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Abstract. This paper introduces relational redescription mining, that
is, the task of finding two structurally different patterns that describe
nearly the same set of object tuples in a relational dataset. By extending
redescription mining beyond propositional and real-valued attributes, it
provides a powerful tool to match different relational descriptions of the
same concept. As a first step towards solving this general task, we intro-
duce an efficient algorithm that mines one description of a given binary
concept. A set of graph patterns is built from frequent path patterns con-
necting example pairs. Experiments in the domain of explaining kinship
terms show that this approach can produce complex descriptions that
match explanations by domain experts, while being much faster than a
direct relational query mining approach.

1 Introduction

With the increasing amount of data available from heterogenous sources nowa-
days, establishing links between different perspectives on the same concept be-
comes ever more important, as recognized, for instance, in schema matching and
ontology alignment for the semantic web [1]. One way of creating such links is
to find sets of objects together with their descriptions in different terminologies,
as done in redescription mining [2, 3]. However, so far, this technique has only
considered propositional or real valued attributes. As our first contribution, we
extend redescription mining to the relational or network-based setting, that is,
to sets of object tuples and their descriptions not only in terms of attributes of
individual objects or nodes in a network, but also in terms of relations between
them. Relational redescription mining thus provides a powerful data exploration
technique, revealing structurally different connection patterns among objects.

As a concrete example of a redescription mining problem, we use the kinship
terminology of the Alyawarra, an Australian indigenous community, where the
goal is to describe kinship words in terms of family relationships. For instance, in
Figure 1, the graph labeled k16 represents the kinship relation Aleryia between
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Fig. 1. Example of redescription of a kinship relation for pair (#A,#Z) (graph labeled
k16) in terms of two alternative genealogical connections (graphs labeled g16.1, g16.2).

the speaker #A and another person #Z, corresponding to the relation between
a father and his child, or between a person and his or her brother’s child, as
given by the graphs labeled g16.1 and g16.2, respectively.

Instead of finding two different descriptions simultaneously, redescription
mining often takes an alternating approach: one description is fixed, the other one
is updated, and roles are swapped in the next iteration [2]. In our setting, such
a scheme relies on an approach to finding relational patterns, such as relational
query mining [4, 5]. However, the generate-and-test approach of query mining
systems requires large numbers of expensive coverage tests based on subgraph
isomorphism. More importantly, they typically do not ensure that patterns con-
nect all nodes of interest, thus producing many patterns that do not correspond
to redescriptions. Hence, our second contribution is an efficient algorithm that
finds one description for a given set of example pairs by first mining for path
patterns that connect many example pairs, then combining those into more ex-
pressive graph patterns. This reduces the number of coverage tests needed by
constructing queries based on the data. Our experiments in the kinship domain
show that our approach can identify complex descriptions matching known ones,
and is much faster than a basic relational query miner.

We proceed as follows. Section 2 introduces relational redescription mining,
Section 3 discusses related work, Sections 4 and 5 present our algorithm and its
experimental evaluation. We conclude and touch upon future work in Section 6.

2 Definitions and Notations

This paper introduces relational redescription mining, that is, the task of finding
two structurally different patterns that describe nearly the same set of object
tuples in a relational dataset. Informally, we view descriptions as sets (or dis-
junctions) of connected graphs expressed in terms of attributes of the data. For
instance, graphs g16.1 and g16.2 in Figure 1 are an example of such a disjunc-
tive pattern that describes the nodes of interest #A and #Z in terms of node
attributes (male, female), relations between nodes (spouse, parent), and com-
parisons of node attributes (age<). We now introduce the concepts required for
a more formal definition of the problem. We focus on binary relations, as these
can be represented in the form of graphs, which allows us to base the algorithm
introduced in Section 4 on graph concepts.



We view relational data as a directed graph (O,R), where nodes correspond
to the objects, and edges to relations between them. Two families of functions,
N and E , label nodes and edges with their attributes, respectively.

For instance, in the kinship domain, O is the set of individuals from the
community, and we use node attributes N = {sex, age} and edge attributes
E = {kin, gen}, where kin maps into the set of kinship terms (cf. Table 1,
Section 5) and the values of gen are the genealogical relations parent and spouse.

From node and edge attributes, we obtain three types of Boolean functions
or predicates that serve as basic building blocks of patterns. The first type,
a node predicate νDNi

(o), is true for an object o if and only if the node label
Ni(o) is defined and takes a value in the domain D. The second type, an edge
predicate εDEi

(o1, o2), is true for a pair of objects (o1, o2) if and only if the edge
label Ei(o1, o2) is defined and takes a value in D. If D contains a single value d,
we simply write νdNi

(o) or εdEi
(o1, o2). The third type, a comparison predicate

φrelNi
(o1, o2) for a binary relation rel over the range of node labeling function Ni

is true for a pair of objects (o1, o2) if and only if both node labels Ni(o1) and
Ni(o2) are defined and rel(Ni(o1), Ni(o2)) holds.

As an example, g16.1 in Figure 1 uses node predicates νfemale
sex (#1) and

νmale
sex (#A) along with edge predicates εparentgen (#Z,#1), εspousegen (#1,#A) and
εspousegen (#A,#1) and comparison predicate φ<age(#Z,#A).

For an object o, the set FN (o) of its node features contains the node predicates
that hold true for that object. For a pair of objects (o1, o2), the sets FE(o1, o2)
and FC(o1, o2) of edge and comparison features contain the edge and compari-
son predicates that hold true for that pair, respectively. Note that the data, or
network, is fully specified by the features of all objects, which implicitly provide
all relevant information about the objects and their relations and attributes.

A graph clause is a definite clause of the form c(X1, . . . , Xm) : −b1, . . . , bn,
where the body elements bi are node, edge or comparison predicates, c is a
special predicate denoting the pattern and the query variables X1, . . . , Xm in
the head also occur in the body. Instantiations of query variables are the object
tuples of interest. We require graph clauses to be linked, meaning that the set
of edge predicates in the body connects any two query variables (Xa, Xb). More
formally, a graph clause is linked if for each pair of query variables (Xa, Xb)
there is a sequence of variables Z0, . . . , Zk with Z0 = Xa, Zk = Xb, and for all
i = 1, . . . , k, there is an index j such that bj ∈ FE(Zi−1, Zi) ∪ FE(Zi, Zi−1). A
path clause is a graph clause with two query variables that are connected by
an acyclic path consisting of all edge predicates in the body. A description or
pattern is a set of graph clauses. We denote the set of attributes for which the
body of clause C contains predicates by att(C); for a pattern P , att(P ) is the
union of the attribute sets of its clauses.

For instance, the middle graph in Figure 1 corresponds to the path clause

g16.1(#A,#Z) : − νmale
sex (#A), εspousegen (#A,#1), εspousegen (#1,#A),

νfemale
sex (#1), εparentgen (#Z,#1), φ<age(#Z,#A).



This clause has query variables #A and #Z and is linked due to the spouse and
parent edges.3 Its attribute set is {sex, gen, age}.

As common in graph mining, we use subgraph isomorphism, or, in terms of
logic, OI-subsumption [6], to match patterns against the data graph, that is,
each variable in the pattern has to be matched to a different node in the graph,
respecting the predicates in the clause body. We denote such a match of variables
Vj to objects oij by the corresponding substitution θ = {V1/oi1 , . . . , Vn/oin};
θ reduced to query variables is called answer substitution. The set of all (distinct)
answer substitutions of clause C is its support, supp(C). With respect to a
given set of example tuples O+, we define the positive support of a clause C as
supp+(C) = supp(C) ∩ O+, and its negative support as supp−(C) = supp(C) \
O+. We measure similarity of clauses C and C ′ using the Jaccard coefficient,
that is, sim(C,C ′) = |supp(C) ∩ supp(C ′)| / |supp(C) ∪ supp(C ′)|.

Given this background, we define relational redescription mining as follows:

Problem 1 (Relational Redescription Mining) Given a relational dataset
in the form of node, edge and comparison features {FN , FE , FC} and a similar-
ity threshold δ, find pairs of relational patterns (pA, pB) such that att(pA) ∩
att(pB) = ∅ and sim(pA, pB) ≥ δ.

One common strategy for mining redescriptions uses an alternating scheme [2].
That is, instead of searching for both patterns simultaneously, one pattern is
fixed, the best corresponding pattern is determined, and used as the fixed pat-
tern in the next round. In such a setting, relational redescription mining reduces
to a sequence of relational learning tasks, where the support of the fixed pattern
provides positive training examples (and other tuples could serve as negative
training examples). In the remainder of this paper, we focus on the subtask of
finding a good description given one pattern. We restrict our discussion to pat-
terns of arity two. Redescriptions of higher arity could be obtained for instance
by including additional body variables in the head of clauses, or by combining
clauses of lower arity that share some, but not all, query variables.

3 Related Work

Relational redescription mining as introduced here is an extension of redescrip-
tion mining, which so far has focused on propositional features [2] and real-valued
attributes [3]. Redescription mining emphasizes the insights obtained from ex-
pressive, interpretable patterns and their instances in the given data rather than
the classification of unseen data. Relational pattern languages are thus a natu-
ral candidate for redescriptions, but require adapted redescription mining algo-
rithms tailored towards patterns that link objects of interest.

The frequentist approach used in our algorithm is inspired by graph mining
techniques [7]. Transactional data mining aims at discriminating whole graphs

3 Note that the age< edge in the graphical representation corresponds to a comparison
predicate and is thus not considered for linkage.



based on the occurrence of subgraph patterns (cf. [8] and references therein). The
present work instead seeks descriptions of node tuples in terms of their relations.

Learning relational patterns is a key task in multi-relational data mining and
Inductive Logic Programming (ILP). Multi-relational query miners often follow
a level-wise approach to mining, using a refinement operator to extend frequent
queries found at the previous level, typically by adding a literal with at least
one already used variable to the end of the clause body [4, 5]. While this princi-
ple results in connected clauses for unary patterns, frequent patterns of higher
arity are likely to ignore some of the query variables, or to contain disconnected
components around individual query variables, and thus fail to provide insight
into the relations between them. In the context of cover-set based ILP systems
such as Progol [9] and Aleph [10], this problem has been addressed by relational
pathfinding [11, 12] and function learning [13]. Pathfinding refines clauses by
adding a sequence of literals if no single literal is able to connect query vari-
ables, where candidate sequences are generated based on connections of a single
example’s query variables in the data rather than by enumerating abstract paths.
Function learning avoids evaluating unconnected queries by generating candidate
queries from individual examples. The path clauses in our approach are similarly
anchored in the data, but are directly selected based on their frequency across
all examples. Query mining has also been extended to association rules with
conjunctive heads [14], which can be seen as associations between conjunctive
redescriptions, and to flexible numbers of query variables [15], which provides
an interesting direction for finding redescriptions of arbitrary arity.

4 Algorithm

As outlined in Section 2, we take a first step towards relational redescription
mining by addressing the following subproblem: Given a network and a set of
positive object pairs, that can be obtained, in particular, by fixing one side of a
redescription, find a relational pattern that accurately describes these examples.

We propose a two-phase approach that only considers linked patterns and
reduces the number of costly subgraph isomorphism-based coverage tests. The
first phase mines those path clauses that cover at least a given number of positive
examples. The second phase constructs a relational pattern by combining path
clauses with identical support into more general graph clauses and choosing a
set of such clauses that accurately covers the examples.

We next discuss in turn how we obtain path clauses, how we create graph
clauses from path clauses, and how we select graph clauses for the final pattern.

4.1 Mining Frequent Path Clauses

Our first intermediate goal is to obtain the set of path clauses that are frequent
among the training examples, as any frequent graph pattern connecting nodes
of interest has to be a combination of such paths. To do so, we extract paths
(in terms of edge features) of increasing length that connect example pairs in



Input: A network N with a set of positive example object pairs O+, a frequency
threshold γ, and a maximum number of trials κ.
Output: A set of frequent paths clauses C.

1: k ← 0
2: Pk ← paths of length 0, i.e., starting nodes in O+

3: while Pk 6= ∅ do
4: k ← k + 1; V ← ∅; U ← ∅
5: for each P ′ ∈ Pk−1 do . P [i] is node at position i in path P
6: for each n ∈ neighbors(P ′[k − 1]) do
7: P ← P ′

8: if n 6∈ P then
9: P [k]← n

10: if (P [0], P [k]) ∈ O+ then . example pair connected
11: V ← V ∪ {P}
12: else
13: U ← U ∪ {P}
14: F ← FreqClauses(V, γ,O+, N)
15: C ← C ∪ F
16: Ok ← Ok−1 ∪

⋃
C∈F supp+(C)

17: if k > κ and Ok−κ = Ok then . no new example pair covered for κ steps
18: Pk ← ∅
19: else
20: Pk ← V ∪ U
21: return C

Fig. 2. FreqPaths: Mining frequent path clauses from a network.

the network, and add node features for nodes on the path as well as comparison
features between nodes on the path. For each length, we align paths of that
length and mine for frequent predicate sequences that maintain connectedness.
Procedure FreqPaths in Figure 2 details this process.

We use the set of all starting nodes in the examples (line 2) as seed paths for
the main loop that processes paths of increasing length. The algorithm termi-
nates if no example pair has been covered for the first time in the last κ iterations.
In the kth iteration, the nested loop in lines 5-13 extends paths in Pk−1 to paths
of length k, discards cyclic paths, and sorts the resulting paths into the sets
V and U of paths connecting some example and other paths, respectively. The
procedure FreqClauses in line 14 then produces frequent path clauses based
on V. Those are added to the set of clauses to be returned, and we keep track
of the set Ok of covered examples for the termination criterion.

The inputs of FreqClauses are the set V of paths of length k connecting
some example, the frequency threshold γ, the set O+ of example pairs, and the
network N . Each path in V connecting nodes o0, o1, . . . , ok can be represented



as an ordered list of features according to the following principle:

(FN (o0),

FE(o0, o1), FE(o1, o0), FC(o0, o1), FC(o1, o0), FN (o1),

FE(o1, o2), FE(o2, o1), FC(o0, o2), FC(o2, o0), FC(o1, o2), FC(o2, o1), FN (o2),

. . . , FN (ok))

That is, we start with the node features of the starting node, and then add for
each following node oi in order the edge features (in both directions) for the node
oi and its predecessor oi−1, the comparison features (again in both directions)
for oi and all earlier nodes oj , and the node features of oi. For instance, the
path (#A,#1,#Z) in the central graph of Figure 1 is represented as follows
(we abbreviate m(ale), f(emale), p(arent), s(pouse), a(ge), and index sets by
predicate type for better readability):

({m}N , {s}E , {s}E , {}C , {}C , {f}N , {}E , {p}E , {}C , {a<}C , {}C , {}C , {}N )

Another example of a path of length two is

({}N , {s}E , {s}E , {a<}C , {}C , {f}N , {}E , {p}E , {}C , {a<}C , {}C , {a<}C , {m}N )

Due to the simple example setting with few attributes, feature sets are small
here; they can contain more elements in general. Given such path representa-
tions, FreqClauses mines for sequences of predicate sets respecting the linking
constraint that cover more than γ pairs in O+. For instance,

({}N , {s}E , {s}E , {}C , {}C , {f}N , {}E , {p}E , {}C , {a<}C , {}C , {}C , {}N )

covers both examples above, resulting in the path clause

c(#A,#Z) : − εspousegen (#A,#1), εspousegen (#1,#A), νfemale
sex (#1),

εparentgen (#Z,#1), φ<age(#Z,#A).

On the other hand, dropping the parent feature results in

({}N , {s}E , {s}E , {}C , {}C , {f}N , {}E , {}E , {}C , {a<}C , {}C , {}C , {}N )

which does not qualify as a path clause, as it is no longer linked.
To solve this constrained sequence mining problem, one could for instance

combine an off-the-shelf sequence mining tool with postprocessing to enforce
linkage, design a special purpose algorithm, or exploit a declarative approach to
mining patterns under constraints [16]. We use the latter approach, which allows
us to obtain an efficient specialized miner without implementing it from scratch.

4.2 Combining Path Clauses into Graph Clauses

Our second intermediate goal is to combine several path clauses into one graph
clause, which allows for more expressive patterns.



Fig. 3. Example of three graph clauses (c3-c5) combing path clauses c1 and c2.

As an illustration, Figure 3 depicts two path clauses c1 and c2 as well as
three example graph clauses that are obtained by merging query variables (and
potentially other nodes as well) of one or more copies of these paths. Clearly,
allowing multiple copies of a path permits an infinite number of combinations.
However, merging intermediate nodes that assign conflicting values to attributes
results in invalid clauses, and only finitely many among the valid clauses are
supported by the data. Therefore, we merge paths based on their instantiations
in the data rather than based on their clause representation. This ensures that
we only construct valid clauses with non-empty support.

More specifically, given a set K of clauses with query variables (#A,#Z) and
a positive example (o1, o2) in the intersection of their supports, let {b1, . . . , bn}
be the union of all instantiations of bodies of all clauses in K that map (#A,#Z)
to (o1, o2). Replacing each object in the ground clause c(o1, o2) : −b1, . . . , bn by
a unique variable results in the unique maximal clause for K.

Figure 4 illustrates this process. The graph with rectangular nodes represents
the relevant part of the data network. We start with path clauses c1 and c2:

c1(#A,#Z) : − ν7a(#A), ε(#1,#A), ν12a (#1), ε(#2,#1), ν3d(#2),

ε(#2,#Z), ν12a (#Z)

c2(#A,#Z) : − ε(#A,#1), ν7a(#1), ε(#1,#Z), ν12a (#Z)

The clause instantiations for object pair (13, 82) are:

c1(13, 82) : − ν7a(13), ε(44, 13), ν12a (44), ε(52, 44), ν3d(52), ε(52, 82), ν12a (82)

c1(13, 82) : − ν7a(13), ε(5, 13), ν12a (5), ε(52, 5), ν3d(52), ε(52, 82), ν12a (82)

c2(13, 82) : − ε(13, 81), ν7a(81), ε(81, 82), ν12a (82)

Taking the union of clause bodies results in the ground clause

c(13, 82) : − ν7a(13), ε(44, 13), ν12a (44), ε(52, 44), ν3d(52), ε(52, 82), ν12a (82),

ε(5, 13), ν12a (5), ε(52, 5), ε(13, 81), ν7a(81), ε(81, 82)



Fig. 4. Example of maximal clause construction; see Section 4.2 for details.

Finally, replacing constants by unique variables results in the maximal clause c5:

c5(#A,#Z) : − ν7a(#A), ε(#3,#A), ν12a (#3), ε(#2,#3), ν3d(#2),

ε(#2,#Z), ν12a (#Z), ε(#1,#A), ν12a (#1), ε(#2,#1),

ε(#A,#4), ν7a(#4), ε(#4,#Z)

Note that #3 and #1 in C5 are duplicate variables, that is, they appear in the
same node predicates and the same edge and comparison predicates with the
same neighbors. While this is interesting from an expressivity point of view (as
under OI subsumption, it implements counting), it also results in multiple clause
instantiations for the same pair of answer nodes, which can be undesirable from
an efficiency point of view. In this paper, we do not exploit the extra expressivity
and always reduce maximal clauses to their singular. The singular of a clause C,
denoted sc(C), is the clause obtained by keeping only one node from each set of
duplicates in C. In our example, sc(C5) = C4, cf. Figure 3.

4.3 Building Relational Patterns

Our third and last intermediate goal is to select an accurate set of graph clauses
as the final description. The basic idea is to add clauses to the pattern that
improve the coverage of at least a given number of examples, while reducing
coverage of non-example pairs. We start by outlining some key concepts.

We partition the set of path clauses C into equivalence classes with respect
to positive support, that is, we group together all clauses that cover the same
set of positive examples. We only consider graph clauses constructed for paths
in the same equivalence class, as these will cover the same examples.

We define an order ≺ on clauses as follows: c1 ≺ c2 if and only if ei-
ther | supp−(c1)| < | supp−(c2)| or | supp−(c1)| = | supp−(c2)| ∧ | supp+(c1)| >
| supp+(c2)|, that is, c1 covers less negatives, or, if negative support is equal,
more positives than c2. For a given example O and a set of clauses S, the best
clause best(O,S) is the ≺-minimal clause in S covering O. For a clause C ∈ S,
we define its best support as the set of objects for which C is the best clause
in S, that is, supp∗S(C) = {O ∈ O | best(O,S) = C}.

The key idea behind BuildPattern as outlined in Figure 5 is to add a
clause C to the current pattern S if C is the best clause in S ∪ {C} for at



Input: A network with a set of positive examples O+, a set of path clauses C, a
minimum support threshold σ and minimum support ratio θ.
Output: A relational pattern P .

1: S ← {C∅2}
2: E ← {(OM,M) | ∅ ⊂ M ⊆ C ∧ ∀ C ∈ C : (C ∈M↔ supp+(C) = OM)}
3: while E 6= ∅ do
4: (OK,K)← arg max(O,C)∈E

∑
O∈O

∣∣supp−(best(O,S))
∣∣ . most promising class

5: Remove (OK,K) from E
6: if K has potential to improve the cover of more than σ examples then
7: for K ∈ sc(K), in order of decreasing support do

8: if σ ≤
∣∣∣supp∗S∪{K}(K)

∣∣∣ then . sufficient improvement

9: S ← S ∪ {K}
10: P ← {K ∈ S | (σ ≤ |supp∗S(K)|) ∧

(
θ ≤ |supp∗S(K)| /

∣∣supp−(K)
∣∣)}

11: return P

Fig. 5. BuildPattern: Selecting clauses to build a relational pattern.

least σ examples. Note that this criterion depends on the current pattern, and
clauses added later on may decrease the importance of already present clauses.
The algorithm maintains two sets: the set S of graph clauses in the current
pattern (initially containing C∅2 , the empty clause of arity two), and the set E
of clause equivalence classes that have not yet been processed. Once E is empty,
S is post-processed to remove clauses that no longer pass the minimum support
threshold σ, or that cover too many negative examples compared to their overall
contribution, as measured by the minimum support ratio θ.

Constructing and evaluating graph clauses (line 7) is costly. To limit the
number of processed equivalence classes, the algorithm therefore chooses the
most promising equivalence class in E , that is, the one with highest accumulated
negative support for its examples’ best clauses in the current pattern (line 4).
Graph clauses constructed from this class are candidates to replace the current
poor clauses associated to these examples.

Furthermore, we want to add those clauses to S that will be new best clauses
for at least σ examples (line 8). Hence, we only process classes (OK,K) with
sufficient potential for improvement, that is, if there are at least σ examples
in OK whose current best clause covers negative examples or covers fewer than
|K| pairs (line 6). If this is the case, we use the method discussed in the previous
subsection to construct all singular clauses, order them by decreasing positive
support, and add those clauses to S that actually improve the covers of more
than σ examples (lines 7-9).

With this, we have all components of the overall algorithm in place. First,
path clauses are mined using FreqPaths, cf. Section 4.1. These form the input
to the selection procedure BuildPattern as detailed above. During selection,
graph clauses are constructed as outlined in Section 4.2.



5 Experiments

We now evaluate our algorithm on the example task of finding genealogical pat-
terns to explain kinship terminology, investigating the following two questions:

Q1 Does the proposed algorithm find accurate redescriptions?
Q2 How does our path based approach compare to a relational query mining

approach, both in terms of pattern quality and running time?

We extracted data from the Alyawarra Ethnographic Database4, which pro-
vides genealogical information about individual members of an indigenous com-
munity of Australia, the Alyawarra, as well as the kinship terms they use for their
relationships to other persons. A glossary of kinship terms is available, to which
we can compare our findings. As kinship terms involving deceased individuals
included in the genealogy are unavailable, we restrict the evaluation to the 104
individuals with complete information, excluding kinship terms with less than
three examples (identifiers 25 and 27) as well as “self” (24) and “dead” (28).
For each kinship term in turn, the pairs (#A,#Z) of individuals such that #A
refers to #Z using the given term constitute the positive examples O+.

We implemented the algorithm in Python, using Fim Cp [16] to mine path
clauses (FreqClauses). We consider edge predicates for the genealogical re-
lation with values spouse and parent, node predicates for attribute sex, and
relation < for comparing values of node attribute age. We use frequency thresh-
old γ = 0.2 and maximum number of trials κ = 5 for mining paths, while building
patterns with minimum support ratio θ = 1 and support threshold σ = 3.

Table 1 presents running times and quantitative results. The set Ok contains
those positive examples that support some frequent path clause. For each final
pattern P , we report the number of graph clauses included (|P |), the positive and
negative support (supp+ and supp−, cf. Section 2), as well as the precision, recall
and Jaccard coefficient, defined as |supp+| /(|supp+| + |supp−|), |supp+| / |O+|
and |supp+| /(|O+| + |supp−|), respectively. Note that we evaluate the quality
of patterns on the training data because redescription mining is a descriptive
approach that aims at characterizing as precisely as possible the data at hand
using expressive and interpretable patterns, not at learning predictive patterns.

We observe that the algorithm found disjunctions of up to seven patterns,
only failing to identify a discriminative pattern in four cases. Most of the pat-
terns consist of a small number of clauses and reach relatively high precision.
Running times vary from a couple of seconds up to about four minutes. They
seem to depend on the number of frequent paths found and possible symmetries
involved, that is, on the complexity of the pattern, more than on the number
of examples. While the precision of the patterns is high, their recall is low, re-
sulting in relatively poor Jaccard coefficient. This is likely due to terms not
being restricted to pure kinship relations, but also taking a broader meaning,
such as referring to a man older than oneself as uncle, in general. We created a
filtered dataset by removing kinship terms between individuals who are further

4 http://habc.eu/csac/wiki/knsrc/KinSources/AU01Alyawarra1971



Table 1. Quality statistics for redescriptions P of Alyawarra kinship terms: number of
positive examples, of positive examples covered by a frequent path, of positive exam-
ples covered by P , and of negative examples covered by P , precision, recall, Jaccard
coefficient, number of clauses in P , and running time.

Kinship relation
∣∣O+

∣∣ |Ok|
∣∣supp+

∣∣ ∣∣supp−∣∣ Prec. Rec. Jacc. |P | Time (s)

(1) Arengiya 228 15 0 0 0 0 0 0 1.60
(2) Anyainya 489 243 123 4 0.968 0.251 0.249 3 40.45
(3) Aidmeniya 231 113 30 4 0.882 0.129 0.127 4 21.55
(4) Aburliya 379 59 24 7 0.774 0.063 0.062 3 3.44
(5) Adardiya 493 91 21 1 0.954 0.042 0.042 2 2.64
(6) Agngiya 508 199 138 2 0.985 0.271 0.27 3 56.02
(7) Aweniya 453 231 127 12 0.913 0.28 0.273 5 67.43
(8) Amaidya 817 92 92 1 0.989 0.112 0.112 2 1.85
(9) Abmarliya 805 172 79 7 0.918 0.098 0.097 3 19.90
(10) Awaadya 462 49 43 1 0.977 0.093 0.092 2 4.39
(11) Anguriya 505 43 37 2 0.948 0.073 0.072 2 4.01
(12) Adiadya 739 83 72 4 0.947 0.097 0.096 5 19.39
(13) Angeliya 299 220 40 9 0.816 0.133 0.129 5 260.80
(14) Algyeliya 447 205 36 4 0.9 0.08 0.079 2 180.09
(15) Adniadya 43 30 9 3 0.75 0.209 0.195 1 55.51
(16) Aleriya 943 384 277 26 0.914 0.293 0.285 5 153.23
(17) Umbaidya 1256 364 276 7 0.975 0.219 0.218 3 163.26
(18) Anowadya 392 61 61 3 0.953 0.155 0.154 2 0.55
(19) Muriya 569 181 20 0 1 0.035 0.035 4 30.51
(20) Agenduriya 13 9 0 0 0 0 0 0 18.68
(21) Amburniya 272 118 94 19 0.831 0.345 0.323 7 8.19
(22) Andungiya 142 58 20 8 0.714 0.14 0.133 3 3.88
(23) Aneriya 193 85 0 0 0 0 0 0 10.56
(26) Undyaidya 6 3 0 0 0 0 0 0 1.03

than 4 degrees apart in the genealogy. The Jaccard coefficient of patterns mined
from this filtered data set was significantly higher, mostly above 0.7, support-
ing our conjecture. However, such filtering prevents the algorithm from learning
descriptions involving longer genealogical chains, and is thus undesirable. Fur-
thermore, in an alternating scheme addressing the full redescription mining task,
the current set of examples is not necessarily the final one, but will be refined
in subsequent iterations, which should eventually lead to higher accuracy.

Some examples of patterns found are shown in Figure 6. The Awaadya term
(Figure 6 (a)) is simply equivalent to Older Brother, i.e., an older male sibling.
The middle clause, g10.1, is an example that requires a graph clause, as a path
clause connecting #A and #Z cannot express that they share both parents.
The other clause, g10.2, describes the alternative case where the siblings have a
common father but different mothers.

Two clauses were mined for the Algyeliya term (Figure 6 (b)). While both
describe the relation to the daughter of one’s paternal aunt, g14.1 focuses on the
cases of female speakers, and g14.2 on the cases where the speaker is younger
than the addressee. By distinguishing these special cases, the pattern outper-
forms the single graph that leaves out the restrictions on the speaker, which
covers proportionally notably more negative examples. This is an example of
the difficulty to select good representative patterns among numerous variants.

As a final example, our algorithm found three definitions for the Umbaidya
term (Figure 6 (c)), suggesting that this term is used by mothers to refer to their
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Fig. 6. Examples of kinship terms (graphs labeled k10, k14, k17) for pairs (#A,#Z)
described in terms of attributes and genealogical relations (remaining graphs).

child (g17.1), and by male and female speakers alike to refer to daughters of their
sister (g17.2) or the children of their maternal uncle’s daughter (g17.3). The first
clause matches the ethnographic explanation provided for this term. The second
clause differs from the second glossary entry, which restricts this structure to
male speakers. The third clause has the same level of complexity as the last
glossary entry, but a different structure. For most terms, our algorithm returned
a pattern containing one or several clauses corresponding to the main definition
provided for the term. In some cases, it found matching supplementary usage. In
other cases, the additional usage found deviated from the provided explanation.
Frequently, the deviation was an intermediate genealogical level or a difference
in gender of some individual in the relation, as in the second clause above.

To summarize, this experiment affirmatively answers Q1, showing that our
algorithm is able to find satisfactory patterns in this setting where various kin-
ship usages of each term occur in the data, mixed with other, broader, usages
that can not be explained in terms of genealogical links.

We now turn to the second question, the comparison to a relational query
miner. More specifically, we use a modified version of c-armr [5] (implemented
in Prolog) that mines top-k clauses with respect to the difference in support
on positive and negative examples, that is, score(p) = |supp+(p)| − |supp−(p)|.
We mine for top-5 clauses, using the same positive examples as above and all
other pairs of nodes with full information as negative examples. As discussed in
Section 3, the implementation does not ensure that query variables are linked.



To address this problem, we refine unlinked clauses if they cover at least one
positive example, but never include them in the result. This is similar in spirit to
generating candidates based on the data as common in relational pathfinding and
function learning [11–13], but avoids the need to adapt the canonical refinement
operator used in our implementation.5

As running times quickly become prohibitive due to large numbers of un-
linked or non-discriminative clauses, we restrict the number of body literals to
at most five. Under this restriction, running times per kinship term range from
5 to 11 minutes, thus illustrating that our path-based approach can provide a
much faster alternative for mining relational patterns. Furthermore, as a direct
consequence of this restriction, no pattern with positive score was found for six
of the kinship terms, including Algyeliya, for which the path based approach
finds the complex pattern illustrated in Figure 6 (b). Here, query nodes are four
edge predicates apart, forcing linked clauses with at most five literals to be very
general and thus not able to discriminate between positive and negative pairs.

In general, if the query miner finds clauses, those with highest score are
of comparable quality to best single graph patterns found by the path-based
approach. For instance, for Awaadya, the query miner finds seven best clauses,
each covering 41 positives and 3 negatives. Six of them are subgraphs of g10.1 in
Figure 6 (a), the last one adds an extra link to such a subgraph. For Umbaidya,
the two highest scoring clauses, covering each 120 positives and 3 negatives,
correspond to g17.2 in Figure 6 (c), but omitting one direction of the spouse
link and all sex attributes except for either #2 or #5, respectively.

Concerning our second question Q2, these experiments thus indicate that,
compared to a standard query mining approach, our path-based approach can
find more complex descriptions of kinship terms much faster.

6 Conclusions and Future Work

We have introduced the problem of relational redescription mining as well as a
first step towards a solution, an efficient algorithm for finding a description for a
given set of node pairs. Disjunctions of graph clauses are constructed based on
frequent path clauses, which guarantees that patterns are linked and reduces the
need for expensive subgraph isomorphism tests. We demonstrated the effective-
ness of our approach in the Alyawarra kinship domain, obtaining redescriptions
of kinship terms through genealogical links that matched ethnographic explana-
tions. Compared to a relational query miner, our algorithm found more complex
descriptions much faster.

Important directions for future work include the thorough exploration of the
algorithm’s applicability and performance on various datasets, also in compari-
son to other approaches, the realization of an alternating scheme for relational
redescription mining based on the algorithm developed here, and the extension
to arbitrary numbers of query variables.

5 We could not compare to GILPS [13], due to a bug in its function learning module.
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