Skip to main content

Fast Progressive Training of Mixture Models for Model Selection

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7569))

Abstract

Finite Mixture Models are flexible models with varying uses such as density estimation, clustering, classification, modeling heterogeneity, model averaging, and handling missing data. One of the prerequisites of using mixture models is the a priori knowledge of the number of mixture components so that the Expectation Maximization (EM) algorithm can learn the maximum likelihood parameters of the mixture model. However, the number of mixing components is often unknown and determining the number of mixture components has been a central problem in mixture modelling. Thus, mixture modelling is often a two-stage process of determining the number of mixture components and then estimating the parameters of the mixture model. This paper proposes a fast, search-based model selection algorithm for mixture models using progressive merging of mixture components. The paper also proposes a data driven, fast approximation of the Kullback-Leibler (KL) divergence as a criterion to merge the mixture components. The proposed methodology is used in mixture modelling of two chromosomal aberration datasets showing that model selection is efficient and effective.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McLachlan, G.J., Peel, D.: Finite mixture models. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  2. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. Journal Of The Royal Statistical Society, Series B 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  3. Tikka, J., Hollmén, J., Myllykangas, S.: Mixture Modeling of DNA Copy Number Amplification Patterns in Cancer. In: Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 972–979. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Smyth, P.: Model selection for probabilistic clustering using cross-validated likelihood. Statistics and Computing 10, 63–72 (2000)

    Article  Google Scholar 

  5. Figueiredo, M.A.T., Jain, A.K.: Unsupervised Learning of Finite Mixture Models. IEEE Transactions on Pattern Anal. Mach. Intell. 24(3), 381–396 (2002)

    Article  Google Scholar 

  6. Hollmén, J., Tikka, J.: Compact and Understandable Descriptions of Mixtures of Bernoulli Distributions. In: Berthold, M.R., Shawe-Taylor, J., Lavrač, N. (eds.) IDA 2007. LNCS, vol. 4723, pp. 1–12. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Adhikari, P.R., Hollmén, J.: Patterns from multi-resolution 0-1 data. In: Goethals, B., Tatti, N., Vreeken, J. (eds.) Proceedings of the ACM SIGKDD Workshop on Useful Patterns (UP 2010), pp. 8–12. ACM (July 2010)

    Google Scholar 

  8. Adhikari, P.R., Hollmén, J.: Preservation of Statistically Significant Patterns in Multiresolution 0-1 Data. In: Dijkstra, T.M.H., Tsivtsivadze, E., Marchiori, E., Heskes, T. (eds.) PRIB 2010. LNCS, vol. 6282, pp. 86–97. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Ueda, N., Nakano, R., Ghahramani, Z., Hinton, G.E.: SMEM Algorithm for Mixture Models. Neural Computation 12(9), 2109–2128 (2000)

    Article  Google Scholar 

  10. Zhang, Z., Chen, C., Sun, J., Chan, K.L.: EM algorithms for Gaussian mixtures with split-and-merge operation. Pattern Recognition 36(9), 1973–1983 (2003)

    Article  MATH  Google Scholar 

  11. Li, Y., Li, L.: A Novel Split and Merge EM Algorithm for gaussian mixture model. In: Fifth International Conference on Natural Computation, ICNC 2009, vol. 6, pp. 479–483 (August 2009)

    Google Scholar 

  12. Zhang, B., Zhang, C., Yi, X.: Competitive EM algorithm for finite mixture models. Pattern Recognition 37(1), 131–144 (2004)

    Article  MATH  Google Scholar 

  13. Blekas, K., Lagaris, I.E.: Split–Merge Incremental LEarning (SMILE) of Mixture Models. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D.P. (eds.) ICANN 2007. LNCS, vol. 4669, pp. 291–300. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Akaike, H.: A new look at the statistical model identification. IEEE Transactions on Automatic Control 19(6), 716–723 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  15. Windham, M.P., Cutler, A.: Information Ratios for Validating Mixture Analyses. Journal of the American Statistical Association 87(420), 1188–1192 (1992)

    Article  Google Scholar 

  16. Juang, B.H., Rabiner, L.R.: A probabilistic distance measure for Hidden Markov models. AT&T Technical Journal 64(2), 391–408 (1985)

    MathSciNet  Google Scholar 

  17. Li, Y., Li, L.: A split and merge EM algorithm for color image segmentation. In: IEEE ICIS 2009, vol. 4, pp. 395–399 (November 2009)

    Google Scholar 

  18. Goldberger, J., Gordon, S., Greenspan, H.: An Efficient Image Similarity Measure Based on Approximations of KL-Divergence Between Two Gaussian Mixtures. In: Proceedings of the ICCV 2003, Washington DC, USA, pp. 487–493 (2003)

    Google Scholar 

  19. Hershey, J.R., Olsen, P.A.: Approximating the Kullback Leibler Divergence Between Gaussian Mixture Models. In: IEEE. ICASSP 2007, vol. 4, pp. 317–320 (2007)

    Google Scholar 

  20. Mclachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions, 1st edn., November 1996. Wiley Interscience (November 1996)

    Google Scholar 

  21. Kullback, S., Leibler, R.A.: On Information and Sufficiency. Annals of Mathematical Statistics 22(1), 79–86 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jeffreys, H.: An Invariant Form for the Prior Probability in Estimation Problems. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 186(1007), 453–461 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  23. Beeferman, D., Berger, A.: Agglomerative clustering of a search engine query log. In: Proceedings of the ACM KDD 2000, New York, USA, pp. 407–416 (2000)

    Google Scholar 

  24. Myllykangas, S., Tikka, J., Böhling, T., Knuutila, S., Hollmén, J.: Classification of human cancers based on DNA copy number amplification modeling. BMC Medical Genomics 1(15) (May 2008)

    Google Scholar 

  25. Baudis, M.: Genomic imbalances in 5918 malignant epithelial tumors: an explorative meta-analysis of chromosomal CGH data. BMC Cancer 7, 226 (2007)

    Article  Google Scholar 

  26. Kittler, J.: Feature selection and extraction. Handbook of Pattern Recognition and Image Processing. Academic Press (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Adhikari, P.R., Hollmén, J. (2012). Fast Progressive Training of Mixture Models for Model Selection. In: Ganascia, JG., Lenca, P., Petit, JM. (eds) Discovery Science. DS 2012. Lecture Notes in Computer Science(), vol 7569. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33492-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33492-4_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33491-7

  • Online ISBN: 978-3-642-33492-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics