A, p
and c. Thus, &g [p](c) is true relative to A if and only if it holds that f&g(A,p, c) = 1.
Satisfaction of ordinary rules and ASP programs [14] is then extended to HEX-rules and
programs in the obvious way, and the notion of extension ext(·,A) for external predicates
&g with input lists p is naturally defined by ext(&g [p],A) = {c | f&g(A,p, c) = 1}.

An input predicate p of an external predicate with input list &g [p] is monotonic
(antimonotonic), iff f&g(A,p, c) = 1 implies f&g(A

′,p, c) = 1 (f&g(A,p, c) = 0
implies f&g(A

′,p, c) = 0) for all A′ s.t. ext(p,A′) ⊇ ext(p,A) and ext(q,A′) =
ext(q,A) for q ∈ p and q 6= p. The sublist of all monotonic resp. antimonotonic p is
denoted by m(&g) resp. a(&g) and the sublist of neither monotonic nor antimonotonic
(i.e., nonmonotonic) p by n(&g); we also write pτ for τ(&g), τ ∈ {m, a, n}.

Definition 2 (FLP-Reduct [12]). For an interpretation A over a program Π , the FLP-
reduct of Π wrt. A is the set fΠA = {r ∈ Π | A |= b, for all b ∈ B(r)} of all rules
whose body is satisfied under A.

An assignment A1 is smaller or equal to another assignment A2 wrt. a program Π ,
denoted A1 ≤Π A2 iff {Ta ∈ A1 | a ∈ A(Π)} ⊆ {Ta ∈ A2 | a ∈ A(Π)}.
Definition 3 (Answer Set). An answer set of Π is a ≤Π -minimal model A of fΠA.

Since interpretations (thus answer sets) are complete assignments, slightly abusing
notation, we uniquely identify them with the set of all positive literals they contain.

Example 1. Consider the program Π = {p ← &id [p]()}, where &id [p]() is true iff
p is true. Then Π has the answer set A1 = ∅; indeed it is a ≤Π -minimal model
of fΠA1 = ∅.

The answer sets of a HEX-program Π are determined by the DLVHEX solver using
a transformation to ordinary ASP programs as follows. Each external atom &g [p](c)
in Π is replaced by an ordinary ground external replacement atom e&g[p](c) and a
rule e&g[p](c)∨ ne&g[p](c)← is added to the program. The answer sets of the resulting
guessing program Π̂ are determined by an ordinary ASP solver and projected to non-
replacement atoms. However, the resulting assignments are not necessarily models of Π ,
as the value of &g [p] under f&g can be different from the one of e&g[p](c). Each answer
set of Π̂ is thus merely a candidate which must be checked against the external sources.
If no discrepancy is found, the model candidate is a compatible set of Π . More precisely,

Definition 4 (Compatible Set). A compatible set of a program Π is an assignment Â
(i) which is an answer set [14] of the guessing program Π̂ , and

(ii) f&g(Â,p, c) = 1 iff Te&g[p](c) ∈ Â for all external atoms &g [p](c) in Π , i.e. the
guessed values coincide with the actual output under the input from Â.

The compatible sets of Π computed by DLVHEX include (modulo A(Π)) all (FLP)
answer sets. For each answer set A there is a compatible set Â such that A is the
restriction of Â to non-replacement atoms, but not vice versa. To filter out the compatible
sets which are not answer sets, the current evaluation algorithm proceeds as follows.
Each compatible set A is fed to the FLP check, which explicitly constructs fΠA. After
that, all models of the reduct are enumerated and compared to A. If there is a model
which is strictly smaller than A wrt. Π , then A is rejected, otherwise A is an answer set.

Example 2 (cont’d). Reconsider the program Π = { p← &id [p]() } from above. Then
the corresponding guessing program is Π̂ = {p← e&id[p](); e&id[p] ∨ ne&id[p] ←} and
has the answer sets A1 = ∅ and A2 = {Tp,Te&id[p]}. While A1 is also a ≤Π -minimal
model of fΠA1 = ∅, A2 is not a ≤Π -minimal model of fΠA2 = Π .

3 Unfounded Set Detection

It appears that in most current application scenarios there is no smaller model of the
reduct fΠA, i.e., most assignments A extracted from compatible sets Â pass the FLP
check. Moreover, this check is computationally costly: all models of fΠA must be
enumerated, along with calls to the external sources to ensure compatibility. Even worse,
as we need to search for a smaller model and not just for a smaller compatible set, fΠA

usually has even more models then the original program. More precisely, the explicit
FLP check corresponds to the search for compatible sets of the following program:

fΠ̂Â ∪ {← a | a is ordinary ,Ta 6∈ Â} ∪ {a ∨ a′ ←| Ta ∈ Â}
∪ {← not smaller} ∪ {smaller ← not a | a is ordinary ,Ta ∈ Â}.

It consists of the reduct fΠ̂Â and rules that restrict the search to proper subinterpretations
of Â, where smaller is a new atom. Moreover, as we actually need to search for models
and not just compatible sets, rules of the form a ∨ a′ ← (where a′ is a new atom for
each Ta ∈ Â) make sure that atoms can be arbitrarily true without having a justifying
rule in Π . Because of these guessing rules, the rules in the reduct fΠ̂Â—except for the
guesses on replacement atoms—can be rewritten to constraints, which is more efficient.
Our comparison in Section 5 uses this optimized version of the explicit check, but still
demonstrates a significant performance gain by our novel approach.

In this section we present a novel FLP check algorithm based on unfounded sets
(UFS). That is, instead of explicitly searching for smaller models of the reduct, we
check if the candidate answer set is unfounded-free. For now, the unfounded set-based
check is also realized as a post-check, i.e., it is carried out only after the interpretation
has been completed. Nevertheless it performs much better than the explicit FLP check.
Investigating the effects of doing this check over partial interpretations and interleaving
it with the main search for compatible sets is future work. We use unfounded sets for
logic programs as introduced in [11] for programs with arbitrary aggregates.

Definition 5 (Unfounded Set). Given a program Π and an assignment A, let X be
any set of ordinary ground atoms appearing in Π . Then, X is an unfounded set for Π
wrt. A if, for each rule r having some atoms from X in the head, at least one of the
following conditions holds, where A

.
∪ ¬.X = (A \ {Ta | a ∈ X}) ∪ {Fa | a ∈ X}:

(i) some literal of B(r) is false wrt. A,
(ii) some literal of B(r) is false wrt. A

.
∪ ¬.X , or

(iii) some atom of H(r) \X is true wrt. A

Intuitively, an unfounded set is a set of atoms which only cyclically support each
other. Answer sets can be characterized in terms of unfounded sets.

Definition 6 (Unfounded-free Interpretations). An interpretation A of a program Π
is unfounded-free iff AT ∩X = ∅, for all unfounded sets X of Π wrt. A.

Theorem 1 (Characterization of Answer Sets). A model A of a program Π is an
answer set iff it is unfounded-free.

Example 3. Consider the program Π and A2 from Example 2. Then X = {p} is an
unfounded set since X intersects with the head of p ← &id [p]() and A

.
∪ ¬.X 6|=

&id [p](). Therefore A2 is not unfounded-free and not an answer set.

3.1 Nogoods for Unfounded Set Search Encoding

We realize the search for unfounded sets using nogoods, i.e., for a given Π and an
assignment A we construct a set of nogoods, such that solutions to this set correspond to
(potential) unfounded sets. We then use a SAT solver to search for such unfounded sets.

Our encoding of unfounded set detection, which is related to [3] but respects external
atoms, uses a set ΓA

Π = NA
Π ∪ OA

Π , of nogoods where NA
Π contains all necessary

constraints and OA
Π are optional optimization nogoods that prune irrelevant parts of the

search space. The idea is that the set of ordinary atoms of a solution to ΓA
Π represents a

(potential) unfounded set U of Π wrt. A, while the external replacement atoms encode
the truth values of the corresponding external atoms under A

.
∪ ¬.U .

Let B+
o (r) be the subset of B+(r) consisting of all ordinary atoms, and Be(r)

the subset of B(r) consisting of all external replacement atoms. Then, the nogood
set ΓA

Π is built over atoms A(ΓA
Π) = A(Π̂) ∪ {hr, lr | r ∈ Π}, where hr, and lr are

additional atoms for every rule r in Π . The mandatory part NA
Π = {{Fa | Ta ∈ A}}∪(⋃

r∈Π Rr,A
)

consists of a nogood {Fa | Ta ∈ A}, eliminating unfounded sets that do
not intersect with true atoms in A, as well as nogoods Rr,A for every r ∈ Π . The latter
consist of a head criterion Hr,A and a conditional part Cr,A for each rule, defined by:

– Rr,A = Hr,A ∪ Cr,A, where
– Hr,A = {{Thr} ∪ {Fh | h ∈ H(r)}} ∪ {{Fhr,Th} | h ∈ H(r)}

encodes that hr is true for a rule r iff some atom of H(r) is in the unfounded set;

– Cr,A =


{{Thr} ∪
{Fa | a ∈ B+

o (r),A |= a} ∪ {ta | a ∈ Be(r̂)} ∪
{Th | h ∈ H(r),A |= h}} if A |= B(r),

{} otherwise
encodes that condition (i), (ii) or (iii) of Definition 5 must hold if hr is true.

More specifically, for an unfounded set U and a rule r with H(r) ∩ U 6= ∅ (hr is true) it
must not happen that A |= B(r) (condition (i) fails), no a ∈ B+

o (r) with A |= a is in
the unfounded set and all a ∈ Be(r̂) are true under A

.
∪ ¬.U (condition (ii) fails), and

all h ∈ H(r) with A |= h are in the unfounded set (condition (iii) fails).
Towards computing unfounded sets, observe that they can be extended to solutions

to the set of nogoods ΓA
Π over A(ΓA

Π). Conversely, the solutions to ΓA
Π include specific

extensions of all unfounded sets, characterized by induced assignments: That is, by
assigning true to all atoms in U , to all hr such that H(r) intersects with U , and to all
external replacement atoms e&g[p](c) such that &g [p](c) is true under A

.
∪ ¬.U , and

assigning false to all other atoms in A(ΓA
Π). More formally, we define:

Definition 7 (Induced Assignment of an Unfounded Set). Let U be an unfounded set
of a program Π wrt. assignment A. The assignment induced by U , denoted I(U, ΓA

Π), is

I(U, ΓA
Π) = I ′(U, ΓA

Π) ∪ {Fa | a ∈ A(ΓA
Π),Ta 6∈ I ′(U, ΓA

Π)}, where
I ′(U, ΓA

Π) = {Ta | a ∈ U} ∪ {Thr | r ∈ Π,H(r) ∩ U 6= ∅} ∪
{Te&g[p](c) | e&g[p](c) ∈ A(Π̂),A

.
∪ ¬.U |= &g [p](c)}.

While concrete instances for OA
Π are defined in Section 4, note that for the next result

we simply require that the optimization part OA
Π is conservative in the sense that for

every unfounded set U of Π wrt. A, it holds that I(U, ΓA
Π) is a solution to OA

Π as well
(which is shown for the different optimizations considered in the next section). Then, the
solutions to ΓA

Π include all assignments induced by unfounded sets of Π wrt. A (but not
every solution corresponds to such an induced assignment, intuitively because it does
not reflect the semantics of external sources).

Proposition 1. Let U be an unfounded set of a program Π wrt. assignment A such that
AT ∩ U 6= ∅. Then I(U, ΓA

Π) is a solution to ΓA
Π .

Corollary 1. If ΓA
Π has no solution, then U ∩AT = ∅ for every unfounded set U of Π .

The next property allows us to find the unfounded sets of Π wrt. A among all
solutions to ΓA

Π by using a postcheck on the external atoms.

Proposition 2. Let S be a solution to ΓA
Π such that

(a) Te&g[p](c) ∈ S and A 6|= &g [p](c) implies A
.
∪ ¬.U |= &g [p](c); and

(b) Fe&g[p](c) ∈ S and A |= &g [p](c) implies A
.
∪ ¬.U 6|= &g [p](c)

where U = {a | a ∈ A(Π),Ta ∈ S}. Then U is an unfounded set of Π wrt. A.
Informally, the proposition states that true non-replacement atoms in S which also

appear inΠ form an unfounded set, provided that truth of the external replacement atoms
e&g[p](c) in S coincides with the truth of the corresponding &g [p](c) under A

.
∪ ¬.U

(as in Definition 7). However, this check is just required if the truth value of e&g[p](c)
in S and of &g [p](c) under A differ. This gives rise to an important optimization for
the implementation: external atoms, whose (known) truth value of &g [p](c) under A
matches the truth value of e&g[p](c) in S, do not need to be postchecked.

Example 4. Reconsider program Π = {r1 : p ← &id [p]()} from Ex. 2 and the com-
patible set A2 = {Tp,Te&id[p]}. The nogood set NA2

Π = {{Thr1 ,Fp}, {Fhr1 ,Tp},
{Thr1 ,Te&id[p](),Tp}} has solutions S⊇{Thr1 ,Tp,Fe&id[p]()}, which correspond
to the unfounded set U = {p}. Here, Fe&id[p]() represents that A2

.
∪ ¬.U 6|= &id [p]().

Note that due to the premises in Conditions (a) and (b) of Proposition 2, the postcheck
is faster if Te&g[p](c) ∈ S whenever A |= &g [p](c) holds for many external atoms in
Π . This can be exploited during the construction of S as follows: If it is not absolutely
necessary to set the truth value of e&g[p](c) differently, then carry over the value from
&g [p](c) under A. Specifically, this is successful if e&g[p](c) does not occur in ΓA

Π .

4 Optimization and Learning

In this section we first discuss some refinements and optimizations of our encoding of
nogoods for UFS search. In particular, we add additional nogoods which prune irrelevant
parts of the search space. After that, we propose a strategy for learning nogoods from
detected unfounded sets, avoiding that the same unfounded set is generated again later.

4.1 Optimization

The following optimizations turned out to be effective in improving UFS search.

Restricting the UFS Search to Atoms in the Compatible Set. First, not all atoms in
a program are relevant for the unfounded set search: atoms that are false under A can be
ignored. Formally one can show the following:

Proposition 3. If U is an unfounded set of Π wrt. A and there is an a ∈ U s.t. A 6|= a,
then U \ {a} is an unfounded set of Π wrt. A.

Avoiding Guesses of External Replacement Atoms. Second, in some situations the
truth value of an external replacement atom b in a solution S to ΓA

Π is void. That is, both
(S \{Tb,Fb})∪{Tb} and (S \{Tb,Fb})∪{Fb} are solutions to ΓA

Π (which represent
the same unfounded set). Then we can set the truth value to an (arbitrary) fixed value
instead of inspecting both alternatives. The following provides a sufficient criterion:

Proposition 4. Let b be an external atom replacement, and let S be a solution to ΓA
Π . If

for all rules r ∈ Π , such that A |= B(r) and where b ∈ B+(r̂) or b ∈ B−(r̂), either

(a) for some a ∈ B+
o (r) such that A |= a, it holds that Ta ∈ S; or

(b) for some a ∈ H(r) such that A |= a, it holds that Fa ∈ S;

then both (S \ {Tb,Fb}) ∪ {Tb} and (S \ {Tb,Fb}) ∪ {Fb} are solutions to ΓA
Π .

This property can be utilized by adding the following additional nogoods. Recall
that A(ΓA

Π) contains atoms lr for every r ∈ Π . They are intuitively used to encode for a
solution S to ΓA

Π , whether the truth values of the external atom replacements in B(r)
are relevant, or whether they can be set arbitrarily for r. The following nogoods label
relevant rules r, forcing lr to be false iff one of the preconditions in Proposition 4 holds:

LA
r ={{Tlr,Ta} | a ∈ B+

o (r),A |= a} ∪ {{Tlr,Fa} | a ∈ H(r),A |= a} ∪
{{Flr} ∪ {Fa | a ∈ B+

o (r),A |= a} ∪ {Ta | a ∈ H(r),A |= a}}.
These constraints exclusively enforce Tlr or Flr. Hence, the truth value of lr determin-
istically depends on the other atoms, i.e., the nogoods do not cause additional guessing.

By Prop. 4 we can set the truth value of an external replacement atom b arbitrarily,
if lr is false for all r such that b ∈ B+(r̂) or b ∈ B−(r̂). As mentioned after Prop. 2, it is
advantageous to set the truth value of e&g[p](c) to the one of &g [p](c) under A, because
this can reduce the number of external atoms that must be checked. The following
nogoods enforce a coherent interpretation of the external replacement atoms:

FA
r ={{Flr | b ∈ B+(r̂) ∪B−(r̂)} ∪ {Fb} | b ∈ Be(r̂),A |= b} ∪
{{Flr | b ∈ B+(r̂) ∪B−(r̂)} ∪ {Tb} | b ∈ Be(r̂),A 6|= b}

In summary, our optimization part therefore is given by OA
Π =

⋃
r∈Π L

A
r ∪ FA

r .

Example 5. Consider the program Π = {r1 : p ← &id [p]()., r2 : q ← &id [q]().},
and the compatible set A = {Tp,Fq,Te&id[p](),Fe&id[q]()}. Then, NA

Π has solutions
S1 ⊇ {Thr1 ,Tp,Fe&id[p](),Fhr2 ,Fq,Fe&id[q]()} and S2 ⊇ {Thr1 ,Tp,Fe&id[p](),
Fhr2 ,Fq,Te&id[q]()} (which represent the same unfounded set U = {p}). Here, the
optimization part for r2, LA

r2 ∪ F
A
r2 = {{Tlr2 ,Fq}, {Flr2 ,Tq}, {Flr2 ,Te&id[q]()}},

eliminates solutions S2 for ΓA
Π . This is beneficial as for solutions S1 the postcheck is

easier (e&id[q]() in S1 and &id [q]() have the same truth value under A).

Exchanging Nogoods between UFS and Main Search. The third optimization allows
for the exchange of learned knowledge about external atoms between the UFS check
and the main search for compatible sets. For this purpose, we first define nogoods which
correctly describe the input-output relationship of external atoms.

Definition 8. A nogood of the form N = {Tt1, . . . ,Ttn, Ff1, . . . ,Ffm, ◦e&g[p](c)},
where ◦ is T or F, is a valid input-output-relationship, iff for all assignments A, Tti ∈ A,
for 1 ≤ i ≤ n, and Ffi ∈ A, for 1 ≤ i ≤ m, implies A |= &g [p](c) if ◦ = F,
and A 6|= &g [p](c) if ◦ = T.

LetN be a nogood which is a valid input-output-relationship learned during the main
search, i.e., for compatible sets of Π̂ , and let ◦̄ = T if ◦ = F, resp. ◦̄ = F if ◦ = T.

Definition 9 (Nogood Transformation T). For a valid input-output relationship N
and an assignment A, the nogood transformation T is defined as

T (N,A) =


∅ if Fti ∈ A for some 1 ≤ i ≤ n,
{{Ft1, . . . ,Ftn} ∪ {◦e&g[p](c)}} ∪
{Tfi | 1 ≤ i ≤ m,A |= fi} otherwise.

The next result states that T (N,A) can be considered, for all valid input-output
relationships N under all assignments A, without losing unfounded sets.

Proposition 5. Let N be a valid input-output relationship, and let U be an unfounded
set wrt. Π and A. Then I(U, ΓA

Π) is a solution to T (N,A).

Hence, all valid input-output relationships for external atoms which are learned
during the search for compatible sets, can be reused (applying the above transformation)
for the unfounded set check. Moreover, during the evaluation of external atoms in the
postcheck for candidate unfounded sets (solutions to ΓA

Π), further valid input-output
relationships might be learned. These can in turn be used by further unfounded set
checks.

Example 6 (Set Partitioning). Consider the program Π

sel(a)← domain(a),&diff [domain,nsel](a)

nsel(a)← domain(a),&diff [domain, sel](a)

domain(a)←
where &diff [p, q](X) computes the set of all elements X which are in the extension of
p but not in the extension of q. Informally, this program implements a choice from sel(a)
and nsel(a). Consider the compatible set AT = {domain(a), sel(a), e&diff [nsel](a)}.
Suppose the main search has learned the input-output relationship N = {Tdomain(a),
Fnsel(a),Fe&diff [nsel](a)}. Then the transformed nogood is T (N,A)={{Fdomain(a),
Fe&diff [nsel](a)}}, which intuitively encodes that, if domain(a) is not in the unfounded
set U , then e&diff [nsel](a) is true under A

.
∪ ¬.U . This is clear because e&diff [nsel](a) is

true under A and it can only change its truth value if domain(a) becomes false.

However, it is important that this optimization cannot be simultaneously used with
the previous one as this can result in contradictions due to (transformed) learned nogoods.
Consequently, the previous optimization has been disabled in running our experiments.

4.2 Learning Nogoods from Unfounded Sets

Until now only detecting unfounded sets has been considered. A strategy to learn from
detected unfounded sets for the main search for compatible sets is missing. Here we
develop such a strategy and call it unfounded set learning (UFL).

Example 7. Consider the program Π = { p ← &id [p](); x1 ∨ x2 ∨ · · · ∨ xk ←}. As
we know from Example 3, {p} is a UFS wrt. A= {Tp,Te&id()}, regarding just the first
rule. However, the same is true for any A′ ⊃ A regarding Π , i.e., p must never be true.

The program in Example 7 has many compatible sets, and half of them (all where p
is true) will fail the UFS check for the same reason. We thus develop a strategy for
generating additional nogoods to guide the further search for compatible sets in a way,
such that the same unfounded sets are not reconsidered.

For an unfounded set U of Π wrt. A we define the following set of learned nogoods:
L(U,Π,A) = {{σ0, σ1, . . . , σj} | σ0 ∈ {Ta | a ∈ U}, σi ∈ Hi for all 1 ≤ i ≤ j)} ,
where Hi = {Th ∈ H(ri) | h 6∈ U,A |= h} ∪ {Fb ∈ B+

o (ri) | A 6|= b} and
{r1, . . . , rj} = {r ∈ Π | H(r) ∩ U 6= ∅, U ∩ B+

o (r) = ∅} is the set of external rules
of Π wrt. U , i.e., all rules which do not depend on U .

Formally we can show that adding this set of nogoods is correct:

Proposition 6. If U is an unfounded set of Π wrt. A, then every answer set of Π is a
solution to the nogoods in L(U,Π,A).

Example 8. Consider the program Π from Example 7 and suppose we have found the
unfounded set U = {p} wrt. interpretation A = {Tp,Tx1} ∪ {Fai | 1 < i ≤ k}. Then
the learned nogood L2(U,A, Π) = {Tp} immediately guides the search to the part of
the search tree where p is false, i.e., roughly half of the guesses are avoided.

We also considered a different learning strategy based on the models of fΠA rather
than the unfounded set U itself, hinging on the observation (cf. [12]) that for every
unfounded set U , A

.
∪ ¬.U is a model of fΠA (hence U 6= ∅ refutes A as a minimal

model of fΠA). However, this strategy appeared to be inferior to the one above.

5 Implementation and Evaluation

For implementing our technique, we integrated CLASP into our prototype system
DLVHEX; we use CLASP as an ASP solver for computing compatible sets and as a
SAT solver for solving the nogood set of the UFS check. We evaluated the implementa-
tion on a Linux server with two 12-core AMD 6176 SE CPUs with 128GB RAM.

Table 1 summarizes our benchmark results (plain stands for disabling EBL and UFL).
We can see a clear improvement both for synthetic and for application instances,2 due to
the UFS check and EBL. Moreover, a closer analysis shows that the UFS check in some
cases not only decreases the runtime but also the numbers of enumerated candidates (UFS
candidates resp. model candidates of the FLP reduct) and of external atom evaluations.

2 Detailed instance information: http://www.kr.tuwien.ac.at/staff/ps/unfoundedsets/

Set Partitioning. This benchmark extends the program from Ex. 6 by the additional con-
straint← sel(X), sel(Y), sel(Z), X 6=Y,X 6=Z, Y 6=Z and varies the size of domain .
Here we see a big advantage of the UFS check over the explicit check, both for com-
puting all answer sets and for finding the first one. A closer investigation shows that
the improvement is mainly due to the optimizations described in Sec. 4 which make
the UFS check investigate significantly fewer candidates than the explicit FLP check.
Furthermore the UFS check requires fewer external computations.

Multi-Context Systems (MCSs). MCSs [1] are a formalism for interlinking knowledge
based systems; in [8], inconsistency explanations (IEs) for an MCS were defined. This
benchmark computes the IEs, which correspond 1-1 to answer sets of an encoding rich in
cycles through external atoms (which evaluate local knowledge base semantics). We use
random instances of different topologies created with an available benchmark generator.

For most instances, we observed that the number of candidates for smaller models
of the FLP reduct equals the one of unfounded set candidates. This is intuitive as each
unfounded set corresponds to a smaller model; the optimization techniques do not
prune the search space in this case. However, as we stop the enumeration as soon as
a smaller model resp. an unfounded set is found, depending on the specific program
and solver heuristics, the explicit and the UFS check may consider different numbers of
interpretations. This explains why the UFS check is sometimes slightly slower than the
explicit check. However, it always has a smaller delay between different UFS candidates,
which sometimes makes it faster even if it visits more candidates.

The effects of external behavior learning [6] and of unfounded set learning is clearly
evident in the MCS benchmarks: the UFS check profits more from EBL than the explicit
check, further adding to its advantage. By activating UFL (not possible in the explicit
check) we gain another significant speedup.

Intuitively, consistent and inconsistent MCSs are dual, as for each candidate the
explicit resp. UFS check fails, i.e., stops early, vs. for some (or many) candidates the
check succeeds (stops late). However, the mixed results do not permit us to draw solid
conclusions on the computational relationship of the evaluation methods.

Note that MCS topologies are bound to certain system sizes, and the difficulty of the
instances varies among topologies; thus larger instances may have shorter runtimes.

Abstract Argumentation. In this benchmark we compute ideal set extensions for
randomized instances of abstract argumentation frameworks [4] of different sizes.

Table 1c shows average runtimes, each accumulated over 10 benchmark instances.
In these instances, few unfounded sets exist, hence both the explicit and the UFS check
often enumerate all candidates before they stop the search. As with MCS, the numbers of
reduct model candidates and UFS candidates is in most cases equal, but the UFS check
again enumerates its candidates faster; this explains the observed speedup.

Different from MCS, external learning prunes the search space only very little for
these benchmarks, which can be explained by the structure of the encoding. Also UFL
does not help much here, as few unfounded sets exist.

UNSAT. We also experimented with an encoding of the propositional UNSAT problem
based on aggregates (not shown in figures), which was used in [11] to show the hardness
result for the UFS decision problem. Here the optimizations discussed in Section 4 prune

Table 1: Benchmark Results (— indicates timeout (300s) of resp. instances)
(a) Inconsistent MCSs

#c
on

te
xt

s compute all answer sets finding first answer set
explicit check UFS check explicit check UFS check

plain +EBL plain +EBL +UFL plain +EBL plain +EBL +UFL

3 9.08 6.11 6.29 2.77 0.85 4.01 2.53 3.41 1.31 0.57
4 89.71 36.28 80.81 12.63 5.27 53.59 16.99 49.56 6.09 1.07
5 270.10 234.98 268.90 174.23 18.87 208.62 93.29 224.01 32.85 3.90
6 236.02 203.13 235.55 179.24 65.49 201.84 200.06 201.24 166.04 28.34
7 276.94 241.27 267.82 231.08 208.47 241.09 78.72 240.72 66.56 16.41
8 286.61 153.41 282.96 116.89 69.69 201.10 108.29 210.61 103.11 30.98
9 — 208.92 — 191.46 175.26 240.75 112.08 229.14 76.56 44.73
10 — — — 289.87 289.95 — 125.18 — 75.24 27.05

(b) Consistent MCSs

#c
on

te
xt

s (no answer sets)
explicit check UFS check

plain +EBL plain +EBL +UFL

3 8.61 4.68 7.31 2.44 0.50
4 86.55 48.53 80.31 25.98 1.89
5 188.05 142.61 188.10 94.45 4.62
6 209.34 155.81 207.14 152.32 14.39
7 263.98 227.99 264.00 218.94 49.42
8 293.64 209.41 286.38 189.86 124.23
9 — 281.98 — 260.01 190.56
10 — 274.76 — 247.67 219.83

(c) Argumentation (plain)

#a
rg

s all answer sets first answer set

Explicit UFS Explicit UFS

5 1.47 1.13 0.70 0.62
6 4.57 2.90 1.52 1.27
7 19.99 10.50 3.64 2.77
8 80.63 39.01 9.46 6.94
9 142.95 80.66 30.12 20.97
10 240.46 122.81 107.14 63.50

(d) Set Partitioning

n 3 4 5 6 7 8 9 10 11 12 13 · · · 20

al
la

ns
w

er
s explicit 0.2 1.2 10.9 94.3 — — — — — — — — —

+EBL 0.1 0.5 4.3 34.8 266.1 — — — — — — — —
UFS 0.1 0.1 0.2 0.3 0.8 1.8 4.5 11.9 32.4 92.1 273.9 — —
+EBL 0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.4 0.6 0.8 1.2 · · · 11.1

fir
st

an
sw

er explicit 0.1 0.2 0.7 4.3 26.1 163.1 — — — — — — —
+EBL 0.1 0.2 0.8 4.9 31.1 192.0 — — — — — — —

UFS 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 · · · 0.5
+EBL 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 · · · 0.3

the search space (as in the set partitioning benchmark), which makes the UFS check
enumerate fewer candidates, involving also fewer external atom calls.

6 Discussion and Conclusion

Related to our work is [15], which reduces stable model checking for disjunctive logic
programs to unsatisfiability testing of CNFs, which like answer set checking from FLP-
reducts is co-NP-complete [12]. The difference between ordinary disjunctive programs
and FLP programs with external atoms is that co-NP-hardness holds already for Horn
programs with nonmonotonic external atoms that are decidable in polynomial time. For
computationally harder external atoms, the complexity increases relative to an oracle
for the external function (see [12]). The approach of [15] is extended to conflict-driven
learning and unfounded set checking in [3]. Here, two CLASP [13] instances generate and
check answer set candidates. As model checking may become computationally harder in
our setting, the results there do not carry over immediately.

We presented a new algorithm for deciding whether a model A of a HEX-program Π
is a subset-minimal model of its FLP-reduct fΠA, adopting the notion of unfounded set
in [11]. We realized unfounded set (UFS) checking by an encoding as a SAT instance,
which produces candidate unfounded sets. Subsequently a (rather simple) postcheck
decides whether there is indeed an unfounded set. Experiments have shown that this
check is much more efficient than the explicit minimality check. We showed how to
learn from identified unfounded sets, by deriving nogoods which guide future search in
model generation and help avoiding to rediscover unfounded sets.

Our ongoing work includes interleaving UFS checks with the model generation
process, i.e., on incomplete interpretations. If it is clear that a partial interpretation can
never become an answer set, one can backtrack earlier; this may pay off for certain
classes of instances. Furthermore, we investigate sufficient conditions to simplify the
UFS check, aim at syntactic properties that are easy to check. Of particular interest are
relevant program classes for which the UFS check can be skipped; this holds e.g. for
programs without cyclic information flow through external atoms.

Another issue for future work is to study heuristics for guiding the search for an
unfounded set. Currently, our implementation applies the same strategies as for the model
generation task. Our experimental comparison with the explicit FLP check in terms of
candidate sets considered, however, suggests that there might be room for improvement
by employing specific choices. Developing appropriate such heuristics, and validating
their effectiveness on candidate set enumeration remains to be explored.

References
1. Brewka, G., Eiter, T.: Equilibria in Heterogeneous Nonmonotonic Multi-Context Systems. In:

AAAI’07. pp. 385–390. AAAI Press (2007)
2. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Commun.

ACM 54(12), 92–103 (2011)
3. Drescher, C., Gebser, M., Grote, T., Kaufmann, B., König, A., Ostrowski, M., Schaub, T.:

Conflict-driven disjunctive answer set solving. In: KR’08. pp. 422–432. AAAI Press (2008)
4. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic

reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–357 (1995)
5. Eiter, T., Fink, M., Ianni, G., Krennwallner, T., Schüller, P.: Pushing efficient evaluation of

HEX programs by modular decomposition. In: LPNMR’11. pp. 93–106 (2011)
6. Eiter, T., Fink, M., Krennwallner, T., Redl, C.: Conflict-driven ASP solving with external

sources. Theor. Pract. Log. Prog. (2012), to appear
7. Eiter, T., Fink, M., Krennwallner, T., Redl, C., Schüller, P.: Improving HEX-Program Evalua-

tion based on Unfounded Sets. Tech. Rep. INFSYS RR-1843-12-08. TU Wien (2012)
8. Eiter, T., Fink, M., Schüller, P., Weinzierl, A.: Finding explanations of inconsistency in

Multi-Context Systems. In: KR’10. pp. 329–339. AAAI Press (2010)
9. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A Uniform Integration of Higher-Order

Reasoning and External Evaluations in Answer-Set Programming. In: IJCAI’05. pp. 90–96.
Professional Book Center (2005)

10. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Effective Integration of Declarative Rules
with External Evaluations for Semantic-Web Reasoning. In: ESWC’06. pp. 273–287. (2006)

11. Faber, W.: Unfounded sets for disjunctive logic programs with arbitrary aggregates. In:
LPNMR’05. pp. 40–52. Springer (2005)

12. Faber, W., Leone, N., Pfeifer, G.: Semantics and complexity of recursive aggregates in answer
set programming. Artif. Intell. 175(1), 278–298 (2011)

13. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From theory to
practice. Artif. Intell. 187–188, 52–89 (2012)

14. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.
New Generat. Comput. 9(3–4), 365–386 (1991)

15. Koch, C., Leone, N., Pfeifer, G.: Enhancing disjunctive logic programming systems by SAT
checkers. Artif. Intell. 151(1–2), 177–212 (2003)

16. Leone, N., Rullo, P., Scarcello, F.: Disjunctive Stable Models: Unfounded Sets, Fixpoint
Semantics and Computation. Inform. Comput. 135(2), 69–112 (1997)

