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Abstract. In this paper, we show that many formal and informal
security results on distance-bounding (DB) protocols are incorrect/
incomplete. We identify that this inadequacy stems from the fact that the
pseudorandom function (PRF) assumption alone, invoked in many secu-
rity claims, is insufficient. To this end, we identify two distinct shortcom-
ings of invoking the PRF assumption alone: one leads to distance-fraud
attacks, whilst the other opens for man-in-the-middle (MiM) attacks.
First, we describe –in a more unitary, formal fashion– why assuming
that a family of functions classically used inside DB protocols is solely a
PRF is unsatisfactory and what generic security flaws this leads to. Then,
we present concrete constructions that disprove the PRF-based claimed
security of several DB protocols in the literature; this is achieved by us-
ing some PRF programming techniques. Whilst our examples may be
considered contrived, the overall message is clear: the PRF assumption
should be strengthened in order to attain security against distance-fraud
and MiM attacks in distance-bounding protocols!

1 Introduction

Distance-bounding (DB) protocols were introduced by Brands and Chaum [3]
with the view of combating man-in-the-middle attacks against ATM systems.
The main idea of DB protocols is that a tag (RFID card, smart card, etc.)
should prove a short distance between them and a reader, and –most often than
not– authenticate themselves in front of this reader. The authentication part is
based on a pre-established secret. By default, this shared secret is a key hard-
coded on the tag which the reader associates to the tag’s id via a stored database.
The tag is often referred to as the prover whereas the reader is referred to as a
verifier. In the vast literature covering such protocols (e.g., [10,12,14,16]), three
main/classical types of possible attacks have been distinguished. The first is
distance-fraud (DF), in which a prover tries to convince that he is closer than
what he really is. The second type of attack is themafia-fraud (MF) attack, which
involves three entities: an honest prover, an honest verifier and an adversary.
The adversary communicates with both the prover and the verifier and tries to
demonstrate to the verifier that the prover is in the verifier’s proximity although
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the prover is in reality far away from the verifier. Finally, the third type of attack
is denoted as terrorist-fraud (TF). Here, the adversary has the same goal as in
the mafia-fraud attack, but in this case the prover is dishonest and colludes with
the adversary up to the non-disclosure of essential information, i.e., secret keys
or any other information that may more easily facilitate later impersonations of
the tag. Other more generic MiM attacks have been imagined [4,6], generalising
mainly distance-fraud or mafia-fraud respectively.

Meant to protect against such intricate attacks [3], implemented versions of
DB protocols have only proven to be efficient in preventing relay attacks [5]. This
is undeniably an important step. However, given the clear view of progressing
in secure remote unlocking (e.g., [8]), distance-bounding protocols should be de-
signed to resist against more generic (MiM, DF, TF,etc.) attacks, as aimed [3].
Whilst some attempts of formal models and formal proofs of security have re-
cently arisen [1,6], provably secure distance-bounding is not at all a stable, well-
founded area. For instance, we consider that [1], addressing the protection against
terrorist-fraud using secret sharing schemes, only provides rather heuristic secu-
rity analyses, failing to pinpoint the (necessary and) sufficient conditions for
preventing TF on distance-bounding. On a parallel front, the model of Dürholz
et al. in [6] is more attentive to detail, moving closer to provably secure DB. But,
whilst [6,7] claim some security results, we believe that their informal proofs of
security for DF and for MF are flawed. Thus, it is therein common to replace a
PRF by a random function in a game-reduction proof, even if the PRF key is held
by the adversary. This practice is obviously flawed. In this paper, we will show
where these formal or informal proofs fell short of the correct arguments. Whilst
we leave the concrete amendments of these issues for future work, we underline
some concrete aspects that the state-of-art on (secure) DB has overlooked in
their assessments, aspects that fundamentally compromise the security of these
protocols. We formalise these concerns. We provide supporting examples, using
PRF programming techniques, on a list of (claimed-to-be-secure) DB protocols1

in the literature. We suspect that there are many more DB protocols susceptible
to the kind of attacks we exhibit, especially since the DB protocols bear clear
resemblances amongst them; The list of attacks herein is summarised in Table 1;
as one can see, it comprises the somewhat popular DB protocols.

Table 1. Protocols Broken by DF or MiM attacks based On Faulty PRFs

Protocol Distance-Fraud MiM attack

TDB [1] page 108 page 109

DFKO (Enhanced Kim-Avoine Protocol) [6] page 110 –

Hancke and Kuhn’s [9] page 112 –

Avoine and Tchamkerten’s [2] page 114 –

Reid’s et al [14] page 115 page 116

Swiss Knife [12] – page 118

1 In the concrete presentation, we will make this clear. Whilst a protocol may have
not been claimed to be secure against all frauds, it was claimed to be secure against
a specific fraud. In our analysis/exemplification, we will show the contrary.
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Structure of the paper. The remainder of the paper is structured as follows. In
Section 2, we present some reminders about distance-bounding protocols and
PRF functions. In Section 3, we give one general construction of PRFs with
trapdoors. This construction prompts to distance-fraud and MiM attacks in DB
protocols. In Section 4, we present such attacks on the protocols listed in Table 1.
We conclude in Section 5.

2 Distance-Bounding Protocols and the PRF Assumption

In this section, we will recall general facts about distance-bounding protocols
and basic notions about pseudorandom functions.

Verifier V Prover P

shared secret x shared secret x

Initialisation phase

messagesV−−−−−−−−−−−−−−−−→
messagesP←−−−−−−−−−−−−−−−−

a := fx(messagesP ,messagesV )

Distance-bounding phase
for i = 1 to n

Start Clock
ci−−−−−−−−−−−−−−−−→

ri := F (ci, ai, xi)

Stop Clock
ri←−−−−−−−−−−−−−−−−

Fig. 1. Informative Sketch on Most Distance-Bounding Protocols

Distance-Bounding Protocols. The great majority of distance-bounding proto-
cols [10,12,14,16] consist of a data-agreement phase or initialisation phase and
a time-critical, fast computation-based distance-bounding phase. Fig. 1 captures
the core of distance-bounding (DB). In the initialisation phase, a prover P and
a verifier V use their randomnesses, their common secret x and a PRF f to
exchange messagesP and messagesV respectively and establish a sub-secret a;
a is normally a bitstring or a vector of elements in a finite space of small
size. In the DB phase which is time-critical, the responses are normally defined
via a response-function F . The i-th (one-bit) response ri to the i-th randomly
picked small-size challenge ci is most often given by a computation of the sort
F (ci, ai, xi), where i ∈ {1, . . . , n}. The initialisation phase makes it possible for
both parties to evaluate this function even though they do not have their coun-
terpart’s coins (i.e., the two honest parties have agreed over the vector a, they
share xi and they both know ci).
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Pseudorandom functions. A pseudorandom function (PRF) is a family of (poly-
nomially computable) functions: a set of functions of arbitrary-length input and
arbitrary-length output indexed on a set of keys. On this family, a computational
assumption is taken, which is denoted as the pseudorandom function (PRF) as-
sumption, i.e.,: for an instance sampled uniformly from the family, there exists
no polynomial algorithm that distinguishes this instance from a real random
function based on a black-box interaction with an oracle simulating them.

One can use the game-methodology [15] to formalise the PRF assumption.
To this end, we give the descriptions/definitions below. Let F be a family of
functions with domain D and range R. Let b be a bit. Let D be a ppt. distin-
guisher that can interact in a black-box manner with an oracle O. We denote
this interaction as DO and it is depicted as follows in Fig. 2.

1: Parameters: security parameter s; poly a polynomial; a ppt. algorithm D; � :=
�(s); L := L(s); D = {0, 1}�; R = {0, 1}L;

2: viewD := ∅
3: while nb. of iterations ≤ poly(s) do
4: x← D(viewD; rD); x ∈ D
5: if x =“end : b” with b ∈ {0, 1}, stop and return b
6: y ← O(x); y ∈ R
7: viewD := viewD ∪ {y}
8: end while
9: return 0

Fig. 2. The DO Interaction

Below, we will simply refer to the oracle implementing f0 or f1 by f b ac-
cordingly, responding with fb(x) ∈ R for a query x ∈ D. Assume the following
description of the PRF game, in Fig. 2.

1: Parameters: security parameter s; � := �(s); L := L(s); D = {0, 1}�, R = {0, 1}L;
a family F := F(s) of functions from D→ R; a ppt. algorithm D; a bit b.

2: f0 ←−U [D → R] // pick a random function from D to R
3: f1 ←−U F //sample a function from the family

4: b←− Dfb

5: return b

Fig. 3. The PRF Game PRF b
F ,D

The output of the above game (0 or 1) is denoted Out(PRF b
F ,D).

Definition 1 (The PRF assumption2). Let s be a security parameter, k,
�, L be some parameters taken as functions of s, K = {0, 1}k, D = {0, 1}�,
2 This is formalised similarly to [13].
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R = {0, 1}L. Let F be a family of functions (fk)k∈K with fk : D → R3 (an
indexed-set of functions over K).

We say that the family F is a PRF or that the family F respects the PRF
assumption if for any ppt. algorithm D,

∣
∣
∣
∣
Pr[Out(PRF 0

F ,D) = 1]− Pr[Out(PRF 1
F ,D) = 1]

∣
∣
∣
∣
< negl(s),

where negl is a function over natural numbers eventually lower than the inverse
of any polynomial and the probability is taken over the random coins of D.

We will also employ the notion of a hard-core function.

Definition 2 (Hard-core function). Let s be a security parameter, k, �, L
be some parameters taken as functions of s, K = {0, 1}k, D = {0, 1}�, R =
{0, 1}L. Let F be a family of functions (fk)k∈K with fk : D → R. A func-
tion h on {0, 1}∗ is a hard-core function for F if for all polynomial-time or-
acle adversary A playing the following game, the probability that it wins is
negligible.

1: pick k ∈ K
2: run z = Afk(·)

3: win if and only if z = h(k)

Note that if F is a PRF, then the identity function is hard-core. Further, observe
that if h truncates to half of the first bits, it may not be hard-core for a PRF.
Indeed, let fk0,k1(x) = k0 when x = 0 and fk0,k1(x) = gk1(x) when x �= 0; if g is
a PRF, then f is a PRF as well, but h(k0, k1) = k0 is clearly not hard-core. We
could still transform a PRF g into a PRF f for which h is hard-core, for instance
with fk0,k1(b, x) = gkb

(x).

3 PRFs with a Trapdoor

In this section, we are going to show how, out of a PRF G, one can program
another PRF F to accommodate a trapdoor making its instances leak a special
value when called on that trapdoor. Otherwise, an instance of the thus-wise
constructed PRF F “behaves” like the corresponding instance of G. The ultimate
goal of these constructions is to (help) show that the PRF assumption is not
enough for the security of DB protocol, as claimed [1,6]. In fact, inappropriate
PRFs used in DB protocols can lead to frauds: the first construction points to
distance-fraud and the second to man-in-the-middle (MiM) attacks.

Consider the following informal explanations related to construction. Consider
a function σ, with the aim of mapping an element of a domain K ×D onto an
element of a domain R. Typically, σ embeds the input k ∈ K so that its output
leaks k. Similarly, correctPad maps elements from K onto disjoint subsets of the
set D above. Also, correctPad(k) must be such that its inverse is computable,

3 We denote a function fk ∈ F , for a fixed k ∈ K as a PRF instance.



On the Pseudorandom Function Assumption in (Secure) DB Protocols 105

i.e., the token k is extractable out of any correctPad(k) element. We formalise
this below and use it to formulate our result on PRF-constructions.

Theorem 3. Let s be a security parameter. Let the following sizes of domains
be expressed in function of s: �, �̄, L, L̄, k. Consider the following three sets
D = {0, 1}�, D̄ = {0, 1}�̄, R = {0, 1}L, R̄ = {0, 1}L̄, K = {0, 1}k.

Let h be a polynomially computable function on {0, 1}∗.
Let G be a family of functions (gk)k∈K and gk : D̄ → R̄. We assume that G

is a PRF and that h is a hard core function for G. Let TO be a polynomial-time
oracle-algorithm accessing O, admitting inputs in D and outputs in R.

Consider a polynomially computable function σ from K ×D to R.
Consider a map correctPad from K to the set of subsets of D such that there

exists a polynomial time oracle-algorithm extractgk(·) from D such that for any
k ∈ K and x ∈ correctPad(k), we have extractgk(·)(x) = h(k). It is further
assumed that given x and k, it can be decided in polynomial time whether x
belongs to correctPad(k) or not.

Let a F be a family of functions (fk)k∈K and, for some arbitrarily fixed k ∈ K,
fk : D → R defined as follows:

fk(x) =

{

σ(k, x), if x ∈ correctPad(k)

T gk(·)(x), otherwise .

Then, the family F is a PRF.

The proof of Theorem 3 is natural, following the game-reduction methodol-
ogy [15], by indistinguishability between games based on failure-events.

Proof. We first observe that since membership of correctPad and σ can be com-
puted in polynomial time, then f is polynomially computable as well.

Let k ∈ K be arbitrarily fixed. Consider the distinguisher D distinguishing
(fk)k∈K in the PRF b

F ,D game. Let (x1, fk(x1)), . . . , (xn, fk(xn)) be the query-

reply tuples between D and the oracle in PRF 1
F ,D, for n ≤ poly(s), with poly

and s defined in PRF b
F ,D, xi ∈ D, fk(xi) ∈ R, for all i ∈ {1, . . . , n}.

Clearly, Pr[D wins in PRF 0
F ,D] = Pr[D wins in PRF 0

G,D]. Since G is a PRF,
we further have

∣
∣Pr[D wins in PRF 0

G,D]− Pr[D wins in PRF 1
G,D]

∣
∣ = negl(s).

So, we just have to show that
∣
∣Pr[D wins in PRF 1

F ,D]− Pr[D wins in PRF 1
G,D]

∣
∣ = negl(s).

Unless D queries xi (i ∈ {1, . . . , n}) with xi ∈ correctPad(k), his view is that of
D in the “corresponding”PRF 1

G,D with the same random coins, i.e.,

. . . , (xi−1, T
gk(·)(xi−1)), (xi, T

gk(·)(xi)), (xi+1, T
gk(·)(xi+1)), . . . , (xn, T

gk(·)(xn))

In the contrary case, where he does query xi ∈ correctPad(k), the view of D
contains σ(k, xi) instead of T g(xi) (for this fixed i).
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So, the game PRF 1
F ,D is indistinguishable from the game PRF 1

G,D unless the
failure-event F of querying the specific xi ∈ correctPad(k) occurs. In other words,
Pr[D wins in PRF 1

F ,D|¬F ] = Pr[D wins in PRF 1
G,D|¬F ]. So,

∣
∣Pr[D wins in PRF 1

F ,D]− Pr[D wins in PRF 1
G,D]

∣
∣ ≤ Pr[F ].

What is left to be proven is that Pr[F ] is negligible. To bound the probability
Pr[F ] of F occurring, we let pi be the probability that xi ∈ correctPad(k) and
that xj �∈ correctPad(k) for j ∈ {1, . . . , i− 1}. Clearly, Pr[F ] ≤ ∑

i pi.
So, this reduces to proving that pi is negligible for each i. To do so, we con-

struct a new algorithm Agk(·). Namely, A simulates D and T until it computes
xi. Then, the algorithm A uses xi to get k′ = extractgk(·)(xi).
In the case that xj �∈ correctPad(k) for j = 1, . . . , i− 1, the simulation is perfect.
If xi ∈ correctPad(k), then k′ = h(k) and we obtain that A outputs h(k). So,
Pr[A yields h(k)] ≥ pi. Since h is hard-core, pi is negligible. ��

The first note on Theorem 3 is that a PRF can be constructed, if PRFs exist.
I.e., starting from G being some PRF, Theorem 3 gives the concrete construction
of another PRF F , with a trapdoor.

Then, one of the aims of this result is to indicate that if an inappropriate PRF
F is used in (the initialisation phase of) DB protocols, then a distance-fraud can
be mounted onto those protocols. To see this easily, you may want to refresh
the notations in Fig. 1 informally describing the DB protocols. Now, imagine
a dishonest prover P ∗ (who of course has the shared-key x and) that wants to
mount a distance-fraud onto a DB protocol using a trapdoor-enhanced PRF F
as the one in Theorem 3. By applying an input from correctPad(x), he sends
messages to the verifier V such that (messagesP ,messagesV ) ∈ correctPad(x).
Then, fx(messagesP ,messagesV ) = σ(x,messagesP ,messagesV ). Usually, in DB
protocols (e.g., [1,6,9,2], etc.), messagesP is in fact a nonce NP and messagesV
is a nonce NV . So, an example of such adaptive choices and exploitation of poor
PRFs is the following: P ∗ can choose adaptively NP to be, say, x and then
fx(messagesP ,messagesV ) becomes fx(x,NV ) which is equal –by the trapdoor
property– with, say, x‖x‖ . . . ‖x. Since the responses are based on this output
and x, this usually enables P ∗ to answer any challenge before they even arrive at
him. This means that he successfully mounts a distance-fraud attack. Of course,
this sort of artificial function and its trapdoor depend on the protocol under dis-
cussion, as Section 4 will show. I.e., we need appropriate special σ(x,NP , NV ) to
be output of the PRF instances. (Usually, it simply implies that the response is
a constant in terms of the challenge). Also, other forms of output of the PRF in-
stances can be imagined, as long as they facilitate the responses of the DB phase
to be independent from the challenge (i.e., instead of σ(x,messagesP ,messagesP )
we could directly some constant cte known to P ∗ and lying in the appropriate do-
mains used in the above theorem). It is also needed that the distribution of such
outputs and the domains we have at hand, σ(x,messagesP ,messagesP ) seems a
reasonable choice for the “conned” protocols participants.
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This construction of a “trapdoor PRF” (from a given PRF) uses an oracle in
the inversion of correctPad only for the purpose of it giving raise not only to DF
but to MiM attacks also. The basic idea of MiM attacks of this sort relies on
a PRF (fx)x∈K such that fx(y) = x when y = gx(cte) + x, where gx is a PRF
instance from a given PRF G. By adapting this generic construction, we could
have an adversary first getting y by querying a specific set of challenges ci to the
prover, then using y as a nonce to extract x from the prover. A specific, detailed
description of an attack of the sort is presented in page 109 against the TDB
protocol [1]. For the proof of such (fx)x∈K being a PRF when constructed as
in Theorem 3, there is the need that the inversion of correctPad is made via an
access to an oracle of the stated sort.

4 PRF-Based Attacks

4.1 TDB Protocol

In this protocol, due to [1] and depicted in Fig. 4, the prover P and the verifier
V share a secret s that can be viewed as a vector (s1, . . . , sm) of m coordinates
over a group G, i.e., si ∈ G, i ∈ {1,m}. The prover P and the verifier V use
an (n, k) threshold scheme on some sub-secrets obtained via a pseudo-random
function instance fs. Like in most cases, the protocol is divided into two phases:
the initialisation phase and the distance-bounding phase.

Verifier V Prover P

shared key s ∈ Gm shared key s ∈ Gm

Initialisation phase

NV ← {0, 1}m NP←−−−−−−−−−−−−−−−− NP ← {0, 1}m
NV−−−−−−−−−−−−−−−−→

For i = 1, . . . , n, j = 1, . . . ,m, compute ri,j based on fs(NP , NV )

Distance-bounding phase
for i = 1 to m

Pick ci ∈ [1, n]

Start Clock
ci−−−−−−−−−−−−−−−−→

Stop Clock
rci,i←−−−−−−−−−−−−−−−−

verify the responses and that for all rounds Δti ≤ 2Δtmax

Fig. 4. The TDB protocol [1]

- Initialisation Phase: This phase is not time critical. The prover P and the
verifier V select two random nonces NP and NV correspondingly and transmit
them to each other. Then, both the prover P and the verifier V compute an n×m
matrix R, where each column (r1,i, r2,i, . . . , rn,i)

T of R is obtained using the
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(n, k) threshold scheme applied on si. Namely, the rci,i’s are generated with the
help of a pseudorandom function f by computing fs(NP , NV ) and the elements
of the last row of the matrix are generated by summing all the elements in the
upper rows on the same column and adding the corresponding secret bit of s.
For instance, if we consider the case where n = k = 3, G = F2 and a specific
secret sharing scheme, then the response matrix will have dimension 3×m and
will have the form:

R1 =

⎛

⎜
⎝

r1,1 · · · r1,m

r2,1
. . . r2,m

s1 ⊕ r1,1 ⊕ r2,1 · · · sm ⊕ r1,m ⊕ r2,m

⎞

⎟
⎠

- Distance Bounding Phase: This phase is time critical and involves the ex-
change of challenges-responses (rounds) at maximum bit-rate. Such an exchange
is repeated m times (i.e., there are m rounds). Assume a generic round i (for i
varying from 1 to m). At each round i the challenge-response delay Δti is mea-
sured. The verifier V starts by choosing a random ci in its domain {1, . . . , n},
initialising the clock to zero and transmitting ci to P . The prover P responds
with rci,i which denotes the element located at the ci-th row and the i-th col-
umn of the table R. On receiving rci,i, V stops the clock and stores the received
response and the delay time Δti.

After the end of the distance-bounding phase, a verification phase is performed
and the verifier V checks if the received responses are correct and if for the
response times Δti it holds that Δti ≤ 2Δtmax, where Δtmax denotes the time
it takes for a bit to be transmitted from the prover to the verifier.

Based on the construction and significance of Theorem 3, we construct the
following attack on an instantiation of the TDB protocol. The same sort of attack
would work for other instantiations of the TDB protocol (i.e., with different secret
sharing schemes inside).

Distance Fraud Attack on an Instantiation of the TDB Protocol. Let
g be a PRF from {0, 1}2m to itself. Let us consider the PRF f constructed from
Theorem 3 based on g and the following elements. Let T g(x) = g(x). LetD be the
set of (NP , NV ) pairs. Let σ(s,NP , NV ) = s‖s, correctPad(s) = {s‖NV ;NV ∈
{0, 1}m}, and extractgs(.)(NP , NV ) = NP . We have

fs(NP , NV ) =

{

s‖s, if NP = s

gs(NP , NV ), otherwise

By Theorem 3, f is a PRF. Consider an instantiation of the TDB protocol, where
the response matrix is R1 above and the PRF f is being used.

In this instance of the TDB protocol, it is obvious that a legitimate, far-away
but dishonest prover could easily perform a distance-fraud attack. He just needs
to choose NP to be equal to s (as shown above). Then, the R1 matrix has all
its rows equal to s. So for any challenge ci the response will be the i-th bit of
the secret key s. This sort of fixed responses can be sent before receiving the
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challenge. Thus, he can defeat the distance-bound. The extension to n, k greater
than 3 is trivial: in the trapdoor case of fs, one repeats s for n − 1 times and
then considers the case where n is odd and even separately.

So, if a PRF exists, then we can exhibit instances of TDB which are insecure
against DF! The PRF assumption is not enough for the security of the TDB
protocols against DF.

Man-in-the-Middle Attack on an Instantiation of the TDB Protocol.
Consider again the instantiation of the TDB protocol with n = k = 3, G = F2

and with R1 being the response matrix. Let the shared key be denoted by s. Let
g be a PRF mapping {0, 1}m

2 to itself and from {0, 1}2m to {0, 1} 3m
2 . We assume

that the least significant half of s is hard-core for g. We define T gs(·)(NP , NV ) =
(α, β, γ, β ⊕ gs(α)) where gs(NP , NV ) = (α, β, γ). Let us consider the following
elements: σ(s,NP , NV ) = s‖s, correctPad(s) = {NP‖α‖(gs(α) ⊕ lsbm

2
(s)) ; α ∈

{0, 1}m
2 }, and extractgs(.)(NP , α, β) = β ⊕ gs(α). Let f be constructed from

Theorem 3 based on g as below. By Theorem 3, f is a PRF.

fs(NP , NV ) =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(α, β, γ, β ⊕ gs(α)), if NV is not of the form α‖(gs(α)⊕ lsbm
2
(s))

and (α, β, γ) = gs(NP , NV )

s‖s, if NV = α‖(gs(α)⊕ lsbm
2
(s)), for some α

In the notations of the TDB protocol, r1 = (α, β) and r2 = (γ, β ⊕ gs(α)).
We are now going to explain the attack. The attacker has the goal of recovering

s from the prover, so that he can later impersonate this prover as he pleases.
To do so, the attacker impersonates first the verifier to the prover. He sends an
arbitraryNV , so the prover calculates the generic subsecret vectors (α′, β′, γ′, ψ′)
as some (α, β, γ, β ⊕ gs(α)). Then the adversary sends many challenges equal to
1, ci = 1, e.g., for i ∈ {1, . . . , m2 }. In this way, he gets the first half of the
first subsecret-vector r1=(α, β), i.e., he obtains α,. Then, the adversary sends
the prover many challenges equal to 3, some ci = 3. By the secret sharing
scheme used, the responses to the latest challenges are equal to r1 + r2 + s =
(α, β)⊕(γ, β⊕gs(α))⊕s = (α⊕γ, gs(α))⊕s. So, from this approach, the attacker
gets gs(α) ⊕ lsbm

2
(s). Finally, he can now form N ′

V = α‖(gs(α) ⊕ lsbm
2
(s)). The

second step of the attack (in a new hijacked session in which the attacker is
again impersonating the verifier to the honest prover) consists in the attacker
to employ his knowledge gained as above to choose NV equal to N ′

V . By then
injecting any challenges to the prover, the attacker will know (due to the built-in
PRF) that the responses of the prover will be the bits of s. Like this, he will
learn the whole of the secret key and he will be subsequently able to impersonate
this prover in any circumstance.

Again, according to Theorem 3, the resulting family of functions (fs)s∈Gm is
a PRF. The attack exhibited does therefore disprove the claims of MiM security
in [1] based solely on the PRF assumption.
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4.2 DFKO Protocol (Enhancement of the Kim-Avoine Protocol)

The protocol proposed by Dürholz et al. [6] is based on the protocol proposed
by Kim and Avoine [11]. More precisely, the protocol proposed by Kim and
Avoine [11] is claimed to be mafia and distance-fraud resistant. Dürholz et al. [6]
have modified it in order to safeguard against impersonation attacks. Its sketch
is depicted in Fig. 5. This protocol is again discriminated into two phases: the
initialisation phase and the distance-bounding phase. During the initialisation
phase both the prover P and the verifier V select a random nonce NP and a
random nonce NV correspondingly. Then, both of them compute the output of
a PRF instance fx that takes as input the two random nonces that they have
exchanged, i.e.,: I‖C‖D‖v0‖v1 := fx(NV ‖NP ), where x is shared secret/key.
The prover P also sends part of this output (i.e., I) to the verifier and V verifies
that this is the correct value for I.

During the distance-bounding phase the verifier V sends the bit-challenges Ri

to the prover that are either generated randomly or using the value D (i.e., a part
of the output of fx(NP , NV ) generated in the initialisation phase). If the chal-
lenges are random, then the responses are also random otherwise the responses
depend on the value v0 (i.e., a part of the output of fx(NP , NV ) generated in
the initialisation phase). For more details regarding the Dürholz et al. protocol,
we refer the readers to [6].

Based on Theorem 3, we now give an attack on an instantiation of DFKO.

Distance Fraud Attack on the DFKO Protocol. Let g be a PRF with
parameters as the one needed in the DFKO protocol. Let us consider the PRF f
constructed from Theorem 3 based on g and the following elements. Let T g(x) =
g(x). Let σ(x,NP , NV ) = I‖0 · · ·0‖D‖v0‖v1 where gx(NP , NV ) parses into I‖ ·
‖D‖v0‖v1, correctPad(x) = {x‖NV ;NV nonce}, and extractgx(.)(NP , NV ) = NP .
We have

fx(NP , NV ) =

{

I‖0 . . .0‖D‖v0‖v1, if NP = x for gx(x,NV ) = I‖C‖D‖v0‖v1
gx(NP , NV ) otherwise,

By Theorem 3, f is a PRF.
Consider an instantiation of the DFKO protocol, where the PRF f is being

used. In this instance of the DFKO protocol, if a prover is dishonest and picks
NP to be equal to x, then the response of the prover P will always be a bit
of D. Thus, this dishonest prover would be able to know in advance all the
responses to every possible challenge. Thus, when being in fact far-away from V ,
he would perform successfully a distance-fraud attack. This obviously contradicts
the security against distance-fraud attacks that is claimed by Dürholz et al. in
Theorem 2 of [6], based solely on the PRF assumption and described only by a
sketch-proof in the appendix of [6].

4.3 Hancke and Kuhn’s Protocol

Hancke and Kuhn’s protocol [9] is again separated conceptually into two phases:
an initialisation phase and a distance-bounding phase. In the initialisation phase
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Verifier V Prover P

shared key x shared key x
Initialisation phase

NV ← {0, 1}∗ NV−−−−−→ NP ← {0, 1}∗

I‖C‖D‖v0‖v1 := fx(NV ‖NP )
NP ,I←−−−−− I‖C‖D‖v0‖v1 := fx(NV ‖NP )

Verify I

set cnt := 0; errV := 0 set state st =⊥; errT := 0
Distance-bounding phase

for i = 1 to n

Pick Si ∈U {0, 1}
Ri := Si, if Ci = 1
Ri := Di, if Ci = 0

Start Clock
Ri−−−−−→

if st �= rnd do:
if Ci = 1, then Ti = v0i if Ri = 0

Ti = v1i if Ri = 1
if Ci = 0, then Ti = v0i if Ri = Di

Ti ∈U {0, 1} if Ri �= Di.
if Ri �= Di, do errT := errT + 1
if errT > Emax, do st = rnd

else Ti ∈U {0, 1}
Stop Clock

Ti←−−−−−
set errV := errV + 1 if Ti does not match
set cnt := cnt+ 1 if Δt > tmax

verify the responses and that for all roundsΔti ≤ 2Δtmax

output b = 1 if cnt ≤ Tmax anderrR ≤ Emax, else b = 0

Fig. 5. Protocol Dürholz et al. [6] (Enhanced Kim-Avoine Protocol)
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the verifier V and the prover P exchange nonces NV and NP correspondingly,
then both of them compute the output of a PRF instance fx that takes as input
the two nonces, i.e., v0‖v1 := fx(NP , NV ), where x is the shared secret/key.
During the distance-bounding phase the verifier V selects a random bit-challenge
ci, where i ∈ {1, . . . , n} and the prover P responds with a bit ri that has the

following form: ri :=

{

v0i , if ci = 0

v1i , if ci = 1.

After the end of the distance-bounding phase the verifier checks all the received
responses and if the response times Δti satisfy the condition: Δti ≤ 2Δtmax.
The protocol is depicted in Fig. 6.

Verifier V Prover P

shared key x shared key x
Initialisation phase

NV ← {0, 1}m NV−−−−−−−−−−−−−−−−→ NP ← {0, 1}m

v0‖v1 := fx(NP , NV )
NP←−−−−−−−−−−−−−−−− v0‖v1 := fx(NP , NV )

Distance-bounding phase
for i = 1 to n

Pick ci ∈U {0, 1}
Start Clock

ci−−−−−−−−−−−−−−−−→

ri :=

{
v0i , if ci = 0

v1i , if ci = 1

Stop Clock
ri←−−−−−−−−−−−−−−−−

verify the responses
and that for all rounds
it holds Δti ≤ 2Δtmax

Fig. 6. Protocol proposed by Hancke and Kuhn’s [9]

Based on the construction and significance of Theorem 3, we construct the
following attack on an instantiation of Hancke and Kuhn’s protocol.

Distance Fraud Attack on Hancke and Kuhn’s Protocol. Let g be a
PRF with parameters as the one needed in the protocol. Let us consider the
PRF f constructed from Theorem 3 based on g and the following elements. Let
T g(x) = g(x). Let D be the set of (NP , NV ) pairs. Let σ(x,NP , NV ) = v‖v
where v is an arbitrary constant, correctPad(x) = {x‖NV ;NV ∈ {0, 1}m}, and
extractgx(.)(NP , NV ) = NP . We have

fx(NP , NV ) =

{

v‖v, if NP = x

gx(NP , NV ), otherwise

By Theorem 3, f is a PRF.
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Consider an instantiation of the Hancke and Kuhn where the PRF f is being
used. In this instance of the Hancke and Kuhn protocol, if a prover is dishonest
and picks NP to be equal to x, then the responses ri will always be the same
for all challenges ci where i ∈ {1, . . . , n}. Thus, such a legitimate, far-away but
dishonest prover can successfully perform a distance-fraud attack by sending the
responses before receiving the challenges. This obviously contradicts the security
against distance-fraud attacks that was claimed in Theorem 3.2 of [7] solely based
on the PRF assumption and that claims of [9].

4.4 Avoine and Tchamkerten’s Protocol

This protocol from [2], presented in Fig. 7, is again divided into two phases
an initialisation and a distance-bounding base. The prover P and the verifier
V share a common secret x and they have agreed on some parameters m and
n. In the initialisation phase which is not time critical, the verifier V selects a
random nonce NV and transmits it to the prover P . The prover P also selects
a random nonce NP and transmits it to V . Then, they compute the output of a
PRF instance fx on the input given by the two nonces NP and NV , i.e., v

0‖v1 :=
fx(NP , NV ). The output of this computation has length at least m + 2n+1 − 2.
We denote the first m bits of this output by v0 and the rest of the bits by v1.
Then, the prover P sends to the verifier V the value v0 for verification purposes.

Verifier V Prover P

shared key x shared key x
Initialisation phase

NV ← {0, 1}m NV−−−−−−−−−−−−−−−−→ NP ← {0, 1}m

v0‖v1 := fx(NP , NV )
v0,NP←−−−−−−−−−−−−−−−− v0‖v1 := fx(NP , NV )

abort if v0 is incorrect where |v0| = m
and |v1| = 2n+1 − 2

Distance-bounding phase
for i = 1 to n

Pick ci ∈U {0, 1}
Start Clock

ci−−−−−−−−−−−−−−−−→
ri = Node(c1, . . . , ci)

Stop Clock
ri←−−−−−−−−−−−−−−−−

verify the responses
and that for all rounds
it holds Δti ≤ 2Δtmax

Fig. 7. Protocol proposed by Avoine and Tchamkerten [2]

For the distance-bounding phase using v1, the prover P and the verifier V
label a full binary tree of depth n. The left and right edges of the tree are
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labelled with 0 and 1 respectively, while each node of the tree (except of the
root node) is assigned a value of a particular bit of v1 in an one-to-one fashion
(starting from the lowest level nodes and moving from left to right, moving
up the tree after assigning all the nodes in the current level). The distance-
bounding phase has n challenge-response exchanges/rounds. At each round i the
challenge-response delay Δti is measured. The verifier V chooses a random bit
ci, initialises the clock to zero and transmits ci to P . Then, P answers with
the value ri = Node(c1, . . . , ci). This function gives the value of the label of
node in the tree which we would reach from the root by taking the path labelled
c1, c2, . . . , ci on the edges.

Based on the construction and significance of Theorem 3, we construct the
following attack on an instantiation of the Avoine and Tchamkerten protocol.

Distance Fraud Attack on the Avoine and Tchamkerten Protocol. Let
g be a PRF with parameters as the one needed in the protocol. Let us consider
the PRF f constructed from Theorem 3 based on g and the following elements.
Let T g(x) = g(x). Let D be the set of (NP , NV ) pairs. Let σ(x,NP , NV ) =
v0‖T where v0 and T are constant defined below, correctPad(x) = {x‖NV ;NV ∈
{0, 1}m}, and extractgx(.)(NP , NV ) = NP . We have

fx(NP , NV ) =

{

v0‖T, if NP = x

gx(NP , NV ), otherwise

The constant v0 is an arbitrary admissible value for v0. The constant T denotes
the full binary tree of length n where all the paths constructed by reading-out
the labels of the nodes are equal. A tree with such a property is, e.g., the one
where all nodes in the same level have the same label (either all 0 or all 1 per
one level). By Theorem 3, f is a PRF.

Consider an instantiation of the Avoine and Tchamkerten protocol, where the
PRF f is being used. In that case a dishonest, far-away prover which forgesNP to
x will always give the correct response without the need to wait for the challenge
to arrive. Thus, he would be able to respond earlier and perform successfully a
distance-fraud attack. This obviously contradicts the security against distance-
fraud attacks that was claimed in Theorem 3.3 of [7], page 11.

4.5 Reid’s et al. Protocol

In the Reid et al. [14] protocol (depicted in Fig. 8, the prover and the verifier
that share a secret key x. During the initialisation phase both of them generate
random nonces NP and NV and exchange them, as well as exchanging their iden-
tities. Then both of them generate a session key k as k := fx(IDP ‖IDV ‖NV ‖NP )
and encrypt the shared key x with the session key k, i.e., e := Ek(x), where fx
is a PRF instance. One can view k as an ephemeral key. Based on Theorem 3.4
in [7], the assumption needed for the security of this protocol is that E should
be a IND-CPA secure, symmetric encryption. For instance, we can use one-time
pad Ek(x) = x⊕ k.
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The distance-bounding phase contains n rounds. At each round i the challenge-
response delay Δti is measured, where i ∈ {1, . . . , n}. The verifier chooses a
random challenge ci and the prover responds with ri such that:

ri :=

{

ei, if ci = 0

ki, if ci = 1

After the end of the distance-bounding phase the verifier checks the responses
and verifies that all response times are below a pre-defined threshold.

Based on the construction and significance of Theorem 3, we construct the
following attack on an instantiation of Reid et al.’s protocol.

Distance-Fraud Attack on Reid’s et al. Protocol. Let g be a PRF with
parameters as the one needed in the protocol. Let us consider the PRF f con-
structed from Theorem 3 based on g and the following elements. Let T g(x) =
g(x). Let D be the set of (IDV ‖IDP ‖NP , NV ) tuples. Let σ(x, IDV , IDP , NV ,
NP ) = x, correctPad(x) = {IDV ‖IDP‖NV ‖x}, and extractgx(.)(IDV , IDP , NV ,
NP ) = NP . We have

fx(IDV ‖IDP‖NV ‖NP ) =

{

x, if NP = x

gx(IDV ‖IDP‖NV ‖NP ) otherwise,

By Theorem 3, f is a PRF.

Verifier V Prover P

shared key x shared key x
Initialisation phase

NV ← {0, 1}m IDV ,NV−−−−−−→ NP ← {0, 1}m

k := fx(IDV ‖IDP ‖NV ‖NP )
IDP ,NP←−−−−−− k := fx(IDV ‖IDP ‖NV ‖NP )

e := Ek(x) e =: Ek(x)

Distance-bounding phase
for i = 1 to m

Pick ci ∈U {0, 1}
Start Clock

ci−−−−−→

ri :=

{
ei, if ci = 0

ki, if ci = 1

Stop Clock
ri←−−−−−

verify the responses
and that for all rounds
it holds Δti ≤ 2Δtmax

Fig. 8. Protocol proposed by Reid et al. [14]
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Consider an instantiation of the Reid’s et al. protocol where the PRF f is
being used. Also, we assume that the following encryption function instance is
employed:

Enew
k (x) =

⎧

⎪⎨

⎪⎩

Ek(x), if k �= x and Ek(x) �= x

x, if k = x

Ek(k), if Ek(x) = x and k �= x.

Similarly to Theorem 3, we can show that if E is an IND-CPA secure symmetric
encryption, so is Enew.

If a far-away dishonest prover indeed chooses NP to be equal to x, then the
responses ri will always be equal to xi (for all i ∈ {1, . . . , n}). Thus, a dishonest,
far-away prover can perform a successful distance-fraud attack and claim that he
is nearer to the verifier than he really is. This obviously contradicts the security
against distance-fraud attacks given in Theorem 3.4, in page 13 of [7], solely
based on the PRF assumption and Theorem 1, in page 17 of [14].

Another weak PRF leading to a distance-bounding attack is provided in the
next example.

Man-in-the-Middle Attack on Reid’s et al.’s Protocol. We first construct
a PRF producing some unforgeable outputs. To this end, we start with a PRF
g such that fx(u, v) = gx(u, v)‖gx(gx(u, v)) has parameters as the one needed in
the protocol. We define a predicate Vx(a, b) which is true if and only if gx(a) = b.
Clearly, Vx(fx(u, v)) holds for all x, u, v. It is easy to see that f is a PRF. Next,
we consider the encryption function E defined by

Ek(y) =
{

y, if Vy(k) or Vy(k ⊕ y)

k ⊕ y, otherwise

We can show that, for k random (an unknown to the adversary), it is hard to
forge y such that Vy(k) or Vy(k ⊕ y) hold. So, E if IND-CPA.

Consider now an instantiation of Reid’s et al. protocol, where f and E are
as constructed. In this instantiation of the protocol, the encryption is such that
Ek(x) = x for all choices of the nonces. The attacker impersonates the verifier
to the prover. First, he starts a session in which he inflicts NV = 0. So, in this
session, he sends many challenges equal to 0. Like this, he retrieves Ek(x) from
the responses, which is the secret key x.

Note that by changing the encryption so that Ek(x) = k, we can make a
distance fraud attack.

4.6 The Swiss-Knife Protocol

In the Swiss-Knife protocol [12] (depicted in Fig. 9), the prover and the veri-
fier share a secret key x. During the initialisation phase both of them generate
random nonces NP and NV correspondingly and exchange them. Furthermore,
both of them generate a session key a as: a := fx(cte,NP ), where cte denotes a

constant and two values Z0 and Z1 such that:

{

Z0 := a

Z1 := a⊕ x
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Verifier V Prover P

shared key x shared key x
Initialisation phase

NV ← {0, 1}m NV−−−−−−−−−−−−−−−−→ NP ← {0, 1}m
a := fx(cte,NP ) a := fx(cte,NP ){
Z0 := a

Z1 := a⊕ x

NP←−−−−−−−−−−−−−−−−
{
Z0 := a

Z1 := a⊕ x

Distance-bounding phase
for i = 1 to n

Pick ci ∈U {0, 1}
Start Clock

ci−−−−−−−−−−−−−−−−→

ri :=

{
Z0

i , if c′i = 0

Z1
i , if c′i = 1

Stop Clock
ri←−−−−−−−−−−−−−−−−

End of distance-bounding phase

tB,C=(c′1,...,c
′
n)←−−−−−−−−−−−−−−−− tB := fx(C, ID,NP , NV )

Check ID via database
Compute Z0, Z1

Compute errc := #{i : ci �= c′i}
errr := #{i : ci = c′i, ri �= Zci

i }
errt := #{i : ci = c′iΔti > tmax.

If errc + errr + errt ≥ τ ,
then REJECT.
tA := fx(NP )

tA−−−−−−−−−−−−−−−−→

Fig. 9. Swiss-Knife protocol [12]



118 I. Boureanu, A. Mitrokotsa, and S. Vaudenay

In the distance bounding phase which is repeated n times the verifier selects
a random challenge ci where i ∈ {1 . . . n} and the prover responds with ri such
that:

ri :=

{

Z0
i , if c′i = 0

Z1
i , if c′i = 1,

where c′i is the challenge that the prover actually received in the i-th round, i.e., c′i
will be ci itself, if the transmission was correct, or c′i will be ci, if ci was perturbed
by noise. After the end of the distance bounding phase the prover transmits a
message tB such that: tB := fx(C, ID,NP , NV ) where C = c′1, . . . , c

′
n.

Based on the construction and significance of Theorem 3, we construct the
following attack on an instantiation of the Swiss-Knife protocol.

Man-in-the-Middle Attack on the Swiss-Knife Protocol. Let g be a
PRF with parameters as the one needed in the protocol such that the function
truncating the the leading half is hard-core. Let us consider the PRF f con-
structed from Theorem 3 based on g and the following elements. Let T g(x) =
g(x). Let D be the set of (C, ID,NP , NV ) tuples. Let σ(x,C, ID,NP , NV ) =
x, correctPad(x) = {C‖ID‖NP‖NV ;C = 1

m
2 ‖msbm

2
(gx(cte,NP ) ⊕ x)}, and

extractgx(.)(C, ID,NP , NV ) = lsbm
2
(C)⊕msbm

2
(gx(cte,NP )). (Note that extract

only recovers the leading half of x so it is not exactly compatible with the as-
sumptions of Theorem 3.) We have

fx(cte,NP ) = gx(cte,NP ),

fx(C, ID,NP , NV ) =

{

x, if C = 1
m
2 ‖msbm

2
(gx(cte,NP )⊕ x)

gx(C, ID,NP , NV ), otherwise,

fx(NP ) = gx(NP ).

By Theorem 3, f is a PRF. Indeed, since extract only recovers half of x, we need
another trick in the proof of Theorem 3 to show that Pr[F ] is negligible.

Consider an instantiation of the Swiss-Knife protocol where the PRF f is
being used. Then, an adversary can extract the key and conduct successfully
an impersonation attack. Namely, he can query ci=1 for i ∈ {1, . . . , n2 } and
ci = ri− n

2
for i = {n

2 + 1, . . . , n}. Given the error-tolerance of the protocol, we
can presume that the adversary is powerful enough to make the communication
noiseless and thus the prover will respond to this very challenges, and, due to
the shape of fx, the adversary will learn x out of his strategy.

The attack exhibited does therefore disprove the claim of MiM security in
Theorem 3.5 in [7] based solely on the PRF assumption and the achievement of
authentication claimed in [12]. Moreover, it appears [12] that Swiss-Knife was
aimed to resist MiM attacks.

5 Conclusions

In this paper, we gave two constructions of PRFs with trapdoors by PRF pro-
gramming, assuming that PRFs exist. These constructions respectively prompt
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to distance-frauds and MiM attacks in DB protocol. In fact, we presented such
attacks on important DB protocols, thus disproving different security claims or
proofs that appeared in the literature. The latter claims were relying on the
PRF assumption for families of function used inside these DB protocol. Our re-
sults show that such an assumption is then not enough for the security of DB
protocols.

As future work, we will prove how to restore security by additional tricks.
Distance fraud security can be achieved by key-masking, i.e., by using fx(·)⊕M
for a random M instead of fx(·). MiM security can be restored by introducing
an extra security notion to the PRF, so that using fx(·)⊕ x is still safe.
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