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Abstract. In [12] a Zero-Knowledge scheme ZK(2) was designed from
a solution of a set of multivariate quadratic equations over a finite field.
In this paper we will give two methods to generalize this construction
for polynomials of any degree d, i.e. we will design two Zero-Knowledge
schemes ZK(d) and ˜ZK(d) from a set of polynomial equations of de-
gree d. We will show that ˜ZK(d) is optimal in term of the number of
computations to be performed and that ZK(d) is optimal in term of
the number of bits to be send. Moreover this property is still true for
all kinds of polynomials: for example if the polynomials are sparse or
dense. Finally, we will present two examples of applications: with Brent
equations, or with morphisms of polynomials.

Key words: Authentication scheme, Zero-Knowledge, Multivariate polynomials.

1 Introduction

The first Zero-Knowledge schemes were based on the factorization problem (for
example Fischer-Micali-Rackoff in 1984, or Fiat-Shamir in 1986) or the Graph
Isomorphism Problem. However the factorization problem is not expected to be
a NP complete problem (since it is in NP and Co NP) and it has sub-exponential
algorithms (such as NFS) and even polynomial algorithms on quantum comput-
ers (Shor algorithm). Then, it was proved in 1991 by O. Goldreich, S. Micali and
A. Widgerson that any problem of NP has a Zero-Knowledge proof ([4]). But the
general construction (cf [4]) of Zero-Knowledge proofs from any problem of NP is
usually not very efficient. This is why various Zero-Knowledge schemes have been
specifically designed from some well suited and well chosen NP complete schemes
based on simple combinatorial problems expected to be exponentially difficult,
such as PKP of Adi Shamir [13], PP of David Pointcheval [11] or CLE [15] or SD
[14] of Jacques Stern for example. Recently ([12]) such a scheme was designed
from the MQ problem, i.e. the problem of finding a solution from a set of mul-
tivariate quadratic equations over a finite field. This MQ problem is related to
various primitives in cryptography [2, 7–9], and is NP-complete over any finite
field ([3, 10]).



In this paper, we will generalize the construction of [12] in order to design a
Zero-Knowledge authentication from a solution of any set of multivariate poly-
nomials of degree d over a finite field (i.e. not only d = 2). We will describe
two schemes extending the results of [12]. The Zk(d) scheme is optimal if we
focus on the number of bits to be sent and the ˜ZK(d) scheme is optimal if we
consider the number of computations. This is true for any kind of polynomials
(dense or sparse). For practical applications the case d = 3 (i.e. cubic equations)
is particularly important, since from these polynomials we will be able to design
Zero-Knowledge schemes based on the (NP-complete) Morphism problem (MP)
or from the Brent equations related to the optimal way to solve sets of linear
equations (i.e. improvements of the Gauss elimination). We will explain in this
paper why these two problems are really interesting for cryptography. We can
notice that MP (morphism of Polynomial) is NP hard while IP (isomorphism of
Polynomials) is expected not to be NP hard (since it has an Arthur-Merlin game
for yes or no answers). We will detail the case d = 3 and give only the features
of the general schemes ZK(d) and ˜ZK(d).

2 Zero-Knowledge Protocols and Commitments

In an interactive Protocol, there are two entities: the prover and the verifier. The
Prover wants to convince the verifier that she knows a secret. Both interact and
at the end, the verifier accepts or refuses. In Zero-Knowledge Protocols there is
a possibility of fraud. A cheater will be able to answer some of the questions
(but not all of them). The protocol must be designed such that an answer to one
of the question does not give any indication on the secret but if someone is able
to answer all the questions then this will reveal the Prover’s secret. We will use
the following definitions in order to describe the properties that we want to be
satisfied by our protocols:

1. The protocol has perfect correctness is a legitimate prover is always ac-
cepted.

2. The protocol is statistically zero knowledge if there exists an efficient
simulating algorithm U such that for every feasible Verifier strategy V , the
distributions produced by the simulator and the proof protocol are statisti-
cally indistinguishable.

3. The protocol is proof of zero knowledge with error knowledge α if
there is a knowledge extractor K and a polynomial Q such that if p denotes
the probability that K finds a valid witness for x using its access to a prover
P ∗ and px denotes the probability that P ∗ convinces the honest verifier on
x, and px > α, then we have p ≥ Q(px − α).

In our protocols, we will need string commitment schemes. A string commit-
ment function is denoted by Com. The commitment scheme runs in two phases.
In the first phase, the sender computes a commitment value c = Com(s; ρ) and
sends c to the receiver, where s is the committed string and ρ is a random
string. In the second phase, the sender gives (s, ρ) and the receiver verifies if
c = Com(s; ρ). we require the two following properties of Com.



1. The commitment scheme is statistically hiding if for uniform (x, ρ) and
(x′, ρ′) the distributions Com(s, ρ) and Com(x′, ρ′) are statistically indis-
tinguishable. This means that the commitment to x reveals (almost) no
information on x even to an infinitely powerful Verifier.

2. The commitment scheme is computationally binding if the probability to
that two different values (x, ρ) and (x′, ρ′) produce the same c = Com(x, ρ) =
Com(x′, ρ′) is negligible in polynomial time, i.e. the chances to change the
committed value after the first phase are very small.

A practical construction of such a commitment is given in [5].

3 Systems of Multivariate equations of degree d

We consider the following function of degree d from Fn
q to Fm

q :

F (x) = (f1(x), f2(x), . . . , fm(x))

where ∀`, 1 ≤ ` ≤ m, and x = (x1, . . . , xn):

f`(x) =
∑

1≤i1≤...≤id≤n

γ`i1...idxi1xi2 . . . xid +
∑

1≤i1≤...≤id−1≤n

γ`i1...id−1
xi1xi2 . . . xid−1

+ . . .+
∑

1≤i1≤i2≤n

γ`i1i2xi1xi2 +
∑

1≤i1≤n

γ`i1xi1

We omit the constant term. Let

G(r0, r1, . . . , rd−1) =

d∑
i=1

(−1)d−i
∑

S⊂{0,...,d−1}
|S|=i

F (
∑
j∈S

rj)

Then G is d-linear. For F , a multivariate function of degree d, we define a
binary relation RF = {(v, x) ∈ Fm

q × Fn
q ; v = F (x)}. The problem is: Given F

and v ∈ Fm
q find s ∈ Fn

q such that F (s) = v, i.e. s ∈ RF (v).

4 ZK(3) Schemes

We consider the following cubic functions: F (x) = (f1(x), f2(x), . . . , fm(x))
where ∀`, 1 ≤ ` ≤ m and x = (x1, . . . , xn)

f`(x) =
∑

1≤i≤j≤k≤n

γ`ijkxixjxk +
∑

1≤i≤j≤n

γ`ijxixj +
∑

1≤i≤n

γ`ixi

We omit the constant term. Let

G(x, y, z) = F (x+ y+ z)−F (x+ y)−F (x+ z)−F (y+ z) +F (x) +F (y) +F (z)



We have: G(x, y, z) = (g1(x, y, z), g2(x, y, z), . . . , gm(x, y, z))
where ∀`, 1 ≤ ` ≤ m, x = (x1, . . . , xn) , y = (y1, . . . , yn) and z = (z1, . . . , zn)

g`(x, y, z) =
∑

1≤i≤j≤k≤n

γ`ijk(xiyjzk + xiykzj + xjyizk + xjykzi + xkyizj + xkyjzi)

Then G is trilinear.
The problem is: Given F and v ∈ Fm

q find s ∈ Fn
q such that F (s) = v.

The public key is (F, v). The secret is s such that F (s) = v. The Prover is going
to convince the Verifier of his knowledge of s.

4.1 3-pass scheme

For simplicity, the random string in Com is not written explicitly. If X is a set,
x ∈R E means that x is randomly chosen in X with the uniform distribution.

1. The Prover picks up r0, r1, t0 ∈R Fn
q and e0, f0, h0 ∈R Fm

q . Then she com-
putes

r2 = s− r1 − r0, t1 = r0 − t0
e1 = F (r0)− e0, f1 = F (r0 + r1)− f0, h1 = F (r0 + r2)− h0

The Prover sends to the Verifier

c0 = Com(r1, r2, G(t0, r1, r2)− e0 + f0 + h0)
c1 = Com(r1, t0, e0, f0), c2 = Com(r1, t1, e1, f1)
c3 = Com(r2, t0, e0, h0), c4 = Com(r2, t1, e1, h1)

2. The verifier chooses a query Q ∈R {0, 1, 2, 3} and sends Q to the prover.
3. (a) If Q = 0 then the Prover sends (r0, r1, t1, e1, f1). The Verifier checks if

c1 = Com(r1, r0−t1, F (r0)−e1, F (r0+r1)−f1), c2 = Com(r1, t1, e1, f1)
(b) If Q = 1 then the Prover sends (r0, r2, t1, e1, h1). The Verifier checks if

c3 = Com(r2, r0−t1, F (r0)−e1, F (r0+r2)−h1), c4 = Com(r2, t1, e1, h1)
(c) IfQ = 2 then the Prover sends (r1, r2, t1, e1, f1, h1). The Verifier checks if

c0 = Com(r1, r2, v−G(t1, r1, r2)+e1−f1−h1−F (r1+r2)+F (r1)+F (r2)),
c2 = Com(r1, t1, e1, f1), c4 = Com(r2, t1, e1, h1)

(d) If Q = 3 then the Prover sends (r1, r2, t0, e0, f0, h0). The Verifier checks
if c0 = Com(r1, r2, G(t0, r1, r2)− e0 + f0 + h0), c1 = Com(r1, t0, e0, f0),
c3 = Com(r2, t0, e0, h0)

The verifier outputs 1 if the she gets the correct value in the commitments,
0 otherwise.

4.2 Properties of the 3-pass scheme

It is easy to see that the verifier always accepts an interaction with the honest
prover. Thus the 3-pass scheme has perfect correctness.



Theorem 1 The 3-pass protocol is statistically zero knowledge when the com-
mitment scheme Com is statistically hiding.

Proof. We construct a black-box simulator S which have oracle access to a cheat-
ing verifier CV takes F and v, and outputs a simulated transcripts with proba-
bility 3/4 as follows. The simulator randomly chooses a value Q∗ ∈R {0, 1, 2, 3}
and vectors s′, r′0, r

′
1, t
′
0 ∈R Fn

q and e′0, f
′
0, h
′
0 ∈R Fm

q , where Q∗ is a prediction
what value the cheating verifier CV will not choose. Then it computes

r′2 = s′ − (r′0 + r′1), t′1 ← r′0 − t′0, e′1 ← F (r′0)− e′0

Moreover it sets:

1. If Q∗ = 0, f ′1 = v − F (s′) + F (r′0 + r′1)− f ′0, else f ′1 = F (r′0 + r′1)− f ′0.
2. If Q∗ = 1, h′1 = v − F (s′) + F (r′0 + r′2)− f ′0, else h′1 = F (r′0 + r′2)− h′0.
3. If Q∗ = 3, c′0 = Com(r′1, r

′
2, v − G(t′1, r

′
1, r
′
2) − f ′1 − h′1 + e′1 − F (r′1 + r′2) +

F (r′1) + F (r′2)), else c′0 = Com(r′1, r
′
2, G(t′0, r

′
1, r
′
2)− f ′0 − h0 + e′0)

It also computes:

c′1 = Com(r′1, t
′
0, e
′
0, f
′
0), c′2 = Com(r′1, t

′
1, e
′
1, f
′
1)

c′3 = Com(r′2, t
′
0, e
′
0, h
′
0), c′4 = Com(r′2, t

′
1, e
′
1, h
′
1)

and sends (c′0, c
′
1, c
′
2, c
′
3, c
′
4) to CV.

Receiving a query Q from CV the simulator outputs ⊥ if Q = Q∗ and stops. If
S does not output ⊥, it produces a transcript as follows:

– If Q = 0, it outputs ((c′0, c
′
1, c
′
2, c
′
3, c
′
4), 0, (r′0, r

′
1, t
′
1, e
′
1, f
′
1))

– If Q = 1, it outputs ((c′0, c
′
1, c
′
2, c
′
3, c
′
4), 1, (r′0, r

′
2, t
′
1, e
′
1, h
′
1))

– If Q = 2, it outputs ((c′0, c
′
1, c
′
2, c
′
3, c
′
4), 2, (r′1, r

′
2, t
′
1, e
′
1, f
′
1, h
′
1))

– If Q = 3, it outputs ((c′0, c
′
1, c
′
2, c
′
3, c
′
4), 3, (r′1, r

′
2, t
′
0, e
′
0, f
′
0, h
′
0))

We can check that if S does not output ⊥, the transcript is accepted. For exam-
ple, we consider the case where Q∗ = 0 and Q = 2. The output is ((c′0, c

′
1, c
′
2, c
′
3,

c′4), 2, (r′1, r
′
2, t
′
1, e
′
1, f
′
1, h
′
1)). Thus, we have the right values for c′2 and c′4. Now, c′0

is computed as follows: c′0 = Com(r′1, r
′
2, v−G(t′1, r

′
1, r
′
2) + e′1− f ′1−h′1−F (r′1 +

r′2) + F (r′1) + f(r′2)). Here f ′1 = v − F (s′) + F (r′0 + r′1) − f ′0. Thus we obtain
c′0 = Com(r′1, r

′
2, G(t′0, r

′
1, r
′
2)− f ′0−h0 + e′0) and the transcript is accepted. The

other cases are checked similarly.
We now show that the distribution of the output S is statistically close to the
distribution of a real transcript since the commitment is statistically hiding. A
real transcript between the the legitimate prover P and a cheating verifier CV
on (F, v, s) is denoted by 〈P (s), CV〉(F, v). The simulator output is denoted by
〈S, CV〉(F, v). We analyze the output distribution.
First first we consider the case where Q = 0. Then

〈P (s), CV〉(F, v) = ((c0, c1, c2, c3, c4), 0, (r0, r1, t1, e1, f1))

〈S, CV〉(F, v) = ((c′0, c
′
1, c
′
2, c
′
3, c
′
4), 0, (r′0, r

′
1, t
′
1, e
′
1, f
′
1))



Assume that (r′0, r
′
1, t
′
0, e
′
0, f
′
0) = (r0, r1, t0, e0, f0). Then we obtain t′1 = t1, e′1 =

e1, f ′1 = f1 and c′1 = c1, c′2 = c2 in all cases Q∗ = 1, 2, 3.
The second case is when Q = 1. Then

〈P (s), CV〉(F, v) = ((c0, c1, c2, c3, c4), 1, (r0, r2, t1, e1, h1))

〈S, CV〉(F, v) = ((c′0, c
′
1, c
′
1, c
′
3, c
′
4), 1, (r′0, r

′
2, t
′
1, e
′
1, h
′
1))

This case is very similar to the previous one. We get t′1 = t1, e′1 = e1, h′1 = h1
and c′3 = c3, c′4 = c4 in all cases Q∗ = 0, 2, 3.
The third case is Q = 2. Then

〈P (s), CV〉(F, v) = ((c0, c1, c2, c3, c4), 2, (r1, r2, t1, e1, f1, h1))

〈S, CV〉(F, v) = ((c′0, c
′
1, c
′
2, c
′
3, c
′
4), 2, (r′1, r

′
2, t
′
1, e
′
1, f
′
1, h
′
1))

When Q∗ = 0, assume that (r′0, r
′
1, t
′
0, e
′
0, f
′
0, h
′
0) = (r0 +s′−s, r1, t0 +s′−s, e0−

F (r0)+F (r0 +s′−s), f0−F (r0 +r1)+v−F (s′)+F (r0 +r1 +s′−s), h0−F (r0 +
r2) + F (r0 + r2 + s′ − s)). When Q∗ = 1, assume that (r′0, r

′
1, t
′
0, e
′
0, f
′
0, h
′
0) =

(r0 +s′−s, r1, t0 +s′−s, e0−F (r0)+F (r0 +s′−s), f0−F (r0 +r1)+F (r0 +r1 +
s′− s), h0−F (r0 + r2) + v−F (s′) +F (r0 + r2 + s′− s)). When Q∗ = 1, assume
that (r′0, r

′
1, t
′
0, e
′
0, f
′
0, h
′
0) = (r0 + s′ − s, r1, t0 + s′ − s, e0 − F (r0) + F (r0 + s′ −

s), f0−F (r0 + r1) +F (r0 + r1 + s′− s), h0−F (r0 + r2) +F (r0 + r2 + s′− s)). We
can check that for all these cases we obtain: r′2 = r2, t1 = t′1, e′1 = e1, f ′1 = f1,
h′1 = h1 and then c′0 = c0, c′2 = c2, c′4 = c4.
The last case is Q = 2. Then

〈P (s), CV〉(F, v) = ((c0, c1, c2, c3, c4), 3, (r1, r2, t0, e0, f0, h3))

〈S, CV〉(F, v) = ((c′0, c
′
1, c
′
2, c
′
3, c
′
4), 2, (r′1, r

′
2, t
′
0, e
′
0, f
′
0, h
′
0))

Assume that (r′0, r
′
1, t
′
0, e
′
0, f
′
0, h
′
0) = (r0s

′ − s, r1, t0, e0, f0, h0), then we obtain
r′2 = r2, c′0 = c0, c′1 = c1 and c′3 = c3. Since the commitment is statistically
hiding, we get that when S does not output ⊥, the distribution of the output of
S is statistically close to the distribution of the real transcript. �

Theorem 2 The 3-pass protocol is proof of zero knowledge with zero knowledge
error 3/4 when the commitment scheme Com is computationally binding.

Proof. Suppose that there exists a false prover C that can answer all the ques-
tions. Then either C will compute a collision for Com or will extract a solution
for (F, v). Let ((c0, c1, c2, c3, c4),Q0, Rsp0), ((c0, c1, c2, c3, c4),Q1, Rsp1), ((c0, c1,
c2, c3, c4),Q2, Rsp2), ((c0, c1, c2, c3, c4),Q3, Rsp3), be four transcripts such that
Qi = i and all the responses are accepted. Consider the situation where the

responses are parsed as Rsp0 = (r
(0)
0 , r

(0)
1 , t

(0)
1 , e

(0)
1 , f

(0)
1 ), Rsp1 = (r

(1)
0 , r

(1)
2 , t

(1)
1 ,

e
(1)
1 , h

(1)
1 ), Rsp2 = (r

(2)
1 , r

(2)
2 , t

(2)
1 , e

(2)
1 , f

(2)
1 , h

(2)
1 ), Rsp3 = (r

(3)
1 , r

(3)
2 , t0, e0, f0, h0).

We obtain:

c0 = Com( r
(2)
1 , r

(2)
2 , v −G(t

(2)
1 , r

(2)
1 , r

(2)
2 )− f (2)1 − h(2)1 + e

(2)
1

−F (r
(2)
1 + r

(0)
2 ) + F (r

(2)
1 ) + F (r

(2)
2 ) )

= Com( r
(3)
1 , r

(3)
2 , G(t0, r

(3)
1 , r

(3)
2 ) + f0 + h0 − e0 ) (1)



c1 = Com( r
(0)
1 , r

(0)
0 − t

(0)
1 , F (r

(0)
0 )− e(0)1 , F (r

(0)
0 + r

(0)
1 )− f (0)1 )

= Com( r
(3)
1 , t0, e0, f0 ) (2)

c2 = Com(r
(0)
1 , t

(0)
1 , e

(0)
1 , f

(0)
1 ) = Com(r

(2)
1 , t

(2)
1 , e

(2)
1 , f

(2)
1 ) (3)

c3 = Com( r
(1)
2 , r

(1)
0 − t

(1)
1 , F (r

(1)
0 )− e(1)1 , F (r

(1)
0 + r

(1)
2 )− h(1)1 )

= Com( r
(3)
2 , t0, e0, h0 ) (4)

c4 = Com(r
(1)
2 , t

(1)
1 , e

(1)
1 , h

(1)
1 ) = Com(r

(2)
2 , t

(2)
1 , e

(2)
1 , h

(2)
1 ) (5)

If two tuples of the arguments of Com are are distinct on either of the above
equations, then we have a collision for Com. Otherwise, these equalities give:

h
(1)
1

(5)
= h

(2)
1 , r

(0)
1

(2)
= r

(3)
1

(1)
= r

(2)
1 , t

(0)
1

(3)
= t

(1)
1

(5)
= t

(2)
1 , r

(0)
0

(3,4)
= r

(1)
0

and r
(2)
2

(1)
= r

(3)
2

(4)
= r

(1)
2 , e

(2)
1

(3)
= e

(0)
1

(2,4)
= e

(1)
1 , f

(0)
1

(3)
= f

(2)
1

So, all upper scripts are useless and from (1) we have:

v = G(t1 + t0, r1, r2) + f1 + h1 − e1 + F (r1 + r2)− F (r1)− F (r2) + f0 + h0 − e0

Then, from (2) and (4) we have r0 = t0+t1, F (r0) = e0+e1, F (r0+r1) = f0+f1
and F (r0 + r2) = h0 + h1, so if we replace these values in the previous equality,
we obtain: v = G(r0, r1, r2) + F (r0 + r1) + F (r0 + r2) + F (r1 + r2) − F (r0) −
F (r1)−F (r2) = F (r0 + r1 + r2) This means that a solution r0 + r1 + r2 for v is
extracted.
Let ps be the probability that P ∗ convinces the honest verifier on s and p the
probability that all the 3 transcripts are accepted. Suppose that ps >

3
4 . De-

pending on the fact that the 4 transcripts are accepted or not, we get ps ≤
1 · p + 3

4 (1 − p). This implies that p ≥ 4(ps − 3
4 ). Thus the proof of Theorem 2

is complete. �

4.3 Computations in the 3-pass scheme

We give the maximum number of computations that have to be done either by
the prover or by the receiver in the case of F2. We must calculate the number
of computations for F and for G. Moreover we see that F is computed at most
3 times and G is computed just one time. We only count multiplications. In F2,
we have: x3i = x2i = xi. We can write:

f`(x) =

n∑
i=1

xi
[
γ`i + γ`ii + γ`iii +

n∑
j=i+1

xj
(
γ`ij + γ`ijj +

n∑
k=j+1

γ`ijkxk
)]

Let M denotes the number of multiplications needed to compute F . Using

the above expression for F , we obtain M ' n3

6 m. In the following table, we give
the characteristics of the scheme ZK(3) and the values that we obtain when we



choose n = 84, m = 80, in order to have 80-bit security (cf. [2]). Moreover if we
want an impersonation probability less than 2−30, we need to perform at least
73 rounds. R stands for the number of rounds and C for the maximum number
of computations that have to be done either by the prover or by the receiver.
The values are given in Table 1.
Remark. We may need less computations. It depends on the number of non

Table 1. ZK(3) Scheme

Formulas Parameters for 280 security

Public key (bit) m 80
Secret key (bit) n 84

M n3

6
×m 7902720

(4× 160 + 2 + 3n + 2m)×R 76942
Communication (bit) or

(3× 160 + 2 + 3n + 3m)×R 71102
Number of multiplications C=9MR 233

zero coefficients. This is the case for Brent equations as explain in Section 8.

4.4 5-pass scheme

Here we describe briefly a 5-pass scheme. Proofs are sketched in Appendix A.

1. The Prover picks up at random r0, r1, t0 ∈ Fn
q and e0, f0, h0 ∈ Fm

q . Then she
computes r2 = s− r1 − r0. The Prover sends to the Verifier

c0 = Com(r1, r2, G(t0, r1, r2)− e0 + f0 + h0)
c1 = Com(r1, t0, e0, f0)
c2 = Com(r1, t1, e1, f1)
c3 = Com(r2, t0, e0, h0)
c4 = Com(r2, t1, e1, h1)

2. The verifier picks α ∈R Fq and sends α to the prover.
3. The prover computes:

(t1, e1f1, h1) = (αr0 − t0, αF (r0)− e0, αF (r0 + r1)− f0, αF (r0 + r2)− h0)

and sends (t1, e1f1, h1) to the verifier.
4. The verifier picks Q ∈R {0, 1, 2} and sends Q to the prover.
5. (a) If Q = 0, then the prover sends (r0, r1). The verifier checks if c0 =

Com(r0, r1, αr0 − t1, αF (r0)− e1, αF (r0 + r1)− f1).
(b) If Q = 1, then the prover sends (r0, r2). The verifier checks if c1 =

Com(r0, r2, αr0 − t1, αF (r0)− e1, αF (r0 + r2)− h1).
(c) If Q = 2, then the prover sends (r1, r2). The verifier checks if c2 =

Com(r1, r2, α(v−F (r1+r2)+F (r1)+F (r2))−G(t1, r1, r2)−f1−h1+e1).



As for the 3-pass scheme, we have perfect correctness and the following re-
sults:

Theorem 3 The 5-pass protocol is statistically zero knowledge when the com-
mitment scheme Com is statistically hiding.

Theorem 4 The 5-pass protocol is proof of zero knowledge with zero knowledge
error 2/3+1/3q when the commitment scheme Com is computationally binding.

5 The ˜ZK(3) Scheme.

In this section, we propose another scheme inspired from [12]. The idea is to
transform the cubic system into a quadratic one and the to use the scheme given
in [12]. As we will see, the number of computations is smaller, but the number
of communication bits is more important.
We investigate the transformation of a system with cubic equations to a sys-
tem with quadratic equations. We will introduce new variables. Once we have
obtained a system of equations with quadratic polynomials, we can apply the
identification scheme of [12]. We will calculate the number of multiplications
in this case. In our system, we have F (x) = (f1(x), f2(x), . . . , fm(x)) where
∀`, 1 ≤ ` ≤ m,

f`(x) =
∑

1≤i≤j≤k≤n

γ`ijkxixjxk +
∑

1≤i≤j≤n

γ`ijxixj +
∑

1≤i≤n

γ`ixi

and x = (x1, . . . , xn). We introduce the new variables ∀i, j, 1 ≤ i ≤ j ≤ n, Xij =

xixj . The number of new variables is n(n−1)
2 , if q = 2, and n(n+1)

2 , if q 6= 2. In
our new system, we have

F̃ = (f̃1, . . . , f̃m, (f̃ij)1≤i≤j≤n)

where for x̃ = (x1, . . . , xn, (Xij)1≤i≤j≤n) and 1 ≤ ` ≤ m,

f`(x̃) =
∑

1≤i≤j≤k≤n

γ`ijkXijxk +
∑

1≤i≤j≤n

γ`ijXij +
∑

1≤i≤n

γ`ixi

and for 1 ≤ i ≤ j ≤ n, fij(x̃) = Xij − xixj . Here the number of variables

is ñ ' n + n2

2 and the number of equations is m̃ = m + n2

2 . As before, M

denotes the number of multiplications needed to compute F . M̃ denotes the
number of multiplications for the computation of F̃ . We choose q = 2. Then

M̃ = M + n(n−1)
2 . Thus M̃ ' M ' n3

6 . C̃ stands for the maximum number of
computations that have to be done either by the prover or by the receiver. If
R̃ denotes the number of rounds performed in order to have an impersonation
probability less than 2−30, then R̃ = 52 (cf. [12]). The following table gives the
characteristics of the ˜ZK(3) Scheme and the values we get when n = 84 and
m = 80.



Table 2. ˜ZK(3) Scheme

Formulas Parameters for 280 security

Public key (bit) m̃ 3483
Secret key (bit) n 84

M n3

6
×m 7902720

Communication (bit) (2× 160 + 2 + 2ñ + m̃)× R̃ 560508

Number of multiplications C̃ = 3M̃R̃ 231

6 ZK(d) and ˜ZK(d) Schemes for any d

6.1 The ZK(d) Scheme

We will design a 3-pass scheme
We consider the following function of degree d from Fn

q to Fm
q :

F (x) = (f1(x), f2(x), . . . , fm(x))

where ∀`, 1 ≤ ` ≤ m,

f`(x) =
∑

1≤ii≤...≤id≤n

γ`i1...idxi1xi2 . . . xid+

∑
1≤ii≤...≤id−1≤n

γ`i1...id−1
xi1xi2 . . . xid−1

+ . . .+
∑

1≤ii≤i2≤n

γ`i1i2xi1xi2 +
∑

1≤ii≤n

γ`i1xi1

and x = (x1, . . . , xn). We omit the constant term. Let

G(r0, r1, . . . , rd−1) =

d∑
i=1

(−1)d−i
∑

S⊂{0,...,d−1}
|S|=i

F (
∑
j∈S

rj)

Then G is d-linear.
The problem is: Given F and v ∈ Fm

q find s ∈ Fn
q such that F (s) = v

The public key is (F, v). The secret is s such that F (s) = v.

1. The Prover picks up at random r0, r1, . . . , rd−2, t0 ∈R Fn
q , f0 ∈R Fm

q , and

∀p, 1 ≤ p ≤ d − 2, ∀i1, . . . ip, 1 ≤ i1 < i2 < . . . ip ≤ d − 1, f
i1...ip
0 , ∈R Fm

q .
Then she computes

rd−1 = s−
∑d−2

i=1 ri
t1 = r0 − t0
f1 = F (r0)− f0

and
∀p, 1 ≤ p ≤ d− 2, ∀i1, . . . ip, 1 ≤ i1 < i2 < . . . ip ≤ d− 1

f
i1...ip
1 = F (r0 + ri1 + . . .+ rip)− f i1...ip0



Then the Prover sends to the Verifier

c0 ← Com
(
r1, . . . , rd−1, G(t0, r1, . . . , rd−1)+

d−2∑
p=1

(−1)d−p
∑

1≤i1<...<ip≤d−1

f
i1...ip
0 + (−1)df0

)
∀i, 1 ≤ i ≤ d− 1

c2i−1 ← Com
(
r1, . . . , ri−1, ri+1, . . . , rd−1, t0, f0,

∀p, 1 ≤ p ≤ d− 2, ∀i1, . . . ip, 1 ≤ i1 < i2 < . . . ip ≤ d− 1,

such that ∀j, ij 6= i, f
i1...ip
0

)
c2i ← Com

(
r1, . . . , ri−1, ri+1, . . . , rd−1, t1, f1,

∀p, 1 ≤ p ≤ d− 2, ∀i1, . . . ip, 1 ≤ i1 < i2 < . . . ip ≤ d− 1,

such that ∀j ij 6= i, f
i1...ip
1

)
The verifier chooses a query Q ∈R {0, 1, . . . , d} and sends Q to the prover.

2. (a) If Q = 0, then the Prover sends (r1, r2, . . . , rd−1, t0, f0,

∀p, 1 ≤ p ≤ d− 2, ∀i1, . . . ip, 1 ≤ i1 < i2 < . . . ip ≤ d− 1, f
i1...ip
0 ).

The Verifier checks if

c0 = Com
(
r1, . . . , rd−1, G(t0, r1, . . . , rd−1) +

d−2∑
p=1

(−1)d−p

∑
1≤i1<...<ip≤d−1

f
i1...ip
0 + (−1)df0

)
and ∀i, 1 ≤ i ≤ d− 1,

c2i−1 = Com
(
r1, . . . , ri−1, ri+1, . . . , rd−1, t0, f0,

∀p, 1 ≤ p ≤ d− 2, ∀i1, . . . ip, 1 ≤ i1 < i2 < . . . ip ≤ d− 1,

such that ∀j, ij 6= i, f
i1...ip
0

)
(b) If Q = d, then the Prover sends (r1, r2, . . . , rd−1, t1, f1,

∀p, 1 ≤ p ≤ d− 2, ∀i1, . . . ip, 1 ≤ i1 < i2 < . . . ip ≤ d− 1, f
i1...ip
1 ).

∀i, 1 ≤ i ≤ d− 1,
The Verifier checks if

c0 = Com
(
r1, . . . , rd−1, v −G(t1, r1, . . . , rd−1)−

d−2∑
p=1

(−1)d−p



∑
1≤i1<...<ip≤d−1

f
i1...ip
1 −

(−1)df1 +

d∑
i=1

(−1)d−i
∑

S⊂{1,...,d−1}
|S|=i

F (
∑
j∈S

rj)
)

and ∀i, 1 ≤ i ≤ d− 1,

c2i = Com
(
r1, . . . , ri−1, ri+1, . . . , rd−1, t1, f1,

∀p, 1 ≤ p ≤ d− 2, ∀i1, . . . ip, 1 ≤ i1 < i2 < . . . ip ≤ d− 1, such

that ∀j, ij 6= i, f
i1...ip
1

)
(c) if Q = i, then the prover sends (r0, r1, . . . , ri−1, ri+1, . . . , rd−1, t1, f1,
∀p, 1 ≤ p ≤ d− 2, ∀i1, . . . ip, 1 ≤ i1 < i2 < . . . ip ≤ d− 1,

such that ∀j, ij 6= i, f
i1...ip
1 )

The Verifier checks if

c2i−1 = Com
(
r1, . . . , ri−1, ri+1, . . . , rd−1, r0 − t1, F (r0)− f1,

∀p, 1 ≤ p ≤ d− 2, ∀i1, . . . ip, 1 ≤ i1 < i2 < . . . ip ≤ d− 1,

such that ∀j, ij 6= i, F (r0 + ri1 + . . .+ rip)− f i1...ip1

)
and

c2i = Com
(
r1, . . . , ri−1, ri+1, . . . , rd−1, t1, f1,

∀p, 1 ≤ p ≤ d− 2, ∀i1, . . . ip, 1 ≤ i1 < i2 < . . . ip ≤ d− 1,

such that ∀j, ij 6= i, f
i1...ip
1

)
As for the the case d = 3, we have perfect correctness and the following

results (see Appendix B for details):

Theorem 5 The 3-pass protocol ZK(d) is statistically zero knowledge when the
commitment scheme Com is statistically hiding.

Theorem 6 The 3-pass protocol is proof of zero knowledge with zero knowledge
error d

d+1 when the commitment scheme Com is computationally binding.

Remark. As for the case d = 3, it is possible to design a 5-pass scheme.

6.2 The Z̃K(d) Scheme

Here we explain how it is possible to design the ˜ZK(d) Scheme. Again there are
two functions F and F̃ . If M (resp. M̃) denotes the number of computations

for F (resp. F̃ ), then M ' nd/d! and M̃ ' nd

d! + nd
d
2 e/dd2e! ' M . For ZK(d),

there are n variables and m equations. For ˜ZK(d), there are ñ ' n+ nd
d
2 e/dd2e!

variables and m̃ ' m + nd
d
2 e/dd2e! equations. There are more multiplications in

ZK(d) and more communication bits in ˜ZK(d). The values for both schemes
are given in Table 3. Here we have an impersonation probability less than 2−30.



Table 3. ZK(d) and ˜ZK(d) Schemes

ZK(d) scheme ˜ZK(d) scheme

Public key (bits) m m̃ ' m + nd
d
2
e/d d

2
e!

Secret key (bits) n n

M
nd

d!
×m

nd

d!
×m

Rounds R = d 30 ln(2)

ln(1+1/d)
e R̃ = 52

Number of (5dn + d ln d
2
e+ 2d−1 − 1) ·R

Communication or (322 + 2n + m + 3nd
d
2
e/d d

2
e!) · R̃

bits (3dn + d ln d
2
e+ 2d − 2) ·R

Multiplications C = 9(2d−1 − 1 + d!)MR C̃ = 3M̃R̃

6.3 Relations for sparse systems

In the previous computations, we have supposed that we have the maximum

number of coefficients. Then we obtained that in both cases, M ' M̃ ' nd

d! .

Then the total number of multiplications is a function of M or M̃ and the
number of rounds. For sparse systems, M or M̃ will be smaller but we will still
have the same relations between C, M and R (and similarly C̃, M̃ and R̃). Here
again, we can see that there are more variables and more communications bits
in the ˜ZK(d) schemes and more computations in the ZK(d) schemes.

7 Relations between the number of computations and the
number of coefficients

We begin with the ZK(d) scheme. We have:

f`((x1, x2, . . . , xn) =
∑

(i1,...,id)∈S`
d

γ`i1...idxi1xi2 . . . xid+

∑
ii,...,id−1∈S`

d−1

γ`i1...id−1
xi1xi2 . . . xid−1

+ . . .+
∑

ii,i2∈S`
2

γ`i1i2xi1xi2 +
∑
ii∈S`

2

γ`i1xi1

The number of multiplications for f` is given by

d|S`
d|+ (d− 1)|S`

d−1|+ (d− 2)|S`
d−2|+ . . .+ 2|S`

2|+ |S`
1|

and for F the number M of multiplications is

M =

m∑
`=1

[
d|S`

d|+ (d− 1)|S`
d−1|+ (d− 2)|S`

d−2|+ . . .+ 2|S`
2|+ |S`

1|
]



Moreover, F is computed at most 2d−1 − 1 times during the process. For gl

we have
(
d!(d − 1) + 1

)
|S`

d| multiplications and for G,

m∑
`=1

(
d!(d − 1) + 1

)
|S`

d|

multiplications and G is computed one time. Finally, for one round, the number
of multiplications is given by

( m∑
`=1

[(
d(2d−1 − 1) + d!(d− 1) + 1

)
|S`

d|+ (d− 1)|S`
d−1|+ (d− 2)|S`

d−2|+ . . .+

2|S`
2|+ |S`

1|
])

(])

and then we have to multiply by the number of rounds R to get C.
For the Z̃K(d) scheme, we have M̃ = M + nd

d
2 e/dd2e!.

Then C̃ = 3M̃R̃.

8 The particular case of Brent equations

In this section, we introduce the Brent equations. Suppose we want to multiply
two N ×N matrices. The naive method will use N2 multiplications. In fact for
N = 2, Strassen’s algorithm ([16]) requires 7 multiplications instead of 8 multi-
plications and Laderman showed that when N = 3 it is possible to use 23 multi-
plications instead of 33 = 27 ([6]). ForN = 2, 7 is the least number we can obtain.
For N = 3, it is not known if 23 is the least number in the non-commutative
case. In [1], it is shown that obtaining the product of two matrices N×N can be
done using s multiplications is equivalent to solve the following system of cubic

equations:

s∑
k=1

γijkαabkβcdk = δbcδiaδjd a, b, c, d, i, j ∈ {1, 2, . . . , n}

Here we have n = 3sN2, m = N6. If we use formula (]), we obtain that the
number of multiplications is 22× s×N6 if we use the ZK(3) scheme. It is also
interesting to design an authentication public key cryptographic scheme as close
as possible to Brent equations. In order to do this, we choose a system similar
to Brent equations but for which we know a particular solution. It is possible to
proceed as follows:

1. We consider the finite field Z/2Z
2. We take the Brent equations with s = 22 in order obtain an open problem

in the non-commutative case

3. We pick randomly variables α, β, γ in Z/2Z
4. We deduce the corresponding constants

5. We then use either ZK(3) or ˜ZK(3) to have a zero-knowledge protocol.



9 Morphisms of polynomials and systems of cubic
equations

9.1 The MP Problem

The IP problem (Isomorphism of Polynomials) has been used to construct pubic
key schemes (cf [9]). On one hand, this is not a NP-complete problem since it
admits an Arthur-Merlin game when the answer is yes and when the answer
is no). On the other hand, the MP problem( morphisms of polynomials) where
matrices are not supposed to be invertible is proved to be NP-complete ([3,
10]) and thus is much more difficult. So it is interesting to design a public key
authentication scheme based on MP. We explain briefly below how it is possible
to construct such a scheme by transforming MP very efficiently into a system of
equations of degree 3 and then applying our ZK(3) or ˜ZK(3) protocols.

9.2 From MP to polynomials of degree 3

We consider the two following systems:

(A) ck =
∑

1≤i≤n, 1≤j≤n

γkijaiaj +

n∑
i=1

µk
i ai, 1 ≤ k ≤ u

(B) zt =
∑

1≤i≤p, 1≤j≤p

αt
ijxixj +

p∑
i=1

βt
ixi, 1 ≤ t ≤ v

We want to find 2 matrices M = (mrs) 1≤r≤v
1≤s≤u

and H = (hdf ) 1≤d≤n
1≤f≤p

such that

M

 c1
...
cu

 =

 z1
...
zv

 and H

x1
...
xp

 =

 a1
...
an


For all t, 1 ≤ t ≤ v, on one hand, we have:

zt =

u∑
s=1

mts

( ∑
1≤i≤n
1≤j≤n

γsijaiaj +

n∑
i=1

µs
iai

)

zt =

u∑
s=1

mts

( ∑
1≤i≤n
1≤j≤n

γsij
( p∑
f=1

hifxf
)( p∑

b=1

hjbxb
)

+

n∑
i=1

µs
i

( p∑
f=1

hifxf
))

zt =

p∑
f=1

p∑
b=1

[ u∑
s=1

∑
1≤i≤n
1≤j≤n

γsijmtshifhjb

]
xfxb +

p∑
f=1

[ u∑
s=1

n∑
i=1

µs
imtshif

]
xf . On the

other hand, we have: zt =
∑

1≤i≤p
1≤j≤p

αt
ijxixj +

p∑
i=1

βt
ixi. This gives ∀t 1 ≤ t ≤



v, ∀f, 1 ≤ f ≤ p, ∀b, 1 ≤ b ≤ p, αt
fb + βt

f =

u∑
s=1

∑
1≤i≤n
1≤j≤n

γsijmtshifhjb +

u∑
s=1

n∑
i=1

µs
imtshif . Thus we obtain vp2 cubic equations and np+ vu unknowns.

10 Conclusion

In [12], a very efficient zero-knowledge proof based on the MQ problem (multi-
variate quadratic polynomials) is given. In this paper we proved that this con-
struction can be generalized to polynomials of degree d for any d ≥ 3. We studied
several constructions and we presented here the two most efficient ones denoted
by ZK(d) and ˜ZK(d). ZK(d) is quasi optimal in term of communication bits
and ˜ZK(d) is quasi optimal in term of number of computations. This result is
true for dense or sparse systems. We also presented two important specific prob-
lems (Brent equations and morphisms of polynomials) that can be transformed
into efficient public key schemes using ZK(d) and ˜ZK(d).
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A 5-pass scheme for ZK(3)

In this appendix, we give sketches of proof for the 5-passes scheme.

1. The Prover picks up at random r0, r1, t0 ∈ Fn
q and e0, f0, h0 ∈ Fm

q . Then she
computes r2 = s− r1 − r0. The Prover sends to the Verifier

c0 = Com(r1, r2, G(t0, r1, r2)− e0 + f0 + h0)
c1 = Com(r1, t0, e0, f0)
c2 = Com(r1, t1, e1, f1)
c3 = Com(r2, t0, e0, h0)
c4 = Com(r2, t1, e1, h1)

2. The verifier picks α ∈R Fq and sends α to the prover.
3. The prover computes:

(t1, e1f1, h1) = (αr0 − t0, αF (r0)− e0, αF (r0 + r1)− f0, αF (r0 + r2)− h0)

and sends (t1, e1f1, h1) to the verifier.
4. The verifier picks Q ∈R {0, 1, 2} and sends Q to the prover.
5. (a) If Q = 0, then the prover sends (r0, r1). The verifier checks if c0 =

Com(r0, r1, αr0 − t1, αF (r0)− e1, αF (r0 + r1)− f1).



(b) If Q = 1, then the prover sends (r0, r2). The verifier checks if c1 =
Com(r0, r2, αr0 − t1, αF (r0)− e1, αF (r0 + r2)− h1).

(c) If Q = 2, then the prover sends (r1, r2). The verifier checks if c2 =
Com(r1, r2, α(v−F (r1+r2)+F (r1)+F (r2))−G(t1, r1, r2)−f1−h1+e1).

As for the 3-pass scheme, we have perfect correctness and the following re-
sults(Proofs are sketched in Appendix A:

Theorem 7 The 5-pass protocol is statistically zero knowledge when the com-
mitment scheme Com is statistically hiding.

Proof sketch. Let S be a simulator which takes F and v without knowing s, and
interacts with a cheating verifier CV. We show that the simulator can imper-
sonate the honest prover with probability 2/3. The simulator randomly chooses
a value Ch∗ ∈R {0, 1, 2} and vectors s′, r′0, r

′
1, t
′
0 ∈R Fn

q and e′0, f
′
0, h
′
0 ∈R Fm

q ,
where Ch∗ is a prediction what value the cheating verifier CV will not choose.
Then it computes

r′2 ← s′ − (r′0 + r′1)

c′0 ← Com(r′0, r
′
1, t
′
0, e
′
0, f
′
0)

c′1 ← Com(r′0, r
′
2, t
′
0, e
′
0, h
′
0)

c′2 ← Com(r′1, r
′
2, G(t′0, r

′
1, r
′
2) + f ′0 + h′0 − e′0)

and sends (c′0, c
′
1, c
′
2) to CV. Then receiving a challenge α from CV, it computes:

t′1 = αr′0 − t′0

e′1 = αF (r′0)− e′0
Now
if Ch∗ = 0 it sets f ′1 = α(v−F (s′))+F (r′0+r′1)−f ′0, else f ′1 = αF (r′0+r′1)−f ′0
if Ch∗ = 1 it sets h′1 = α(v−F (s′))+F (r′0+r′2)−h′0, else f ′1 = αF (r′0+r′2)−h′0
Then it sends (t′1, e

′
1f
′
1, h
′
1) to CV

Due to the statistically hiding property of Com, a challenge Ch from CV is
different from Ch∗ with probability 2/3. If Ch 6= Ch∗, then (r′0, r

′
1), (r′0, r

′
2), and

(r′1, r
′
2) are accepted responses to Ch = 0, 1 and 2 respectively. �

Theorem 8 The 5-pass protocol is proof of zero knowledge with zero knowledge
error 2/3+1/3q when the commitment scheme Com is computationnaly binding.

Proof sketch. Let ((c1, c1, c2), αi, (t̃
(i)
1 , ẽ

(i)
1 , f̃

(i)
1 , h̃

(i)
1 ), Chj , Rsp

(i,j)) be six tran-
scripts for i ∈ {0, 1} and j ∈ {0, 1, 2} such that

Dec(F, v, ((c1, c1, c2), αi, (t̃
(i)
1 , ẽ

(i)
1 , f̃

(i)
1 , h̃

(i)
1 ), Chj , Rsp

(i,j)p) = 1, α0 6= α1, and
Chj = j. Then, by using the six transcripts, we show that we are able either
to break the binding property of Com or extract a solution for v. Consider the
situation where the responses are parsed as

Rsp(0,0) = (r̃
(0)
0 , r̃

(0)
1 )



Rsp(0,1) = (r̃
(0)
0 , r̃

(0)
2 )

Rsp(0,2) = (r̃
(0)
1 , r̃

(0)
2 )

Rsp(1,0) = (r̃
(1)
0 , r̃

(1)
1 )

Rsp(1,1) = (r̃
(1)
0 , r̃

(1)
2 )

Rsp(1,2) = (r̃
(1)
1 , r̃

(1)
2 )

Then we have:

c0 = Com(r̃
(0)
0 , r̃

(0)
1 , α0r̃

(0)
0 − t̃

(0)
1 , α0F (r̃

(0)
0 )− ẽ(0)1 , α0F (r̃

(0)
0 + r̃

(0)
1 )− f̃ (0)1 )

= Com(r̃
(1)
0 , r̃

(1)
1 , α1r̃

(1)
0 − t̃

(1)
1 , α1F (r̃

(1)
0 )− ẽ(1)1 , α1F (r̃

(1)
0 + r̃

(1)
1 )− f̃ (1)1 ) (6)

c1 = Com(r̃
(0)
0 , r̃

(0)
2 , α0r̃

(0)
0 − t̃

(0)
1 , α0F (r̃

(0)
0 )− ẽ(0)1 , α0F (r̃

(0)
0 + r̃

(0)
2 )− h̃(0)1 )

= Com(r̃
(1)
0 , r̃

(1)
2 , α1r̃

(1)
0 − t̃

(1)
1 , α1F (r̃

(1)
0 )− ẽ(1)1 , α1F (r̃

(1)
0 + r̃

(1)
2 )− h̃(1)1 ) (7)

c2 = Com(r̃
(0)
1 , r̃

(0)
2 , α0(v−F (r̃

(0)
1 + r̃

(0)
2 ) +F (r̃

(0)
1 ) +F (r̃

(0)
2 ))−G(t̃

(0)
1 , r̃

(0)
1 , r̃

(0)
2 )

−f̃ (0)1 − h̃(0)1 + ẽ
(0)
1 )

= Com(r̃
(1)
1 , r̃

(1)
2 , α1(v − F (r̃

(1)
1 + r̃

(1)
2 ) + F (r̃

(1)
1 ) + F (r̃

(1)
2 ))−G(t̃

(1)
1 , r̃

(1)
1 , r̃

(1)
2 )

−f̃ (1)1 − h̃(1)1 + ẽ
(1)
1 ) (8)

If two tuples of the arguments of Com are are distinct on either of the above
equations, the binding property of Com is broken.
Otherwise, (6) gives:

r̃
(0)
0 = r̃

(1)
0 , r̃

(0)
1 = r̃

(1)
1

This implies:

(α0 − α1)r̃
(0)
0 = −t̃(1)1 + t̃

(0)
1

(α0 − α1)F̃ (r
(0)
0 ) = −ẽ(1)1 + ẽ

(0)
1

(α0 − α1)F̃ (r
(0)
0 + r

(0)
1 ) = −f̃ (1)1 + f̃

(0)
1

If we use (7), we obtain two more equations:

r̃
(0)
2 = r̃

(1)
2 and (α0 − α1)F̃ (r

(0)
0 + r

(0)
2 ) = −h̃(1)1 + h̃

(0)
1

Now (8) gives

α0(v − F (r̃
(0)
1 + r̃

(0)
2 ) + F (r̃

(0)
1 ) + F (r̃

(0)
2 ))−G(t̃

(0)
1 , r̃

(0)
1 , r̃

(0)
2 )− f̃ (0)1 − h̃(0)1 + ẽ

(0)
1

= α1(v−F (r̃
(1)
1 + r̃

(1)
2 ) +F (r̃

(1)
1 ) +F (r̃

(1)
2 ))−G(t̃

(1)
1 , r̃

(1)
1 , r̃

(1)
2 )− f̃ (1)1 − h̃

(1)
1 + ẽ

(1)
1



This implies that

(α0 − α1)v = (α0 − α1)
[
F (r̃

(0)
1 + r̃

(0)
2 )− F (r̃

(0)
1 )− F (r̃

(0)
2 ) +G(r̃

(0)
0 , r̃

(0)
1 , r̃

(0)
2 )

+F (r̃
(0)
0 + r̃

(0)
1 ) + F (r̃

(0)
0 + r̃

(0)
2 )− F (r̃

(0)
0 )
]

Thus we obtain v = F (r̃
(0)
0 +r̃

(0)
1 +r̃

(0)
2 ). This means that a solution r̃

(0)
0 +r̃

(0)
1 +r̃

(0)
2

for v is extracted. �

B Proofs for the ZK(d) Scheme

Theorem 9 The 3-pass protocol is statistically zero knowledge when the com-
mitment scheme Com is statistically hiding.

Proof sketch. Let S be a simulator which takes F and v without knowing s, and
interacts with a cheating verifier CV. We show that the simulator can imperson-
ate the honest prover with probability d

d+1 . The simulator randomly chooses a
value Ch∗ ∈R {0, 1, . . . , d} and vectors s′, r′0, r

′
1, . . . , r

′
d−2, t

′
0 ∈R Fn

q , f ′0 ∈R Fm
q ,

and ∀p, 1 ≤ p ≤ d− 2, ∀i1, . . . ip, 1 ≤ i1 < i2 < . . . ip ≤ d− 1, f
′1...ip
0 , ∈R Fm

q ,
where Ch∗ is a prediction what value the cheating verifier CV will not choose.
Then it computes

r′d−1 ← s′ −
d−2∑
i=1

r′i

t′1 ← r′0 − t′0
f ′1 ← F (r′0)− f ′0

∀p, 1 ≤ p ≤ d− 2, ∀i1, . . . ip, 1 ≤ i1 < i2 < . . . ip ≤ d− 1,

f
′i1...ip
1 ← F (r′0 + r′i1 + . . .+ r′ip)− f

′i1...ip
0

Moreover it sets:

1. If Ch∗ = 0,

c′0 = v −G(t′1, r
′
1, . . . , r

′
d−1)−

∑d−2
p=1(−1)d−p

∑
1≤i1<...<ip≤d−1 f

′i1...ip
1 −

(−1)df ′1
∑d

i=1(−1)d−i
∑

S⊂{1,...,d−1}
|S|=i

F (
∑

j∈S r
′
j),

else c0 = G(t′0, r
′
1, . . . , r

′
d−1) +

∑d−2
p=1(−1)d−p

∑
1≤i1<...<ip≤d−1 f

′i1...ip
0

+ (−1)df ′0
2. If Ch∗ = i, 1 ≤ i ≤ d− 1, f

′12...(i−1)(i+1)...(d−1)
1 =

v − F (s′) + F (r′0 + r1 + . . .+ r′i−1 + ri+1 + . . .+ r′d−1)

− f
′12...(i−1)(i+1)...(d−1)
0 ,

else f
′12...(i−1)(i+1)...(d−1)
1 = F (r′0 + r1 + . . .+ r′i−1 + ri+1 + . . .+ r′d−1)

− f
′12...(i−1)(i+1)...(d−1)
0 ,



It also computes:

∀i, 1 ≤ i ≤ d− 1

c′2i−1 ← Com
(
r′1, . . . , r

′
i−1, r

′
i+1, . . . , r

′
d−1, t

′
0, f
′
0,

∀p, 1 ≤ p ≤ d− 2, ∀i1, . . . ip, 1 ≤ i1 < i2 < . . . ip ≤ d− 1,

such that ∀j, ij 6= i, f
′i1...ip
0

)
c2i ← Com

(
r′1, . . . , r

′
i−1, r

′
i+1, . . . , r

′
d−1, t

′
1, f
′
1,

∀p, 1 ≤ p ≤ d− 2, ∀i1, . . . ip, 1 ≤ i1 < i2 < . . . ip ≤ d− 1,

such that ∀j ij 6= i, f
′i1...ip
1

)
and sends c′0, c

′
1, c
′
2, . . . , c

′
2d−2 to tCV.

Due to the statistically hiding property of Com, a challenge Ch from CV is dif-
ferent from Ch∗ with probability d

d+1 . If Ch 6= Ch∗, then (r1, r2, . . . , rd−1, t0, f0,

∀p, 1 ≤ p ≤ d − 2, ∀i1, . . . ip, 1 ≤ i1 < i2 < . . . ip ≤ d − 1, f
i1...ip
0 ),

and ∀i, 1 ≤ i ≤ d − 1, (r0, r1, . . . , ri−1, ri+1, . . . , rd−1, t1, f1,∀p, 1 ≤ p ≤
d − 2, ∀i1, . . . ip, 1 ≤ i1 < i2 < . . . ip ≤ d − 1, such that ∀j ij 6= i, f

i1...ip
1 ) are

accepted responses to Ch = 0, 1, . . . (d− 1). �

Theorem 10 The 3-pass protocol is proof of zero knowledge with zero knowledge
error d

d+1 when the commitment scheme Com is computationnaly binding.

Proof sketch. Let ∀i, 0 ≤ i ≤ d, let ((c0, c1, c2, . . . , c2d−2), Chi, Rspi) be d + 1
transcripts such that Chi = i and Dec(F, v; (c0, c1, c2, . . . , c2d−2), Chi, Rspi) = 1
for i ∈ {0, 1, 2, . . . , d}. Then, by using the four transcripts, we show that we are
able either to break the binding property of Com or extract a solution for v.
Consider the situation where the responses are parsed as

Rsp0 = (r̃
(0)
1 , r̃

(0)
2 , . . . , r̃

(0)
d−1, t̃

(0)
0 , f̃

(0)
0 ,

∀p, 1 ≤ p ≤ d− 2, ∀i1, . . . ip, 1 ≤ i1 < i2 < . . . ip ≤ d− 1, f̃
(0),i1...ip
0 )

∀i, 1 ≤ i ≤ d− 1,

Rspi = (r̃
(i)
0 , r̃

(i)
1 , . . . , r̃

(i)
i−1, r̃

(i)
i+1, . . . , r̃

(i)
d−1, t̃

(i)
1 , f̃

(i)
1 ,

∀p, 1 ≤ p ≤ d− 2, ∀i1, . . . ip, 1 ≤ i1 < i2 < . . . ip ≤ d− 1,

such that ∀j, ij 6= i, f̃
(i),i1...ip
1 )

Rspd = (r̃
(d)
1 , r̃

(d)
2 , . . . , r̃

(d)
d−1, t̃

(d)
1 , f̃

(0)
1 ,

∀p, 1 ≤ p ≤ d− 2, ∀i1, . . . ip, 1 ≤ i1 < i2 < . . . ip ≤ d− 1, f̃
(d),i1...ip
1 )



We obtain:

c0 = Com
(
r̃
(d)
1 , . . . , r̃

(d)
d−1, v −G(t̃

(d)
1 , r̃

(d)
1 , . . . , r̃

(d)
d−1)−

d−2∑
p=1

(−1)d−p

∑
1≤i1<...<ip≤d−1

f̃
(d),i1...ip
1 −

(−1)df̃
(d)
1 +

d∑
i=1

(−1)d−i
∑

S⊂{1,...,d−1}
|S|=i

F (
∑
j∈S

r̃
(d)
j )
)

= Com
(
r̃
(0)
1 , . . . , r̃

(0)
d−1, G(t̃

(0)
0 , r̃

(0)
1 , . . . , r̃

(0)
d−1) +

d−2∑
p=1

(−1)d−p

∑
1≤i1<...<ip≤d−1

f̃
(0),i1...ip
0 + (−1)df̃

(0)
0

)
∀i, 1 ≤ i ≤ d− 1,

c2i−1 = Com
(
r̃
(i)
1 , . . . , r̃

(i)
i−1, r̃

(i)
i+1, . . . , r̃

(i)
d−1, r̃

(i)
0 − t̃

(i)
1 , F (r̃

(i)
0 )− f̃ (i)1 ,

∀p, 1 ≤ p ≤ d− 2, ∀i1, . . . ip, 1 ≤ i1 < i2 < . . . ip ≤ d− 1,

such that ∀j, ij 6= i, F (r̃
(i)
0 + r̃

(i)
i1

+ . . .+ r̃
(i)
ip

)− f̃ (i),i1...ip1

)
= Com

(
r̃
(0)
1 , . . . , r̃

(0)
i−1, r̃

(0)
i+1, . . . , r̃

(0)
d−1, t̃

(0)
0 , f̃

(0)
0 ,

∀p, 1 ≤ p ≤ d− 2, ∀i1, . . . ip, 1 ≤ i1 < i2 < . . . ip ≤ d− 1,

such that ∀j, ij 6= i, f̃
(0),i1...ip
0

)
c2i = Com

(
r̃
(i)
1 , . . . , r̃

(i)
i−1, r̃

(i)
i+1, . . . , r̃

(i)
d−1, t̃

(i)
1 , f̃

(i)
1 ,

∀p, 1 ≤ p ≤ d− 2, ∀i1, . . . ip, 1 ≤ i1 < i2 < . . . ip ≤ d− 1,

such that ∀j, ij 6= i, f̃
(i),i1...ip
1

)
= Com

(
r̃
(d)
1 , . . . , r̃

(d)
i−1, r̃

(d)
i+1, . . . , r̃

(d)
d−1, t̃

(d)
1 , f̃

(d)
1 ,

∀p, 1 ≤ p ≤ d− 2, ∀i1, . . . ip, 1 ≤ i1 < i2 < . . . ip ≤ d− 1,

such that ∀j, ij 6= i, f̃
(d),i1...ip
1

)
If two tuples of the arguments of Com are are distinct on either of the above
equations, the binding property of Com is broken.
Otherwise the conditions on c0 give:

r̃
(0)
1 = r̃

(d)
1 , . . . , r̃

(0)
d−1 = r̃

(d)
d−1



v = G(t̃
(0)
0 + t̃

(d)
1 , r̃

(d)
1 , . . . , r̃

(d)
d−1) +

d−2∑
p=1

(−1)d−p

∑
1≤i1<...<ip≤d−1

(f̃
(0),i1...ip
0 + f̃

(d),i1...ip
1 )

+(−1)d(f̃
(0)
0 + f̃

(d)
1 )−

d∑
i=1

(−1)d−i
∑

S⊂{1,...,d−1}
|S|=i

F (
∑
j∈S

r̃
(d)
j )
)

The conditions on c2i−1 give:

r̃
(i)
1 = r̃

(0)
1 , . . . , r̃

(i)
i−1 = r̃

(0)
i−1, r̃

(i)
i+1 = r̃

(0)
i+1, . . . r̃

(i)
d−1 = r̃

(0)
d−1

t̃
(i)
0 = t̃

(0)
0

f̃
(i)
0 = f̃

(0)
0

∀p, 1 ≤ p ≤ d− 2, ∀i1, . . . ip, 1 ≤ i1 < i2 < . . . ip ≤ d− 1,

such that ∀j, ij 6= i, f̃
(i),i1...ip
0 = f̃

(0),i1...ip
0

The conditions on c2i give:

r̃
(i)
1 = r̃

(d)
1 , . . . , r̃

(i)
i−1 = r̃

(d)
i−1, r̃

(i)
i+1 = r̃

(d)
i+1, . . . r̃

(i)
d−1 = r̃

(d)
d−1

t̃
(i)
1 = t̃

(d)
1

f̃
(i)
1 = f̃

(d)
1

∀p, 1 ≤ p ≤ d− 2, ∀i1, . . . ip, 1 ≤ i1 < i2 < . . . ip ≤ d− 1,

such that ∀j, ij 6= i, f̃
(i),i1...ip
1 = f̃

(d),i1...ip
1

We obtain:
t̃
(0)
0 + t̃

(d)
1 = t̃

(1)
0 + t̃

(1)
1 = r̃

(1)
0

F (r̃
(1)
0 ) = f̃

(1)
0 + f̃

(1)
1 = f̃

(0)
0 + f̃

(d)
1

∀i, 1 ≤ i ≤ d− 1, F (r̃
(1)
0 + r̃

(d)
i ) = F (r̃

(1)
0 + r̃

(1)
i ) = f̃

(1),i
0 + f̃

(1),i
1 = f̃

(0),i
0 + f̃

(d),i
1

More generally

F (r̃
(1)
0 + r̃

(d)
i1

+ . . .+ r̃
(d)
ip

) = F (r̃
(1)
0 + r̃

(1)
i1

+ . . .+ r̃
(1)
ip

) =

f̃
(1),i1...ip
0 + f̃

(1),i1...ip
1 = f̃

(0),i1...ip
0 + f̃

(d),i1...ip
1

Finally, we obtain

v = F (r̃
(1)
0 + r̃

(d)
1 + . . .+ r̃

(d)
d−1)

This means that a solution r̃
(1)
0 + r̃

(d)
1 + . . .+ r̃

(d)
d−1 for v is extracted. �


