Skip to main content

Improved Exponentiation and Key Agreement in the Infrastructure of a Real Quadratic Field

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7533))

Abstract

We describe improvements to the performance of a key agreement protocol based in the infrastructure of a real quadratic field through investigating fast methods for exponentiating ideals. We present adaptations of non-adjacent form and signed base-3 exponentiation and compare these to the binary method. To adapt these methods, we introduce new algorithms for squaring, cubing, and dividing w-near (f,p) representations of ideals in the infrastructure. Numerical results from an implementation of the key agreement protocol using our new algorithms and all three exponentiation methods are presented, demonstrating that non-adjacent form exponentiation improves the speed of key establishment for most of the currently recommended security levels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barker, E., Barker, W., Polk, W., Smid, M.: Recommendation for key management - part 1: General (revised). NIST Special Publication 800-57, National Institute of Standards and Technology (NIST) (March 2007), http://csrc.nist.gov/groups/ST/toolkit/documents/SP800-57Part1_3-8-07.pdf

  2. Biasse, J.-F., Jacobson Jr., M.J., Silvester, A.K.: Security Estimates for Quadratic Field Based Cryptosystems. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 233–247. Springer, Heidelberg (2010), http://dl.acm.org/citation.cfm?id=1926211.1926229

    Chapter  Google Scholar 

  3. Buchmann, J., Williams, H.C.: A key-exchange system based on imaginary quadratic fields. Journal of Cryptology 1, 107–118 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buchmann, J., Williams, H.C.: A Key Exchange System Based on Real Quadratic Fields. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 335–343. Springer, Heidelberg (1990), http://dl.acm.org/citation.cfm?id=646754.705067

    Google Scholar 

  5. Ciet, M., Joye, M., Lauter, K., Montgomery, P.: Trading inversions for multiplications in elliptic curve cryptography. Designs, Codes and Cryptography 39, 189–206 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on Information Theory 22(6), 644–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dixon, V.: Fast Exponentiation in the Infrastructure of a Real Quadratic Field. Master’s thesis, University of Calgary, Calgary, Alberta (2011)

    Google Scholar 

  8. Free Software Foundation: The GNU Multiple Precision Arithmetic Library (2011), http://gmplib.org

  9. Guillou, L.C., Quisquater, J.-J.: A Practical Zero-Knowledge Protocol Fitted to Security Microprocessor Minimizing Both Transmission and Memory. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg (1988)

    Google Scholar 

  10. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography, pp. 98–99. Springer Science and Buisness Media, LLC (2004)

    MATH  Google Scholar 

  11. Imbert, L., Jacobson Jr., M.J., Schmidt, A.: Fast ideal cubing in imaginary quadratic number and function fields. Advances in Mathematics of Communications 4(2), 237–260 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jacobson Jr., M.J., Scheidler, R., Stein, A.: Cryptographic aspects of real hyperelliptic curves. Tatra Mountains Mathematical Publications 45, 1–35 (2010)

    MathSciNet  Google Scholar 

  13. Jacobson Jr., M.J., Scheidler, R., Williams, H.C.: The efficiency and security of a real quadratic field based key exchange protocol. In: Public Key Cryptography and Computational Number Theory (Warsaw 2000), pp. 89–112. Walter de Gruyter, Berlin (2001)

    Google Scholar 

  14. Jacobson Jr., M.J., Scheidler, R., Williams, H.C.: An improved real quadratic field based key exchange procedure. Journal of Cryptology 19, 211–239 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jacobson Jr., M.J., Williams, H.C.: Solving the Pell Equation. CMS Books in Mathematics. Springer (2009) iSBN 978-0-387-84922-5

    Google Scholar 

  16. Jebelean, T.: A double-digit Lehmer-Euclid algorithm for finding the GCD of long integers. Journal of Symbolic Computation 19, 145–157 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lehmer, D.H.: Euclid’s algorithm for large numbers. The American Mathematical Monthly 45(4), 227–233 (1938)

    Article  MathSciNet  Google Scholar 

  18. Shanks, D.: The infrastructure of real quadratic fields and its applications. In: Proc. 1972 Number Theory Conf., Boulder, Colorado, pp. 217–224 (1972)

    Google Scholar 

  19. Shanks, D.: On Gauss and composition I, II. In: Proceedings NATO ASI on Number Theory and Applications, pp. 163–204. Kluwer, Dordrecht (1989)

    Google Scholar 

  20. Silvester, A.: Doctoral Dissertation, University of Calgary (in progress, 2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dixon, V., Jacobson, M.J., Scheidler, R. (2012). Improved Exponentiation and Key Agreement in the Infrastructure of a Real Quadratic Field. In: Hevia, A., Neven, G. (eds) Progress in Cryptology – LATINCRYPT 2012. LATINCRYPT 2012. Lecture Notes in Computer Science, vol 7533. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33481-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33481-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33480-1

  • Online ISBN: 978-3-642-33481-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics