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Abstract. We marry continuous time Markov decision processes
(CTMDPs) with stochastic timed automata into a model with joint ex-
pressive power. This extension is very natural, as the two original mod-
els already share exponentially distributed sojourn times in locations. It
enriches CTMDPs with timing constraints, or symmetrically, stochastic
timed automata with one conscious player. Our model maintains the exis-
tence of optimal control known for CTMDPs. This also holds for a richer
model with two players, which extends continuous time Markov games.
But we have to sacrifice the existence of simple schedulers: polyhedral
regions are insufficient to obtain optimal control even in the single-player
case.

1 Introduction

Control problems have been widely investigated in the verification community as
a generalisation of the original model-checking problem. Rather than checking
whether a system satisfies a property, the goal is to control the system such
that it fulfils a desired property. In a framework where timing constraints are
essentials, the system can be modelled using timed automata [1], and timed
games have been introduced to solve the control problem [2].

Another popular model for systems with nondeterministic choices and real-
time aspects is the one of continuous time Markov decision processes (CTMDPs),
where the real-time aspects are governed by probability distributions, while the
nondeterministic choices are resolved by a scheduler. Time-bounded reachability
requires that a goal region should be reached within some time-bound, and the
objective is then to build a scheduler that maximises the probability of these ex-
ecutions. This problem has recently received a lot of attention for CTMDPs [5, 8,
15,18,16,13]. A more fundamental question than the quest for the construction
or approximation of optimal schedulers is the question of their existence.

In this paper, we introduce a variant of timed games where delays are ran-
domised rather than being nondeterministic. This model of timed automata
Markov decision processes (TAMDPs) extends the probabilistic semantics for
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timed automata from [3, 4] with nondeterminism. Our model also forms an ex-
tension of CTMDPs, roughly, by adding timing constraints to the firability of
transitions. We consider the time-bounded reachability problem and provide a
positive answer to the fundamental question of the existence of optimal sched-
ulers. This result immediately extends to a more general setting with two players,
where controlled and adversarial nondeterminism coexist.

The structure of the optimal schedulers is, however, involved. We show that
it does not suffice to consider regions or, more generally, to divide the space
defined by the relevant clock values into polyhedra, to obtain optimal control.

2 Preliminaries

2.1 Timed automata

We recall here basics on timed automata, from [1], that will be useful for this
paper. Timed automata are extension of finite automata with real-valued vari-
ables (called clocks) that all evolve at the same speed. Clocks can be tested and
reset to 0.

For a given finite set of clocks X, a valuation v : X — R>o maps every clock
to a non-negative real. A guard over X is a finite conjunction of constraints
x ~ ¢, with ~€ {<, <, =,>,>}, for a clock € X and an integer ¢ € N. Given a
guard g over X and a valuation v € R);O, we write v |= g whenever v satisfies the
constraints expressed by g, and define [g] = {v | v = g}. The set of all possible
guards over X is denoted G(X). For v € RE a valuation and ¢ € Rsq, v + ¢
denotes the valuation defined by v + t(x) = v(x) +t for every € X. Moreover,
if X’ C X is a subset of clocks and v a valuation, VX710 denotes the valuation
that agrees with v on X \ X’ and is equal to 0 for all clocks in X”.

Definition 1 (Timed automaton). A timed automaton is a tuple A =
(L, X, E) where

— L is a finite set of locations,
— X is a finite set of clocks, and
— ECLxG(X)x2X x L is a finite set of edges.

The semantics of a timed automaton A = (L, X, F) is given in terms of an
infinite-state transition system 7 = (L x R, —,R>( x E), where the relation

— is exactly composed of transitions (¢,v) Le, (¢,v") such that the edge e =
(¢,9, X', 0') € E satisfies v+t = g and v' = (v +1t);x/—0]- A run of A is a finite

sequence of transitions p = (¢g,v0) oo, (£1,v1) foer, <+ (bn,vy,). We denote

the last state (¢,,,vy,) of run p by last(p) and the value Z;:Ol t; is called the total
duration of p. We write Runs(.A) for the set of all runs of A.

In order to encompass CTMDPs in our TAMDP model defined in the next
subsection, we first extend timed automata with discrete probabilities. In prob-
abilistic timed automata, introduced in [14], edges do not result in the reset of
a fixed set of clocks and lead to a fixed location, but rather yield a distribution
§ € Dist(2X x L) over resets and locations.



Definition 2 (Probabilistic timed automaton). A probabilistic timed au-
tomaton is a tuple A = (L, X, E) where L and X are as for a timed automaton
and E C L x G(X) x Dist(2X x L) is a finite set of probabilistic edges.

We write (¢, v) Lep, (¢, ") if from state (¢, v+t) and assuming probabilistic edge
e is selected, the next state is (¢, v") with probability p. The rest of the definitions
is unchanged. In the sequel, we will consider symbolic paths, that is, special sets of
runs in probabilistic timed automata. Given a prefix run p € Runs(.A), a sequence
of edges eg, - - - , en, together with probabilisties pg, - - - , pn, and a time-bound T,
the finite symbolic path 7(p,ep,po- -, €n,Pn,T) is defined by:

n—1
7T(97€0>p0" : 7en7pn7T) = {P M) (£17’U1> M) (gnyvn) | th § T}
=0

2.2 MDP model for timed automata

A probabilistic semantics for timed automata [3, 4], also referred to as stochastic
timed automata, was introduced to address the problem of ‘unrealistic’ sets of
paths, where unrealistic is identified with paths that have a very low probability
(in particular 0-sets). Informally, the semantics of a stochastic timed automaton
consists of an infinite-state infinitely-branching Markov chain (whose underlying
graph is a timed transition system 7 ), where transitions between states are
governed by the following: first, a delay is sampled randomly among possible
delays, and second, an enabled transition is chosen randomly among enabled
ones.

For technical convenience—and following [6]—we require our (probabilistic)
timed automata to be reactive. A (probabilistic) timed automaton A = (L, X, E)
is called reactive if, for each state s = (¢, v) of A, there is an edge e € F such that

s 2% & for some state ' of A. In words, we require that every state is the source
of some edge, such that A never blocks. A (probabilistic) timed automaton can
easily be made reactive by adding a self loop for all clock valuations where no
guard of any transition leaving a state is satisfied.

A natural way of incorporating some control in stochastic timed automata
is to have nondeterministic, rather than randomised, decisions among enabled
actions. From a state s = (¢,v), first a delay ¢ is sampled in R>¢, and then the
controller chooses which probabilistic edge to fire from state (¢, v +t) among the
possible ones.

We thus define the model of timed automata Markov decision processes
(TAMDPs for short).

Definition 3 (Timed automaton MDP). A timed automaton Markov de-
cision process is a tuple M = (L, X, E, A), where A = (L, X, E) is a reactive
probabilistic timed automaton and A: L — Rx>q is a rate function.

The semantics of a TAMDP is an infinite-state infinitely branching Markov
decision process, whose states (resp. edges) are states (resp. edges) of the un-
derlying probabilistic timed automaton A. From a state s = (¢, v), the sojourn



time in location ¢ follows an exponential distribution with rate A(¢) and some
intermediary state (¢,v+t) is reached, where nondeterministically an edge e € E
enabled in (¢,v +t) fires. The formal semantics of TAMDPs will be detailed fur-
ther in the next subsection when defining probability measures associated with
(a restricted class of well-behaved) schedulers. Note that runs of M coincide
with runs of its underlying probabilistic timed automaton, thus we still write
Runs(M) for the runs of M. Also, in analogy to the common terminology of
CTMDPs, we sometimes refer to edges (especially when an edge is selected) as
actions.

2.3 Comparison with existing models

CTMDPs. Continuous-time Markov decision processes form a restricted class
of TAMDPs where the underlying probabilistic timed automaton has no clock
and is thus a finite automaton. For CTMDPs, it was proven in [16] that optimal
control exists for time-bounded reachability, and that optimal schedulers can be
taken from a restricted class of finitely representable schedulers.

Stochastic timed games. In stochastic timed games [7], locations are parti-
tioned into locations owned by three players, a reachability player (who has
a time-bounded reachability objective), a safety player (who has the opposite
time-bounded safety objective), and an environment player (who makes random
moves). In a location of the reachability or safety player, the respective player
decides both the sojourn time and the edge to fire, whereas in the environ-
ment’s locations, the delay as well as the edge are chosen randomly. For this
model, it was shown that, assuming there is a single player and the underlying
timed automaton has only one clock, the existence of a strategy for a reach-
ability goal almost-surely (resp. with positive probability) is PTIME-complete
(resp. NLOGSPACE-complete). Moreover, for two-player games, quantitative
questions are undecidable.

Stochastic real-time games. In stochastic real-time games [9], states of the arena
are partitionned into environment nodes —where the behaviour is similar to
CTMDPs— and control nodes —where one player chooses a distribution over
actions, which induces a probability distribution for the next state. For this
game model, objectives are given by deterministic timed automata (DTA), and
the goal for player 0 is to maximize the probability that a play satisfies the
objective. The main result concerns qualitative properties, and states that if
player 0 has an almost-sure winning strategy, then she has a simple one, that
can be described by a DTA.

Markovian timed automata. The model closest to ours is the one of Markovian
timed automata (MTA), that, similar to our TAMDPs, consist in an extension
of timed automata with exponentially distributed sojourn time. MTA were first
introduce as an intermediate model to model-check CTMCs or CTMDPs against



deterministic timed automata specifications [10, 11]. In the recent paper [12] ap-
proximations techniques are provided for the optimal time-(un)bounded reacha-
bility probabilities in MTA. In comparison, we focus on the existence of optimal
schedulers/strategies for the same problems.

2.4 Schedulers for TAMDPs

Intuitively, a scheduler is responsible for choosing which edge to fire among
enabled ones after a random delay has been sampled. To make its decision, the
scheduler has access to the all history of the play so far. Formally:

Definition 4 (Scheduler). Let M = (L,X,E, A) be a timed automaton

Markov decision process. A scheduler for M is a function o : Runs(M) xR>q —
to,e0,Po

Dist(E) such that for every e, with o(so ——— 81" Sn,tn,Pn)(€n) > 0, there

erists a state Sp+1 with sy, InsenPn, Sp+1-

Prior to defining a meaningful class of schedulers for TAMDPs, let us first
recall the notions of deterministic and memoryless schedulers. A scheduler o for
M is deterministic if it only makes pure decisions: for all p € Runs(M) and all
t € R>g, o(p,t) is a Dirac distribution (i.e., there exists an e € E such that
a(p,t)(e) = 1). A scheduler o is memoryless® if, for all p,p’ € Runs(M) with
equal total duration and such that last(p) = last(p’), o(p,t) = o(p’,t) whatever
the delay t € Rxg.

As pointed out in [17], not all schedulers are meaningful, even in the re-
stricted case of continuous-time Markov decision processes (CTMDPs). In par-
ticular, under some schedulers, the set of runs reaching a given location can be
non-measurable. We follow the approach from [16] and consider a class of sched-
ulers obtained as the completion of the class of cylindrical schedulers. We only
report what is necessary in our context, and refer to [16] for the details of this
construction.

Definition 5 (Cylindrical scheduler). A scheduler o for M and time-bound
T is cylindrical if there exists a finite partition T of [0,T)] into intervals Iy =

to,€0,P0
s

[0,To] and I;+1 = (T;, Ti11] such that, for every pair of runs p = (Lo, vo)

(br,v1) -+ (L, vp) and p' = (Lo, V) Lfocobo, (1,v1) -+ (bn,v)) and every pair of
delays (t,,t],) € R>q, as soon as, for all0 < j <n, t; and t; belong to the same
interval I;, then o(p,t,) = o(p',t),).

In plain English, a scheduler is cylindrical for a partition Z of [0, 7] if it takes

the same decision for runs and delays that are equivalent with respect to Z.
The set of cylindrical schedulers can then be extended to measurable sched-

ulers by defining a metric on cylindrical schedulers and then taking the limits of

3 Note that our notion of memoryless scheduler is looser than the usual one: the
scheduler can also base its decision on the elapsed time so far. This particularity is
due to the kind of properties we consider, namely time-bounded reachability.



Cauchy-sequences of cylindrical schedulers with respect to that metric (see [16]
for details).

Given a TAMDP M, any measurable scheduler o yields a probability mea-
sure, denoted P,, over Runs(M) with a fixed initial state, or more generally a
fixed initial run. Let us define P, over Runs(M, p) initiated by a finite prefix
p € Runs(M), by first associating a measure with every finite symbolic path
7w = 7(p,e0,p0 " €n,Pn, ). For every time-bound T > 0, P,(p,T) = 1 and in-
ductively for m = m(p,eq,p0 - €n,Pn,T) with p € Runs(M) ending in location
Lo, scheduler o assigns the following probability

T
Py (m) = Zfo a(p,t)(eo) - po - Po(m(pr,e1,p1 -~ €nypn, T — 1)) - A(lg) - e~ 0) dt,

where p; = p Leopo, s1. Mapping P, can then be extended in a unique way into

a probability measure over Runs(M, p) equipped with the o-algebra generated
by symbolic paths starting with p.

Time-bounded reachability probability. In this paper, we are interested
in time-bounded reachability probabilities. Let us introduce the time-bounded
reachability probability problem. Given a TAMDP M, an initial state (¢,v), a
set of goal locations G C L, and a time-bound T, let Reacha(¢,v, G, T) denote
the set of runs of M that originate (¢, v) and reach the goal within T' time-units:

Reach (£, v, G, T) = {(£,v) = (lo,v0) ~2=2E% (01, v1) -+ (£n,vn) € Runs(M) |
Ji<n, ;€ G and th <T}.

i<i
Note that one can easily express Reacha(¢,v,G,T) as a countable union
of symbolic paths starting in (¢,v), and it is thus legal to consider its prob-
ability under measurable schedulers. The maximum time-bounded reachability
probability problem consists in maximising the probability of Reach (¢, v, G, T)
among measurable schedulers, and we write

Opt (¢, v,G,T) =sup P,(Reachp(¢,v,G,T)).

A natural question is whether optimal schedulers exist at all, that is, whether
the supremum of the time-bounded reachability probability, Opt,,(¢,v, G, T),
is taken for some scheduler. If this is the case, it is worth knowing if simple
(e.g., cylindrical, region-based, or, more generally, polyhedral) optimal sched-
ulers exist. In the remainder of the paper, we establish the existence of optimal
schedulers for the time-bounded reachability probability problem for TAMDPs,
and show that polyhedral schedulers are not sufficient.

3 Optimal schedulers for TAMDPs

In this section, we establish the existence of optimal schedulers for the maxi-
mum time-bounded reachability probability problem in timed automata Markov



decision processes. In order to do so, we start by providing lower bounds for
Opt (¢, v,G,T) by allowing, in addition to the time-bound, only a fixed num-
ber of steps to reach the goal, and then show that these lower bounds are sharp.

We consider the optimal probability to reach the goal G from (¢,v) within
T time-units, with the additional constraint that it should be in no more than
N discrete steps. This probability, which we denote Optﬁ\v/l (¢,v,G,T), optimises
the probability of the following set of runs:

Reach™ (¢,v,G, T) = {(£,v) = (o, v0) ~22E% (¢1,v1) -+ (£, vn) € Runs(M) |
3 <N, tieGand Y t; <T}.

g<i

That is, we have Optxt(ﬁ,v,G,T) = sup, Pg(Reachﬁ\V/l(f,v,G,T)).

For all N € N, Opt%[ (¢,v,G,T) is obviously a lower bound for
Opt (¢, v, G, T). Moreover, <Opt%(€,v,G, T))NeN is non-decreasing, and, as
we shall see, the sequence converges to the ordinary optimum Opt (¢, v, G, T).
In order to prove this, we start with the following simple lemma:

Lemma 1. For all € > 0 there exists an M € N such that, for all N > M and
all measurable schedulers o, ]P’(,(Reach(&v7 G, T)~ ReachN(E,v7 G7T)> < e and

P, (Reach((,v,G,T)) — P, (Reach™ (¢,v,G,T)) <e.

Proof. Let A = maxycy, A(¢) be the maximal transition rate in M. Given € > 0,
we choose M such that ZZO: M ),‘C—I;e_)‘ < €. Under any measurable scheduler and
assuming all locations have rate A, the number of steps taken within 7" time-
units is Poisson distributed, and the likelihood to perform M or more steps is
bounded from above by ZZO: M ),‘C—I;e*A, and therefore smaller than . Of course,
this upper bound also applies to the case where rates are smaller or equal A in
all locations. The set of all runs in M performing M or more steps obviously
contains Reach(£, v, G, T) ~ Reach™ (¢,v, G, T) for every N > M, so we conclude
that P, (Reach((, v, G, T) . Reach™ (¢,v,G,T)) <e.

The second claim follows from P, (Reach(ﬂ, v,G,T )) —

P, (Reach™ (¢,v,G,T)) = P, (Reach(£,v,G,T) \ Reach™ (¢,v, G, T)). O
We can now establish that (Optiv,[ (4,0, G, T)) Ny COnVerges to the optimum:

Lemma 2. limy_ o Opt%(&v, G,T) =Opty(¢,v,G,T).

Proof. The ‘<’ direction is simple: for all schedulers ¢ and all N € N,

P, (Reach™ (¢,v,G,T)) < P,(Reach(f,v,G,T)) trivially holds, and conse-

quently Opt%l(&v,G, T) < Opt(4,v,G,T).

For the ‘>’ direction, we show that, for all e > 0, limy _, o Opt%l (,v,G,T) >
Opty (¢,v,G,T) — 2¢. Let ¢ > 0. On one hand, we can always choose a
scheduler o such that ]P’G(Reach(E,U,G7T)) > Opty(¢,v,G,T) — €. On the



other hand, applying Lemma 1, there exists M € N such that, for every
N>M, P0<Reach(€,v, G, T)) - IP’U(ReachN(ﬁ,v7 G,T)) < €. As a consequence,
for N large enough, IE”U<ReachN(€,v,G,T)) > IE”U<Reach(€,v,G,T)> - >
Opto(£,v,G,T) — 2¢, and thus Opty((¢,v, G, T) > Optp((£,v,G,T) —2¢. O

From now on, we focus on the under-approximation Optﬂ\v,l (¢,v,G,T), in order

to prove the existence of optimal schedulers for Opt (¢, v, G, T).

Lemma 3. For every state (¢,v) in M, the sequence (Opt%l 4,0, G, T))NeN 18

characterized inductively by:

Opti(t,v,G,T) =0 if L ¢ G, (1)
Opth((4,v,G,T) =1 if £ € G for all N € N, and otherwise (2)
T
Opth, ™ (¢,v,G, T)= | max Z p-Opth (0,0 G, T —t)-A(0)- e~ *tdt. (3)
o e€EE

(€)= (07
Equation (3), stating that optimality is memoryless, is the only non obvious one.

Proof. The correctness of Equation (3) can be shown by a simple inductive proof
over N. The base case, for N = 0, clearly holds since all the schedulers return
the same probability.

For the induction step, assume the equation holds up to N. Then, for N + 1
step-bounded reachability, the scheduler has to make a decision what action to
choose from (¢, v) if a discrete action occurs after delay ¢. By induction hypoth-
esis, this is to optimise the outcome in case of having T' — ¢ time-units and N
steps left. a

Lemma 4. Opt),(¢,v,G,T) € [0,1], Opt\(£,v,G,T) € [0,1], and Opty(£,v+
t,G,T —t) and Optr (¢,v +t,G,T —t) are uniformly continuous in t and v.

Proof. First, it is easy to see that Opt%l (¢,v,G,T) € [0,1], for all parameters.
Taking the limit when N tends to infinity, this also holds for Opt (¢, v, G, T).

Let n be the number of clocks and || - || be any norm on valuations*. We now
prove by induction on N that Optﬁ\v,l (l,v+t,G, T —1t) is uniformly continuous in
t and v. Obviously, Optiy,(£,v +t,G,T — t) is constant (for fixed £ and G) and
thus uniformly continuous in v and ¢.

Let us show the uniform continuity of Optﬁ\v,t (lv+t,G, T —t) in t for all
N € N. Assume |t — t'| < ¢, and, w.l.o.g., t < t'. Observe that

Opth, ™ (L,v +t,G, T — 1)
T—t

= max Z p- Optx[ (5/7 v, G, T —t— 7)-A(l)- e~ ADOT Q-

0 ceb T,e

(Z,v+t)—’4p—>([’v/)
T

= [ max 3 pOpth (£ 0. G, T — 1) A(0)e MO Ddr |

t GGE T,€

(£0) T (0 0)
mall norms over R™ are equivalent, so the choice of || - || is arbitrary.



Thus

‘OptNH(Z v+t,G, T —t)—Opth (v +t,G,T 1)

= ‘/ max p-Opt%(ﬁ’,vﬂG,T—T)A(E)e_A(e)(T_t)dT
ec
(*. )—Uw v')
T
- 0Pt (¢, 0/, G, T = ) A(0)e= O |
t,reneaEX Zp pta (0,0, G, T)A(C)e T

(£0) =5 (0 07)
t/

< [ max 3 pOpth(¢,v,G.T = r)A(0)e O dr

t €€k e
() == (' ")

/ max Z p-Opth(¢',v',G T—T)A(E)efA(Z)(Tft”l—e

(f ) T ()

)efA(l)('rft)dT

t

e~ A 7t) )+ |1 e~ A (-t (67/1(6)(15’715) _ efA(Z)(Tft))
_A(e ) (¢t —t) + |1 —A(Z)(t—t’) — e
e 7A(£)5

A (t=t") _ o= AD)(t' =)

t/
g/ A(0)e= MO0 g7 4 |1 — e~ 4O
t
=(1-
<(1-
A

IN

and we can conclude the uniform continuity of OptN+1(€, v+t G, T —t)in t.
For the uniform continuity in v, we start with the induction hypothesis

Ve LVG CLVYe>036>0Vv,weRy,. [v-w|<d
= |0pth(¢,v,G,T) — Opth (¢, w,G,T)| < e

With such ¢ and ¢, and letting A = max{A(¢) | £ € L}, we will show that if
lv — w|| < e then |OptN+1(€,v,G,T) Opth,"' (¢, w,G,T)| < \(Te + n[T)9).
This will be sufficient to establish the induction step by taking §’ for a given e
in the same way as choosing d for A(n + 1)[T]e. In order to do so, let us define

Iy = {T €[0,T] | v+ 7 and w + 7 do not satisfy the same guards}.

Observe that, provided |jv — w|| < §, the ‘length’ freI;ﬂ dr of I’ is bounded
by n[T]4. Indeed, v + ¢t and w + ¢ can only have different enabled transitions if
for one of the clocks x the two valuations disagree on x < ¢ (for ¢ € N), and the
interval over which they differ is bounded in length by |[v — w||. The number of
such intervals is itself bounded by [T'] for clock z. Finally we obtain the bound
n[T]6 when considering the n clocks.



Let us now turn to the induction step. First we assume without loss of gen-
erality that § < e. (Obviously, § can always be chosen this way.) We then get:

T
|Opth; (¢, v, G, T) — Opt)\{ ' (£, w,G,T)| = | A(0)e= A0t
t=0
N N
(reneaEx Z p Opty (0,0, G, T—t) — max Z p Opty, (¢, w',G, T — t))dt|
(E,v)ﬁ(é’,v’) (é,w)i(é’,w’)

T
<A Opth(¢ v, G, T —t
= t:0|Ien€aEX Z p pM( y Uy ) )

D)
- optY, (0. w',G, T —t)|dt
IenEaE}‘( tZ p p ,/\/l( ,w, ) )|
(£w) == (0w

S)\(/[OT] max > p |OptR (¢, 0, G, T — 1) = Opti (¢, w', G, T = t)]dt

\p eeE S
(L) = ()
+/ dt) (Opthy is in [0,1])
Iw
< )\( / edt + / dt) (induction hypothesis)
0.7\ T 1y

< A(Te +n[T16) < An+1)[Te

This ends the proof that Opt%l is uniformly continuous in v —as the constant
multiplicative factor A(n 4 1)[7] does not matter— for all N € N.

Finally, we exploit Lemma 2 to show that these properties of uniform con-
tinuity in ¢ and v are inherited by the limit Opt,,. This can be shown using
simple triangle inequalities. To establish

Ve LVG CLVYe>036>0Vv,weRy,. [v-w|<d
= |Opt\(¢,v,G,T) — Opth, (¢, w,G,T)| < 3e,
we first fix an N € N such that [|Opt,, — OptY,|| < e. Then we spend one ¢
for |Opt% 4,v,G,T) —Optj\VA (L,w,G,T)|, because Opt%l is uniformly continuous

in the valuation, and one ¢ each for |Opt,,(¢,v,G,T) — Opt/I\\C[(&v,G7T)| and
|Opt uy (€, w, G, T) — Opt},(£,w,G,T)|. 0

We can now prove our main theorem using a topological argument that ex-
tends the argument from [16] to the more general case of TAMDPs.

Theorem 1. For every TAMDP M, with initial state ({o,0%), reachability ob-
jective G and time-bound T, there exists a measurable scheduler o such that

Pa(ReaChM (€0a OXa G, T)) - OptM (60’ OXa G, T)

10



Proof. As a consequence of the continuity of Opt (¢, v+, G, T —t) in v and ¢,
we describe in the following an abstract construction of a measurable scheduler
o that chooses, for all v € [0, 7] and ¢, T’ € [0,T], an action e that determines
the transition (¢,v) Le, (¢',v") that maximises Opt (¢, v, G, T" —t).

For positions outside of [0, T]* x [0, T] x [0, T], the behaviour of the scheduler
does not matter: o can therefore be fixed to any constant decision for all of these
clock valuations and times.

We fix a location ¢ for the rest of the proof, and write Range for [0, 7% x
[0,7] x [0,T] the range of triples (v,t,7") we will consider. In order to de-
termine optimal decisions, we start with fixing an arbitrary order > on the
actions available in £. Next, we let, for each clock valuation v € [0,T]¥, de-
lay ¢ € [0,7] and remaining time 7" € [0,7] and action e, val(v,t,T',e) =

tep p-Opt (¢, v, G, T —t), provided e is enabled in (¢,v+t), oth-

(L,w)—— (L")
erwise we use —oo. Last we introduce, for all (v,¢,T"), an additional order T, ; 7
on the actions, determined by val(¢,v +¢,T,e) and using > as a tie-breaker.
We now define the following sets for every action e:

— M, = {(v,t,T7") € Range | e is maximal w.r.t. J, 7} is the set of triplets
(v,t,T") for which e is maximal with respect to the order T, ¢ 7.
- C. = {(v,t,T") € Range | VY6 > 0 3, t',T") € M,.. |(v,t,T") —
(v, ¢/, T")|| < 0} is the closure of M., and
— D, = C. ~ U Cf is the set of triplets for which action e is 1, ; 7/-better
f=e
than all other actions and there is no =-better action with equal quality.

We define o as the memoryless scheduler ¢ such that when the last state is
(£,v), the delay is t, and the remaining time is T7”, o selects action e such that
(v,8,T") € D,. To complete the proof, let us show that o is (1) optimal and (2)
measurable.

To show the first point, we observe that the decision e is optimal in M, by
definition. The fact that e is also optimal in the larger set C,. is a consequence
of the continuity of Opt,, in v and ¢t. D, C C, then implies that e is an optimal
decision for all triplets contained in D.. Note that optimality among the pure
decisions entails optimality among mixed ones, as the value of mixed decisions
is the convex combination of the values for the respective pure decisions.

To show the second point, we observe that the M.’s partition Range by their
definition, because T, ¢+ 7 is a total order. Consequently, the C,’s cover Range,
and the D.’s again partition Range. The C.’s are closed subsets of Range, and
therefore measurable. By their definition, the D,’s inherit this measurability.

Our construction therefore provides us with a measurable scheduler, which
is optimal, deterministic, and memoryless. a

4 Extensions

In this section we consider three potential extensions: the extension to games, the
extension to time-unbounded reachability, and the strengthening of the results

11



to schedulers with a simple finite structure. We show in Subsection 4.1 that
the first of these extensions is possible: our results extend to a generalisation to
two-player games. But the results from Theorem 1 do neither extend to time-
unbounded reachability (Subsection 4.2), nor can they be strengthened to a
simple class of schedulers, whose decisions are only based on polyhedral regions
(Subsection 4.3).

4.1 Extension to games

So far, we considered time-bounded reachability objectives for TAMDPs, which
can be seen as a stochastic one-player game, that is, a game with a single player
interacting with a randomised environment. Let us now discuss how to extend our
results to stochastic two-player games by considering timed automata Markov
games (TAMGs for short).

Definition 6 (Timed automaton Markov game). A timed automaton
Markov game is a tuple G = (A, Lo, L1, A) where A = (L, X, E) is a reactive
probabilistic timed automaton L = Ly U Ly is a partition of the set of locations
and A: L — R is a rate function.

Naturally, Player 0 owns states with location in Ly and Player 1 is responsible
for the decisions in states with location in L;. The semantics of a TAMG is
a stochastic two-player game. Informally, from a state (¢,v) with ¢ € L; (for
i € {0,1}), the sojourn time in location ¢ follows an exponential distribution with
rate A(¢) and Player i chooses in the intermediate state ¢,v + ¢ which enabled
edge to fire. The resolution of nondeterministic choices by the players is governed
by strategies. Similarly to TAMDPs, for which we introduced cylindrical and
measurable schedulers, we consider here cylindrical and measurable strategies
for each of the players. We write o (resp. 7) for a measurable strategy of Player
0 (resp. Player 1). Any strategy profile (o,7) for G with o and 7 measurable
strategies induces a probability measure P, . over Runs(G) = Runs(A) (assuming
an initial state is fixed).

The objective of Player 0 is to maximise the probability to reach a set of goal
locations G C L within time T'. The optimum is thus defined as:

Optg (4, v,G,T) = sup inf P, -(Reachg(¢,v,G,T)).
As announced earlier, the result established for TAMDPs carries over to
TAMGs:

Theorem 2. For every TAMG G with initial state (£o,0%), reachability objec-
tive G for Player 0 and time-bound T, there exists a measurable strategy profile
(o,7) such that

P, - (Reachg(¢, 0%, G, T)) = Optg(£y, 0%, G, T) =
sup P, -(Reachg(£,0%, G, T)) = inf Py . (Reachg(lo,0%,G,T)).
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In order to extend the proof, we proceed in two steps. The first step is the
extension of the lemmata from Section 3. This extension is simple: following the
same structure, it suffices to replace, in the lemmata and their proofs, the max
by min for all locations of Player 1.

Consequently, we obtain a set of equations that describe the value of the
time-bounded reachability probability. We can then proceed with fixing optimal
measurable strategies for o only and 7 only, respectively, such that their decisions
is locally optimal. Note that the proof of Theorem 1 treats the different locations
independently, so that a restriction to a subset of locations does not affect the
proof at all. The proof is also not affected by swapping max for min for the
locations owned by Player 1.

4.2 Time-unbounded reachability

We considered optimisation problem for time-bounded reachability, and justify
now, a posteriori, why the time-bound is crucial for Theorem 1. Indeed, we show
that optimal scheduling policies may not exist for time-unbounded reachability
objectives. The situation thus ressembles the framework of stochastic real-time
games [9] for which it was shown that optimal strategies do not always exist,
using a similar example. To exemplify this, we consider the TAMDP M depicted
on Figure 1 with constant transition rate A = 1 and the objective to reach the
goal region G. We argue that this control objective does not admit an optimal
scheduling policy.

It is easy to see that the chances of reaching G from ¢; are 0 if the value of
the clock x is greater or equal to 1, and e=¢ — e~ ! for a clock value ¢ € [0, 1].
This implies an upper bound on the time-unbounded reachability of 1 — e~ ?.
This value can easily be approximated by choosing a scheduling policy that
guarantees a time-unbounded reachability > 1 — e~! — ¢ by progressing to ¢; iff
the clock value of x is smaller than e. (Almost surely such a value is eventually
taken.)

While this determines the value of time-unbounded reachability, it does not
provide a scheduling policy that realises this value. If we consider a scheduling
policy that, for any e €]0,1], provides a positive probability p. to progress to
{1 with a clock valuation > ¢, then the likelihood of reaching G is bounded by
1—e ! —p.(1—e7%). At the same time, this chance being 0 for all £ > 0 implies
that we almost surely never progress to ¢;. (Progressing with clock valuation 0
can only happen on a 0 set.)

Consequently, no optimal scheduling policy exists.

4.3 Simple schedulers

Beyond the existence of optimal schedulers, the simplicity of schedulers is also a
concern. In the proof of Theorem 1 we show the existence of an optimal sched-
uler which is measurable, deterministic and memoryless. It is an interesting
question whether the optimum can be reached by even simpler schedulers. For
CTMDPs, e.g., timed positional schedulers (whose decisions only depend on the
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location and the time that remains) and even cylindrical schedulers (that have
only finitely many intervals of constant decisions) are sufficient [16]. Timed po-
sitional schedulers are clearly not sufficient for TAMDPs. (Consider a scheduler
that makes the decision of whether to progress to £; in the example from Figure
1, with 0 to 0.5 time-units left and the clock valuation of x (a) less than 0.5 and
(b) greater than 1. For (a), the optimal decision is clearly to progress, for (b),
the optimal decision is clearly to stay in £y and reset the clock. A scheduler that
does not distinguish these cases cannot be optimal.) Still the question remains if
considering simple regions of clock valuations suffices. A natural generalisation
of finitely many intervals would be finitely many polyhedra that are distinguished
by a scheduler.

Definition 7. Let M be a TAMDP over A a timed automaton with N clocks. A
scheduler o for M is polyhedral if there exists a finite partition P of (Rsq)N+?

to,€0,P0
—_—

into polyhedra Py --- Py such that, for every pair of runs p = (o, vp)

(l1,v1) - (L, v) and p' = (Lo, v() forcoibo, (0, 0h) - (L,, ) and every pair

m’ “m

of delays (tn,t,,) € R>o, as soon as by, = L], and (v, +tn, >, ., ti) and (v;, +

ny¥m

s 2 iem i) belong to the same polyhedron Pj, then o(p,t,) = o(p,t,).

Note that polyhedral schedulers are in particular memoryless (and timed posi-
tional in the special case of CTMDPs). Polyhedral schedulers are natural in the
context of timed automata since they extend region-based schedulers that are
for example sufficient for timed games [2].

Proposition 1. In TAMDPs, the optimal time-bounded reachability probability
may not be taken by any polyhedral scheduler.

Proof. To prove that polyhedral schedulers are not sufficient to obtain optimal
control in TAMDPs, we consider again the example of Figure 1, where the rate
is constant A = 1, the goal location is G and the time-bound is set to 1.

The only non-trivial decision the scheduler has to make in that example is in
location £y, where it has to choose between looping back to ¢y (action loop in the
sequel) or moving right to ¢; (action progress in the sequel). We are interested
in determining a partition (Dj, D,) of (R>o_ )* representing sets of valuation for
x and remaining time ¢ such that loop is optimal in D; and progress is optimal
in D,. We focus on the sub-region [0,1]? to show that neither D; nor D,, can
be composed of finite unions of polyhedra, and consequently optimal schedulers
cannot be polyhedral for this example. For this sub-region, we start with the
following observations:

1. If t <1 —x, then it is always advisable to select progress. The time-bounded
reachability probability in this case is 1 — e™*.

2. If t > 1 — x and the selected action is to progress, then the time-bounded
reachability probability is 1 — e*~ 1.

3. If the selected action is to loop, then the time-bounded reachability proba-
bility is 1 — (¢ + 1)e~*. (When looping, z is reset. After the reset of z, the

guard of the edge from ¢; to G is always satisfied in the remaining ¢ < 1
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time-units. The chance of reaching G is thus the probability of taking two
or more steps in the remaining ¢ time-units, and the number of such steps is
Poisson distributed with parameter ¢.)

Consequently, we loop in [0,1]2 iff (£ + 1)e~! < e~ (modulo 0 sets). Obvi-
ously, this set is not representable by a finite union of polyhedra.

The construction of the partition (D;, D)) illustrates the proof of Theorem 1,
where a measurable optimal scheduler is defined. The partition (D,, D;) inter-
sected with [0,1]? is depicted on Figure 2. The area D,, below the curve, rep-
resents pairs (¢, ) of remaining time and clock valuation, for which progressing

to £; is the optimal decision. a0
A
x
1
N
D,
Fig. 1. A simple TAMDP example 0 7 P >

Fig. 2. Illustration of partition (De)ecE-

5 Conclusion

We have introduced the model of timed automata Markov games that synthe-
sises stochastic timed automata and continuous time Markov games: TAMGs
enhance stochastic timed automata with two conscious players and add tim-
ing constraints to the firing of actions in continuous time Markov games. We
have proven the existence of measurable strategies that optimise the probability
of time-bounded reachability properties. Different to CTMGs, optimal strate-
gies are not necessarily simple: they cannot be represented by finite families
of polyhedral regions. Also, in contrast to the positive result for time-bounded
reachability, we have shown that optimal scheduling policies for time-unbounded
reachability do not always exist.
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