
Inconsistency Management for Traffic Regulations:
Formalization and Complexity Results?

Harald Beck, Thomas Eiter, and Thomas Krennwallner

Institute of Information Systems, Vienna University of Technology
Favoritenstrasse 9–11, A-1040 Vienna, Austria

{hbeck,eiter,tkren}@kr.tuwien.ac.at

Abstract. Smart Cities is a vision driven by the availability of governmental data
that fosters many challenging applications. One of them is the management of
inconsistent traffic regulations, i.e., the handling of inconsistent traffic signs and
measures in urban areas such as wrong sign posting, or errors in data acquisition
in traffic sign administration software. We investigate such inconsistent traffic
scenarios and formally model traffic regulations using a logic-based approach for
traffic signs and measures, and logical theories describe emerging conflicts on a
graph-based street model. Founded on this model, we consider major reasoning
tasks including consistency testing, diagnosis, and repair, and we analyze their
computational complexity for different logical representation formalisms. Our
results provide a basis for an ongoing implementation of the approach.

1 Introduction

The advent of the World Wide Web and distributed systems brought numerous new
methods for intelligent management of data and knowledge. With initiatives such as
Open Government Data (http://opengovernmentdata.org/) the idea of Smart Cities has
been gaining interest in research communities, with many innovative applications in
ecological and city planning areas. Local governments manage their posted traffic
signs and measures using software tools, i.e., authorities enact rules how traffic on
urban streets and places should be regulated, and employees increasingly maintain this
information with the help of specialized software. An important task is the management
of inconsistent traffic regulations.

Example 1. Consider the T-junction in the top of Fig. 1a. It has three arms, each rep-
resented by two parallel lanes: u3 to u1 and v1 to v3, w2 to w1 and x1 to x2, and y1
to y3 and z3 to z1. We can turn from one arm to each other and may reverse between
nodes connected by edges with two arrows. The traffic signs at v2, y1, and y2 symbolize
a correct sign posting for a speed limit measure of 30 km/h, indicated by the dashed
blue path from v2 to y2. The effect expressed by both the measure and the signs is that
along the edges (v2, v3), (v3, y1), (y1, y2), the maximum speed allowed for any road
user is 30 km/h. The recurrent start sign at y1 is necessary, as road users coming from x2,

? Supported by PRISMA solutions EDV-Dienstleistungen GmbH, and the Austrian Science Fund
(FWF) projects P20841 and P24090.

v1 v2 v3

w2

w1 x1

x2

y1 y2 y3

u1 u2 u3 z1 z2 z3

30 30 30

v1 v2 v3

w2

w1 x1

x2

y1 y2 y3

u1 u2 u3 z1 z2 z3

30 30

(a) Top: correct sign posting for a speed limit
measure (dashed blue path). Bottom: Inconsis-
tency: no recurrence of start sign at y1

a1

a2

a3 a4

a5

a6

a7a8

b1

b2

b3 b4

b5

b6

b7b8

c1

c2

c3 c4

c5

c6

c7c8

d1

d2

d3 d4

d5

d6

d7d8

(b) Loop caused by mandatory left turns

Fig. 1: Traffic Regulation Scenarios

turning into the lane starting at y1, would otherwise be unaware of the speed limit. This
situation is shown in the bottom of Fig. 1a. The effect of the start sign at v2 can only
be propagated to the arm starting at y1, since y1 is also reachable from the arm ending
in x2. We get an inconsistent traffic regulation due to two conflicts: the speed limit effect
ends at y1 without an end sign, and the effect discontinuing at y2 does not properly start.

Such inconsistencies create problems in daily traffic. Officials are confronted with
legal issues (e.g., challenging of speeding tickets) when two dissenting speed limits are
announced. Even more delicate is the aspect of legal responsibility in case of accidents
caused by wrong sign posting. Different from that, errors in the data acquisition in traffic
sign software may lead to wrong assumptions on the state of traffic regulations. Tools
that detect, prohibit, and correct such errors are in need to help public administration
with their traffic management tasks.

In order to gain new insights from available sign posting data, formal methods from
knowledge representation and reasoning proved to be a key to attack issues that arise
when data is inconsistent [16, 12, 10]. Many issues arise in the context of traffic regula-
tions. Traffic measures, i.e., intended constraints given as regulations on the traffic, may
oppose the state of traffic sign posting, which can be seen as real-world constraints that
announce what is allowed on the street. One natural question is how to find inconsisten-
cies when combining traffic measures and street signs. Such questions become even more
complex in dynamic environments, i.e., when so-called active traffic management comes
into play. For instance, variable-message signs on motorways manage the traffic flow by
varying speed limits based on events like traffic congestions, or weather conditions like

fog or black ice. Contradicting speed limits may be posted by operators of such message
signs, leading to aforementioned legal issues.

Finding such errors is not trivial in real life situations and many subtle inconsistencies
may occur. When an inconsistency is found, one usually wants to diagnose and repair it.
To the best of our knowledge, there is no automated support for inconsistency finding in
complex traffic regulations. Already the seemingly simple scenario in Example 1 shows
the need for (semi-)automatic tool support in traffic regulation maintenance software.
Different from the issues above is the problem of modeling transportation and traffic in a
formal representation. Legal texts are ambiguous and often implicitly understood, and
no single characterization has yet shown to be advantageous over others.

This motivates this work, which makes the following contributions:
• We analyze the problem domain and identify main concepts and notions such as

traffic signs, measures, effects, and inconsistencies in traffic regulation orders.
• Building upon well-known literature in abductive reasoning and model-based diag-

nosis [16, 12, 10], we develop a formal model using predicate logic for traffic signs and
measures, and introduce the formal notion of a traffic regulation problem.
• For traffic regulation problems, we consider major reasoning tasks, viz. inconsistency

detection, diagnosis, correspondence between measures and signs, and repair.
• We then study and characterize the computational complexity of these reasoning

tasks, for different representation formalisms. In particular, we consider first-order
(FO) logic under domain closure (as the domain of discourse is fixed), and answer set
programming (ASP). The latter is convenient for developing executable specifications,
and provides attractive features that can be used for default rules and exception handling.

This work is embedded in an industrial context, dealing with specialized software,
which is used by local government departments and allows for the visualization and
administration of traffic regulations. The results of this research may assist to find
inconsistencies and should give a clear advantage over simple traffic sign acquisition and
storage tools. A prototype implementation using answer set programming is in progress.

2 Domain Analysis

In this section we briefly analyze the domain of traffic regulations, measures and signs.
A traffic regulation is a legal document describing how road users can use the street

and how these usages can be restricted by means of traffic signs. The legal act to introduce
new traffic signs, or to remove existing ones, is a traffic regulation order, which comes
in form of a document describing (in natural language) a traffic measure that has to be
taken to reach a desired effect, i.e., a restriction of road usage. This measure has to be
announced by traffic signs and becomes legally effective as soon as the corresponding
signs are posted on the street. We view road markings as special cases of traffic signs.

The restrictions described by measures and signs include speed limits, driving
bans, parking or halting bans, prohibited or mandatory driving directions, informa-
tion about zones like residential areas and pedestrian zones, motorways, and so on.
We base our work on the Austrian traffic regulation and its potential measures and
signs, which can be found at http://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=
Bundesnormen&Gesetzesnummer=10011336. However, we focus on general aspects
that are not bound to regional differences.

Inconsistencies. In general, a set of traffic regulation orders, resp. the resulting measures
and signs, can lead to conflicts with respect to the traffic regulation. The aim of our work
is to detect such inconsistencies, to diagnose and to repair them.

For instance, in Austria it is not allowed that a motorway overlaps with a residential
area. In view of traffic signs this means that, when driving on a motorway, the end sign
must precede the start sign of the residential area. In addition to such illustrative cases,
complications arise quickly when many different kinds of restrictions are expressed.

What we understand by a conflict does not necessarily stem from the traffic regulation,
but can also come from supplementary documents of expert knowledge such as traffic
planning experience. It is thus our aim to provide a system that can detect different sorts
of conflicts in a modular and easily extendable way. Whenever a conflict is detected,
we want to provide the user with diagnostic information, explaining which measures
or signs caused it. Finally, we want to offer a repair mechanism that suggests by which
modifications compliance with the specification can be established.

Data Model and Approach. To achieve these goals, we first need a street model based
on which we can express measures and signs, and the restrictions expressed by them.
We will view streets as directed graphs, where edges represent the potential direction of
traffic. Each edge will get a unique label to discern whether it represents a part of a lane,
a turn over a junction or a U-turn. Any digital street map from which this view can be
generated can be used as potential database.

By an effect of both measures and signs we understand the implicit restrictions
they express. To reflect measures and signs (from a database or user input) in the street
graph, we will use predefined labels on the edges (for measures) and nodes (for signs).
Similarly, we will represent arising inconsistencies by associating nodes with specific
conflict labels. Both the mapping from measures and signs to effects and from effects to
conflicts will be established in a modular way by means of logic formulas. The conflict
labeling can be used to visualize inconsistencies on a street map, followed by user
interaction in connection with diagnosis and repair.

Challenges. Many conflicts will not be strictly illegal as defined by the traffic regulatory
orders or additional legal documents, but arise from expert knowledge or common sense.
Consequently, both the inclusion and the kind of definition of many conflicts will be a
matter of preference, and shall in principle be configurable by domain experts.

To show the need for advanced reasoning support, consider the traffic regulation
problem in Fig. 1b, where a loop is induced by four mandatory left turns. We consider
loops as special dead ends which we want to detect whenever a node v has a way in,
but no way out. We say a node v has a way in, if it is predefined as in-node, or if it
is reachable from an in-node. Similarly, a node v has a way out, if it is a predefined
out-node, or an out-node is reachable from v.

A node w is reachable from v, if (i) (v, w) is an edge, where neither the node v is
prohibited for traffic (e.g., through a no-entry sign), nor the edge itself (e.g., through
a mandatory turn in a different direction), or (ii) if a node x is reachable from v, from
which w is reachable.

Example 2. The mandatory left turns in Fig. 1b induce a loop along the nodes L =
{a6, a3, b8, b5, c2, c7, d4, d1}. Respective in-nodes and out-nodes are not depicted and

assumed to be reachable from the nodes with dotted lines. For instance, from a1, an
out-node is reachable, and a2 is reachable from an in-node. Each mandatory left turn
prohibits the right turn, U-turn, and edge straight ahead over the junction. E.g., the
mandatory left turn at a6 prohibits moves along the edges (a6, a7), (a6, a5) and (a6, a1).

We try to keep the street model as simple as possible. Reversing along lanes is not a
typical road usage. Therefore, we do not model any intermediate nodes along streets
(and thus no U-turns within lanes), unless we need to represent a sign, or the start or end
of a measure. In reality, we could in principle escape the loop in Example 2 by reversing
somewhere along a lane. Since this is not supposed to be necessary, we still want an
evaluation to report that there are problems, by noting conflicts on the nodes v ∈ L.

Intuitively, the unique minimal explanation (i.e., a diagnosis) for each of these
problematic nodes—which can be seen as one conflict across many nodes—consists of
all four mandatory left turns. Note that additional signs that do not restrict the reachability,
like speed limits, would not change this diagnosis.

To repair the scenario, i.e., make modifications such that the result is free of conflicts,
we may delete one of the mandatory left turns on nodes a6, b8, or c2. However, other
possibilities exist (see Section 6).

3 Formal Model

In this section we formalize our data model and formulate a traffic regulation problem
based on it. Throughout, we assume that a version of predicate logic L with negation is
fixed, in which the desired specification can be expressed (e.g., FO logic or ASP).

Definition 1 (Street graph). A (street) graph is a connected, labeled, directed graphG =
(V,E, `) of nodes V , edges E ⊆ V × V , and a labeling function ` that assigns each
edge (v, w) ∈ E a unique label `(v, w) ∈ {left , straight , right , lane, uturn}.
We identify G with the set of atoms e(t, v, w), where t is the label of the edge (v, w).
Several assumptions about the structure of these graphs are made. For instance, we intend
to model junctions by means of edges with labels left , right and straight . For each such
edge (v, w), all incoming edges (x, v) ∈ E to node v are labeled uturn or lane .

Example 3 (cont’d). Fig. 1a suggests how the edge labels ought to be used. For instance,
the edge (v3, y1) models the direction straight ahead over a junction and thus gets
the label straight . All other edges (vi, vi+1) and (yi, yi+1) are labeled with lane. The
incoming street from below has a turn to the right starting at x2 and ending at y1, which
will be modeled by an atom e(right , x2, y1). Similarly, we use e(left , x2, u3) for the left
turn at x2. The edges with arrows on both ends depict U-turns in both directions.

In the formulation of measures in traffic regulation orders concepts like street names,
addresses and cardinal points are used to describe the intended topological dimensions.
We assume that for the description at hand, a preprocessing (or specification) maps this
scope to edges. We thus reduce measure descriptions to sets of such “atomic measures.”

To describe measures, signs, their effects, as well as conflicts, we build upon disjoint
sets of ground terms M, S, F and C called the measure types, sign types, effect types and
conflict types, respectively. For instance, M may contain a set of terms spl(k) for each
speed limit value k that is needed, e.g., spl(5), spl(10), . . . , spl(130) in Austria.

Definition 2 (Measures, Signs, Effects, Conflicts). Given a street graph G, we define
the following sets of atoms:

– Measures MG = {m(t, v, w) | t ∈ M, (v, w) ∈ E};
– Signs SG = {s(t, v) | t ∈ S, v ∈ V };
– Input IG =MG ∪ SG;
– Effects FG = {f(t, v, w) | t ∈ F, (v, w) ∈ E}; and
– Conflicts CG = {c(t, v) | t ∈ C, v ∈ V }.

For instance, to represent the prohibited case that a motorway overlaps with a resi-
dential area at a node v we might use c(overlap(motorway, residential–area), v).
Similarly, the fact that one is caught in a dead end or loop at u can be represented
as c(no-way-out, u).

Definition 3 (Scenario). Let G be a street graph, M ⊆MG be a set of measures on G,
and S ⊆ SG be a set of signs on G. Then, Sc = (G,M,S) is called a scenario.

Example 4 (cont’d). In Fig. 1a, the dashed blue path from v2 to y2 symbolizes a 30 km/h
speed limit measure. We formalize this as a set of atomic measures {m(spl(30), v2, v3),
m(spl(30), v3, y1), m(spl(30), y1, y2)}. The depicted traffic signs are defined at nodes
as the set {s(start(spl(30)), v1), s(start(spl(30)), y1), s(end(spl(30)), y2)}.

Effects and Conflicts. The meaning of both measures and signs is captured by a
mapping of the according languages to a common target language of effects. To assist
modular composition, we define XY = X ∪ {¬x | x ∈ Y \X} as the closed world
operator applied to a set of ground atoms X relative to a base set Y ⊇ X . We always
use the according base set of Definition 2, and thus omit the subscript, e.g., M for a set
measures M on G abbreviates MMG

. The base set assumed for the completion G of any
graph G is the set of all atoms e(t, v, w). We introduce another operator Cn that maps
between atoms. Let X and Y be sets of atoms (on G) and let T be a set of formulas in L.

Definition 4 (CnG(T,X, Y)). The Y -consequences of T and X (on G) is the set of
atoms CnG(T,X, Y) = {y ∈ Y | T ∪G ∪X |= y}.

Here, |= is the (logical) consequence relation in the underlying logic L. The closed
world operator makes sure that atoms that are not entailed are set to false, and thus
ensures that valuations of atoms in Y are unique. This restriction will enable modular
composition by means of a two-stage approach, which we will describe next.

Definition 5 (Effect mapping). An effect mapping is a set P of formulas in L that
associates with each input I ⊆ IG on a street graph G the set FPG (I) = CnG(P, I, FG)
of atoms, called effects of I (on G).

We implicitly assume that effect mappings use the ranges of terms appropriately.

Example 5. The first-order sentence
∀k, x, y (m(spl(k), x, y) ⊃ f(max -speed(k), x, y))

of an effect mapping P captures the meaning of speed limit (spl) measures. We infor-
mally describe when this effect label is obtained by signs: first, an edge (x, y) is labeled
with max -speed(k), if an start sign s(start(spl(k), x)) is placed at x. From there, the

effect is propagated in the direction of traffic, i.e., along the edges with label lane , until
an end sign or a junction is reached. For the latter case, let e(lane, u′, u) be the last edge
before the junction and e(straight , u, v) be the next edge in the direction ahead. The
effect continues after the crossroads on the (unique) edge e(lane, v, w) only if another
start sign is posted on v, or no edge (x, v) with label left or right permitted for traffic
exists (and neither an end sign nor the start sign for a different speed limit is at v).

The effect mapping uses measures and signs on a graph to derive effects. Likewise,
these effect atoms will then be used to infer conflicts by means of a specification.

Definition 6 (Conflict specification). A conflict specification over an effect mapping P
is a set Sp of formulas in L that associates with each input I ⊆ IG on a street graph G
the set CP,SpG (I) = CnG(Sp,FPG (I), CG) of atoms, called conflicts of I (on G).

Thus, the setup to compute conflicts based on effects given a conflict specification, is
the same as computing effects from measures and signs, given an effect mapping. The
first stage builds a context-dependent model of the input, the second stage establishes
the basis for reasoning tasks. There is no explicit support for query answering on top
of conflicts; however, queries on aspects of interest may be encoded in the conflict
specification, using designated conflicts and formulas defining them (e.g. rules) in Sp.
This way, given an input I on a graph G, querying for a certain conflict type (or aspect
of interest) t ∈ C amounts to computing the set {c(t, v) ∈ CP,SpG (I) | v ∈ V }.
Example 6 (cont’d). Fig. 1a (bottom) depicts the situation in which the intended speed
limit is not sufficiently announced. Road users coming from node x2, turning right
into the lane starting at y1 are not informed about the speed limit. Hence, according
to the sign posting, the max -speed(30) effect cannot be associated with edge (y1, y2).
Since we have a max -speed(30) effect until node y1 but no end sign mapped to it,
we have a conflict which we may represent as c(no-end(max -speed(30)), y1). The
end sign posted at y2 leads to a second conflict, since there is no “open” effect any-
more: c(cant-end(max -speed(30)), y2). Using answer set programming, with upper-
case letters denoting variables as usual, the latter conflict can be defined by the rule
c(cant-end(F), V2)← in-dir(V1, V2), s(end(T), V2),m2f (T, F),not f(F, V1, V2) ;

where in-dir represents an edge of type straight or lane , the atom s(end(T), V2) stands
for a traffic sign posted at node V2, ending a measure of type T , and m2f encodes domain
knowledge that T is associated with effect type F .

Note that ASP solvers like DLV support query functionalities in the aforemen-
tioned sense. In the previous example, we might ask c(cant-end(F), V)? and get the
terms max -speed(30), y2 as result, matching c(cant-end(max -speed(30)), y2).

Definition 7 (Traffic Regulation Problem). Let Sp be a conflict specification over an
effect mapping P , and let Sc be a scenario. Then, the pair Π = (Sp, P) is called a
traffic regulation and the pair (Π,Sc) a traffic regulation problem.

4 Reasoning Tasks

We now use the preceding definitions to specify some practically relevant use cases in
form of reasoning tasks. In the sequel, we let T = (Π,Sc) be a traffic regulation problem
with a traffic regulation Π = (Sp, P) and a scenario Sc = (G,M,S), and I =M ∪ S.

Definition 8 (Inconsistency). The conflicts of T are given by C(T) = CP,SpG (I).
If C(T) 6= ∅, we call T inconsistent.

Additionally, we call every set of measures or signs X ⊆ IG on graph G inconsis-
tent, if CP,SpG (X) is non-empty. Given an inconsistent T , we are interested which part of
the input, i.e., which hypotheses, explain the conflict observations.

Definition 9 (Diagnosis). For inconsistent T , a diagnosis of a set of conflicts C ⊆C(T)
is a set J ⊆ I , such that C ⊆CP,SpG (J).

To see the relation of diagnosis with the usual notion of abductive diagnosis [15,
3], we recall the definition of the latter.1 An abductive diagnosis problem (ADP) is a
triple 〈T,H,O〉, where T is a set of formulas in L, called the theory, and H and O
are sets of literals, called the hypotheses and observations, respectively. A (complete)
abductive diagnosis for 〈T,H,O〉 is a setA ⊆ H , such that T ∪A 6|= ⊥ and T ∪A |= O.
We note that an input J ⊆ I is the abductive diagnosis for the ADP 〈P ∪G, I,FPG (J)〉.
Proposition 1. Let C ⊆ C(T) and J ⊆ I . The effects FPG (J) are an abductive di-
agnosis for the ADP 〈Sp ∪ G,FPG (I), C〉 iff J is a consistent diagnosis of C, i.e.,
Sp ∪G ∪ FPG (J) 6|= ⊥.

Since I is always a trivial (but non-informative) diagnosis for any set of conflicts, we
are interested in (subset-)minimal diagnoses. We omit a formal definition of Π serving
the forthcoming examples.

Example 7 (cont’d). The missing sign at y1 leads to two conflicts. The minimal diagnosis
for the missing sign {c(no-end(max -speed(30)), y1)} is {s(start(spl(30)), v2)}. Inde-
pendently, the other conflict {c(cant-end(max -speed(30)), y2)} is minimally explained
by {s(end(spl(30)), y2)}.

Usually, we desire that measures and signs in a scenario express the same effects.

Definition 10 (Correspondence). A set of measures M and a set of signs S correspond
with respect to P and G, if it holds that FPG (M) = FPG (S).

The next example shows the significance of correspondence besides consistency.

Example 8 (cont’d). Suppose a no-right turn sign on x2 is added to the traffic regulation
problem in Fig. 1a, bottom. This results in a consistent scenario, since in this case,
the node y1 can only be reached from v3 (reversing at z1 along the U-turn (z1, y1) is
disregarded). Hence, another start sign at y1 is not necessary and the effect propagation
of the start sign at v2 continues through y1. However, the prohibition of traffic along the
edge (x2, y1) as supported by the no-right turn sign is not supported by a corresponding
measure. This problem can only be seen by additionally testing for correspondence.

For each of the definitions in this section, we immediately obtain a reasoning task
which requires the computation of the respective concept.
Repair. Complementary to diagnoses explaining the cause for inconsistency, a natural
question is how to repair an inconsistent traffic regulation problem, i.e., by means of
which deletions and additions of measures and signs consistency can be established. In
the general case, we might delete and add both measures and signs.

1 Strictly speaking, we present a slightly modified version using the closed world operator.

Definition 11 (Repair). A repair of an (inconsistent) T is a pair (I−, I+) such that
I− ⊆ I , I+ ⊆ IG \ I , and CP,SpG (I ′) = ∅, where I ′ = (I\I−) ∪ I+.

A repair yields a traffic regulation problem T ′ replacing I with consistent I ′ in T .

Example 9 (cont’d). A repair for the inconsistent T with the traffic regulation scenario
as shown in Fig. 1a (bottom) is (∅, {s(start(spl(30), x4)}).

Usually, one requires correspondence after a repair, i.e., thatM ′ = I ′∩MG and S′ =
I ′ ∩ SG correspond with respect to P and G; we call such repairs strict. Furthermore,
the candidate space (I−, I+) might be restricted; in this way, further practically relevant
reasoning tasks can be formulated as special cases of repair. For instance, if we are
given a scenario with consistent M , but inconsistent S, we may adjust the signs by
restricting the repair to modify only signs. Or, related to data imports, we may want to
generate measures from scratch, given only signs, or vice versa a sign posting, given only
measures. Note that these additional reasoning tasks need no separate implementation.

5 Computational Complexity

In this section, we analyze the computational complexity of decision problems associated
to the reasoning tasks above. In particular, we consider for a given traffic regulation
problem T = (Π,Sc), with Π = (Sp, P) and Sc = (G,M,S)

– CONS: decide whether T is consistent, i.e., C(T) = CP,SpG (I) = ∅;
– UMINDIAG: decide, given a set C ⊆ C(T) of conflicts, whether C has a unique ⊆-

minimal diagnosis, i.e., a single minimal J ⊆ I such that C ⊆ CP,SpG (J);
– CORR: decide whether M and S correspond, i.e., FPG (M) = FPG (S);
– REPAIR: decide, given T is inconsistent, whether some admissible repair exists, i.e.,

some I+, I− ⊆ IG such that CP,SpG ((I \ I−) ∪ I+) = ∅ and a polynomial-time
admissibility predicate A(I+, I−) holds.
We consider these problems for different mapping formalisms L, viz. (1) FO pred-

icate logic under domain closure (FOL+DCA), i.e., an axiom ∀x.
∨n
i=1(x = ci),

where c1, . . . , cn is the (finite) set of constant symbols; and (2) (function-free) An-
swer Set Programs2 under cautious consequence, i.e., P |= α iff α is true in all answer
sets of P ; here, we consider various classes, including (a) stratified programs (ASP¬s),
(b) normal programs (i.e., arbitrary negation, ASP¬), and (c) disjunctive programs (with
head disjunction and arbitrary negation, ASP∨,¬).

We assume that the reader is familiar with the basic concepts of complexity theory (cf.
[14]),and recall that PO (resp. NPO) is (nondeterministic) polynomial time computability
with an oracle for complexity class O, and Σp

i , i ≥ 1, are classes of the polynomial
hierarchy where Σp

1 = NP and Σp
i+1 = NPΣ

p
i . Furthermore, PO‖ is the restriction of PO

that all oracle queries are independent of each other, i.e., they are evaluable in parallel.
The computational complexity of the atom entailment problem in these logics (IMPL),

i.e., deciding T |= α for a set of formulas (resp. program) T and an atom α, is shown in
the first column of Table 1. Besides the general case, also the one of bounded predicate

2 The use of function symbols as in the examples is convenient but not essential for this domain.

Logic L IMPL CONS CORR UMINDIAG REPAIR

FO+DCA co-NExp / PSpace PNExp
‖ / PSpace NPNExp / PSpace

ASP¬s Exp / PNP Exp / PNP Exp / in P
Σ

p
2

‖ , Πp
2 -hard Exp / Σp

2

ASP¬ co-NExp / Πp
2 PNExp

‖ / PΣ
p
2

‖ PNExp
‖ / in P

Σ
p
3

‖ , Πp
3 -hard NPNExp /Σp

3

ASP∨,¬ co-NExpNP / Πp
3 PNExpNP

‖ / PΣ
p
3

‖ PNExpNP

‖ / in P
Σ

p
4

‖ , Πp
4 -hard NPNExpNP / Σp

4

Table 1: Complexity of reasoning tasks (general case / bounded predicate arities); unless
stated otherwise, entries are completeness results

arities (BPA) is printed, i.e., when the arities of predicates is bounded by some constant.
Briefly, as for FOL+DCA, a countermodel of T |= α (of exponential size) can be guessed
and verified in polynomial space (in the size of T and α); hardness follows, e.g., from
the complexity of satisfiability of the Bernays-Schönfinkel fragment of FOL. Under
BPA, the model guess has polynomial size, and thus the whole countermodel check is
feasible in polynomial space; PSpace-hardness is inherited from evaluation of a given
FOL formula over a finite structure. For the ASPX languages, see [4, 5].

Theorem 1. For CONS, UMINDIAG, CORR, and REPAIR the results in Table 1 hold.

In the rest of this section, we explain the results and outline how they can be derived.
We make use of the following known fact; let PO‖[k] be the restriction of PO such that the
oracle calls amount to k rounds of parallel (independent) oracle calls.

Lemma 1. For O = NExp,NExpNP, Σp
i , i ≥ 1, and constant k, PO‖[k] = PO‖[1] = PO‖ .

CONS. To decide problem CONS, we must test whether some of the (polynomially
many) conflict facts c(t, v) is derivable from the conflict specification Sp over the
effect mapping P . To this end, we can determine for each of the (polynomially many)
effect facts f(t, v, w) ∈ FG whether f(t, v, w) ∈ FPG (I) = CnG(P, I, FG) with an
oracle for IMPL, and then decide whether c(t, v) ∈ CP,SpG (I) = CnG(Sp,FPG (I), CG)
with an oracle for IMPL. This is a polynomial time computation with two rounds of
parallel evaluation of oracle queries with complexity O; this puts the problem in the
respective complexity class PO‖[2]. For O = Exp,PSpace, this class coincides with O
and for O = PNP with PNP (as oracles can be simulated, in case of an PNP oracle with
an O oracle); for the other classes, by the lemma it coincides with PO‖ .

The PO‖ -hardness results for CONS are derived by a reduction from the following PO‖ -
complete problem EVEN: given instances I0, . . . , I2n+1, n ≥ 0, of a (fixed) O-complete
problem, decide whether the number of yes-instances among them is even. Here, without
loss of generality, we can assume that all yes-instances precede all no-instances. To
encode this problem, we use problem IMPL and restrict (wolog) to instances Ij : T (j) |=
αj in a way such that their answers amount to P |= φj for effect mapping P and
effect φj . We then design the conflict specification Sp to derive a conflict fact χ if and
only if the maximum index of a yes-instance is even. To this end, we can use in the
ASP cases rules χ← φ2j ,notφ2j+1, where 0 ≤ j ≤ n, and in the FOL case simply the
formula χ↔

∨n
j=0 φ2j ∧ ¬φ2j+1.

UMINDIAG. To test whether some set J ⊆ I is a diagnosis, we need to check C ⊆
CP,SpG (I); similarly as deciding CONS, the latter problem can be shown to be in PC‖ .
For O = Exp,PSpace it is then clear that an algorithm can cycle through all J ⊆ I and
compute two minimal diagnoses in exponential time (resp. polynomial space), provided
two exist (one always exists). For other O, the following more involved method works.

Like for CONS, we first compute with a round of parallel O oracle calls the ef-
fects FPG (I). Then, in a next round, we ask oracles, for k = 0, . . . , |I|, whether for
all J ⊆ I of size |J | = k, it holds that C 6⊆ CP,SpG (J); for the considered O ⊇ NExp,
each oracle call is in O (exponentially many J’s can be considered without complexity
increase), while for the other classes it is in NPO. The smallest k for which the ora-
cle answers “no” is the size k∗ of a smallest (in terms of cardinality) diagnosis, and
thus of some minimal diagnosis. In a further round we then ask an oracle whether for
all J1, J2 ⊆ I such that |J1| = k∗ and J1 6⊆ J2 it holds that either C 6⊆ CP,SpG (J1)

or C 6⊆ CP,SpG (J2); the answer will be “yes” iff a unique minimal diagnosis exists.
Overall, the method uses three rounds of O (resp., NPO) oracle calls, which puts the
problem in the class PO‖[3] resp. PNPO

‖[3] ; this class, however, by the lemma coincides

with PO‖ resp. PNPO

‖ ; and for O = PNP, we have NPPNP

= NPNP, thus PNPPNP

‖ = P
Σp

2

‖ .
The hardness results forO ⊇ NExp are obtained by a reduction of the complement of

the EVEN problem (which is also PO‖ -hard) that is a variant of the reduction for the CONS
problem. The conflict rules are extended to χ← ψ2j ,notψ2j+1, in1, 0 ≤ j ≤ n, and a
further rule χ← in0 is added, where in0 and in1 are fresh input facts. Then, J = {in0}
is a minimal diagnosis, and it is the single one iff J = {in1} is not a diagnosis, which is
the case iff the EVEN instance is a no-instance. For the remaining cases of O, one can
show hardness for co-NPO by a reduction from evaluation of suitable QBFs; however,
hardness for NPO, let alone for PNPO

‖ is not apparent.
CORR. It is easy to see that CORR is solvable in polynomial time with parallel oracle
queries “f(t, w, v) ∈ FPG (I)?” for P = PS , PM , which have complexity O of problem
IMPL for the underlying logic; this shows membership in PO‖ . The hardness results
for O 6= PSpace,Exp are shown similarly as for problem CONS by a reduction from
the EVEN problem. We use effect mappings PM and PS , which consist of P from there
with additional rules (resp. implications for FOL+DCA) as follows: PM contains φ′j ←
φ0, . . . , φ2j−1 and PS contains φ′j ← φ0, . . . , φ2j , for 0 ≤ j ≤ n, where φ′j is a new
effect atom. Assuming that I2n+1 is a no-instance, the specifications will correspond,
i.e., FPM

G (I) = FPS

G (I), iff the number of yes-instances among I0, . . . , I2n+1 is even.
REPAIR. To solve REPAIR, we can guess some change I+, I− ⊆ IG and then check
whether A(I+, I−) holds and there are no conflicts for input I ′ = (I \ I−) ∪ I+.
For IMPL complexity O = Exp,PSpace, this stays within O, as one can cycle through
all I ′, and for the other complexity classes O, by the results for CONS, the problem is
in NPPO

‖ = NPO. The hardness results for these O can be obtained by reductions from a
reasoning problem for ASP¬ resp. ASP∨,¬ programs: given a set of facts F , a program P
and a fact α, does there exist some F ′ ⊆ F such that P ∪ F ′ |= α (where |= is cautious
consequence); this problem is, as shown with slight extensions of the respective proofs
for cautious consequence [4, 5], complete for NPO. Finally, the results for REPAIR
remain unchanged if only strict repairs are considered as CORR has lower complexity.

6 Discussion and Conclusion

Since comprehensible specifications play a major role in this problem domain, we de-
mand that the implementation should be declarative. An imperative way of programming
such rules will quickly lead to deeply nested conditionals with intransparent dependen-
cies. Further, we need a high degree of modularity to enable changes to specifications
independent of the implementation of reasoning tasks. Since the domain comprises many
patterns with exceptions and special cases, some sort of default reasoning would be
desirable; e.g., traffic is permitted in a certain direction, unless it is explicitly prohibited.

Answer Set Programming (ASP) [9] is a natural choice for writing such declarative,
executable specifications. Due to the availability of efficient solvers such as DLV [11]
and Potassco [8], the ASP paradigm gains increasing popularity [2]. Furthermore, thanks
to modularity properties of answer set semantics, it is easy to modularly compose
programs P and Sp from a traffic regulation Π = (P, Sp) into a single program P ∪Sp,
provided that P has a unique answer set (as given, e.g., with stratified programs), where
rules ¬x← not x forX are included (resp., if recursion through negation would emerge,
rules ¬x′ ← not x and x′ ← x, and x is replaced in Sp by x′).
Implementation. In cooperation with domain experts, we have written prototypical
ASP-programs to evaluate the consistency of scenarios, to diagnose conflicts and to
test correspondence using partial realizations of the traffic regulation. In addition, we
also dealt with repairs. We have used both the DLV system and Potassco to run these
programs on a number of different scenarios, and obtained satisfactory initial results.
Further development, regarding a representation of the traffic regulations and engineering
the program for scalable execution, is ongoing; the fact that ASP programs serve as
executable specification is very helpful for developing the representation.

The use of DLV and the flexible optimization constructs available in its language
by weak constraints, has in fact also led us to experiment with preferred notions of
diagnoses and repairs. The possibilities range from generic preferences, like favoring
deletions over additions, to the encoding of very specific domain knowledge.

Example 10. Deleting the mandatory left turn at d4 in Fig. 1b gives an alternative repair
possibility for Example 2. The options to continue to drive straight over the junctions
towards node d7, as well as turning right towards node d5, are not available due to the
no-entry signs. According to the depicted street model, there is a way out from node d4
via the U-turn to node d3, from which an out-node node is reachable via nodes c8 and c3.
Arguably, it is reasonable to still classify the situation as loop, since paths should not
use U-turns. A road user arriving at d4 for the first time would not know that she will
eventually come back to node d4 (by taking the supposed path).

Thus, one might have different categories of loop conflicts like “strong loop” and
“weak loop,” where the latter allows for escapes via U-turns. In this sense, Fig. 1b
represents a strong loop, and the repair where the sign at d4 is removed represents a weak
loop. The repair might be less preferred. If yet chosen, we might wish to warn road users
who eventually will have to take a U-turn, through a no-through-road sign. However, the
ideal position to do so is not obvious. Alternatively, we could add mandatory U-turn
signs before junctions one has to eventually return to. While this might often be the
desired solution, it is formally not optimal, since it is more restrictive than necessary.

Summary and Outlook. To date, tools for advanced inconsistency management of
traffic regulations are lacking. We presented a logic-based approach to this problem,
which is highly relevant in future dynamic regulation settings. We formalized the notion
of traffic regulation problem and defined major reasoning tasks on it, whose computa-
tional complexity we characterized for different logic languages. Complexity results
on abduction from logic programs [6] are not applicable, as the language setting and
problems studied there (in view of Prop. 1, consistent diagnosis existence with no effect
mapping) are different. Our results provide a basis for implementation and show that
some reasoning tasks may be hosted in the underlying logic language, while for others
one needs a more expressive one. Finally, we briefly addressed an ASP-based prototype.

The implementation is part of an ongoing industrial project on management of traffic
regulation data with PRISMA solutions GmbH.3 Currently, real world traffic regulation
data is administrated by software that shall be enhanced by the methods we described, and
the resulting application shall be used by several Austrian regions, starting with Lower
Austria and Vienna. On the theoretical side, an investigation of preference and properties
of traffic regulation problems, under possible restrictions of the constituents, remains
to be done. Also other logic formalisms, e.g., defeasible logic [1] (which like ASP¬s

allows for efficient reasoning [13]), or HEX-programs [7] may be considered.

References
1. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation results for defeasi-

ble logic. ACM Trans. Comput. Logic 2(2), 255–287 (2001)
2. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Commun.

ACM 54(12), 92–103 (2011)
3. Console, L., Torasso, P.: Automated diagnosis. Intelligenza Artificiale 3(1-2), 42–48 (2006)
4. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and Expressive Power of Logic

Programming. ACM Comput. Surv. 33(3), 374–425 (2001)
5. Eiter, T., Faber, W., Fink, M., Woltran, S.: Complexity Results for Answer Set Programming

with Bounded Predicate Arities. Ann. Math. Artif. Intell. 51(2-4), 123–165 (2007)
6. Eiter, T., Gottlob, G., Leone, N.: Abduction From Logic Programs: Semantics and Complexity.

Theoretical Computer Science 189(1-2), 129–177 (1997)
7. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-order

reasoning and external evaluations in answer set programming. In: IJCAI, pp. 90–96. (2005)
8. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.T.:

Potassco: The Potsdam answer set solving collection. AI Commun. 24(2), 107–124 (2011)
9. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.

Next Generat. Comput. 9(3–4), 365–386 (1991)
10. de Kleer, J., Kurien, J.: Fundamentals of model-based diagnosis. In: IFAC Symposium

SAFEPROCESS 2003. pp. 25–36. Elsevier (2003)
11. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV

System for Knowledge Representation and Reasoning. ACM TOCL 7(3), 499–562 (2006)
12. Lucas, P.: Symbolic diagnosis and its formalisation. Knowl. Eng. Rev. 12, 109–146 (1997)
13. Maher, M.J.: Propositional defeasible logic has linear complexity. Theory Pract. Log. Program.

1(6), 691–711 (2001)
14. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)
15. Poole, D.: Normality and faults in logic-based diagnosis. In: IJCAI. pp. 1304–1310 (1989)
16. Poole, D.: Representing diagnosis knowledge. Ann. Math. Artif. Intell. 11, 33–50 (1994)

3 http://www.prisma-solutions.at

