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Abstract. The paper is devoted to the geometrical calibration of industrial 

robots employed in precise manufacturing. To identify geometric parameters, 

an advanced calibration technique is proposed that is based on the non-linear 

experiment design theory, which is adopted for this particular application. In 

contrast to previous works, the calibration experiment quality is evaluated using 

a concept of the user-defined test-pose. In the frame of this concept, the related 

optimization problem is formulated and numerical routines are developed, 

which allow user to generate optimal set of manipulator configurations for a 

given number of calibration experiments. The efficiency of the developed 

technique is illustrated by several examples. 

Keywords: industrial robot, calibration, design of experiments, industry-

oriented performance measure, test-pose based approach. 

1   Introduction 

In the usual engineering practice, the accuracy of robotic manipulator depends on a 

number of factors. Usually, for the industrial applications where the external 

forces/torques applied to the end-effector are relatively small, the prime source of the 

manipulator inaccuracy is the geometrical errors, which are responsible for about 

90% of the total position error [1]. These errors are associated with the differences 

between the nominal and actual values of the link/joint parameters. Typical examples 

of them are the differences between the nominal and the actual length of links, the 

differences between zero values of actuator coordinates in the real robot and the 

mathematical model embedded in the controller (joint offsets) [2]. They can be also 

induced by the non-perfect assembling of different links and lead to shifting and/or 

rotation of the frames associated with different elements, which are normally assumed 

to be matched and aligned. It is clear that the errors in geometrical parameters do not 

depend on the manipulator configuration, while their effect on the position accuracy 



depends on the last one. At present, there exists various sophisticated calibration 

techniques that are able to identify the differences between the actual and the nominal 

geometrical parameters [3,4], however the problem of optimal selection of 

measurement configurations is still in the focus of robotic experts.  

The primary motivation of this research area is the possibility of essential reduction 

the measurement error impact. From point of view of classical experiment design 

theory [5] this goal can be achieved by proper selection of measurement poses that 

differ from each other as much as possible. However, in spite of potential advantages 

of this approach and potential benefits to improve the identification accuracy 

significantly, only few works addressed to the issue of the best measurement pose 

selection [6-8]. Related works focus on optimization of some abstract performance 

measures [9-12] (condition number of the aggregated Jacobian matrix, its 

determinant, etc.) which are not directly related to the robot precision for particular 

industrial application. In contrast, this work operates with an industry-oriented 

performance measure that is directly related to the robot position accuracy in a given 

workspace location (corresponding to so-called test configuration). Using this idea, in 

the following sections the problem of calibration experiment design is formulated as a 

constrained optimization problem (taking into account some specific technological 

requirements) and is solved for serial manipulators with 2 and 6 degrees of freedoms.  

2   Problem of geometrical calibration 

Let us consider a serial robotic manipulator whose end-effector position p  is 

computing using the geometrical model  

  ,gp q П  (1) 

which includes the vector of the unknown parameters П  to be identified and where  

the vector q  aggregates all joint coordinates. Usually the most essential components 

of the vector П  are the deviations of the robot link lengths 
i

l  and the offsets 
j

q  in 

the actuated joints, but in some cases it may also include inclinations of the joint axes, 

etc. In practice, the above defined function  .g  can be extracted from the product of 

homogeneous transformation matrices  

   base tool1
,

i i

n

ii
q


 T T T Π T  (2) 

which are widely used in robotic kinematics. Here, 
base

T  and 
tool

T  denote the 'Base' 

and 'Tool' transformations respectively,  ,
i i i

qT Π  defines transformations related to 

the i-th actuated joint. Here, T , 
i

T , 
base

T , 
tool

T  are 4 4  matrices that are computed 

as a product of simple translation/rotation matrices, for which the number of 

multipliers and their order is defined by robot geometrical model. Since the deviations 

of geometrical parameters П  are usually relatively small, calibration usually relies 

on the linearized model [8] 

    0 0
, ,g  p q П J q П П  (3) 



which includes the Jacobian    0 0
, , /g  q П q ПJ Π  computed for the nominal 

parameters 
0

П . 

In the frame of this work, the following assumptions concerning the manipulator 

model and the measurement equipment limitations are accepted: 

A1: each calibration experiment produces two vectors { , }
i i

p q , which define the 

robot end-effector position and corresponding joint angles;  

A2: the calibration relies on the measurements of the end-effector position only (i.e. 

Cartesian coordinates x, y, z; such approach allows us to avoid the problem of 

different units and to use three points with position instead of one with position and 

orientation); 

A3: the measurements errors are treated as independent identically distributed 

random values with zero expectation and standard deviation  .  

Because of the measurement errors, the unknown parameters П  are always 

identified approximately and their estimates П̂  can be also treated as random values. 

For this reason, the "identification quality" is usually evaluated via the covariance 

matrix ˆcov( )П , whose elements should be as small as possible. However, this 

approach does not provide the final user with a clear engineering characteristic of the 

accuracy improvement, which is achieved due to calibration. Thus, it is proposed to 

use another performance measure that directly evaluates the robot accuracy after 

compensation of the geometrical errors, which in the frame of the adopted above 

notations can be expressed as.  

    ˆ( ) , ,
p

g g ε q q П q П  (4) 

where q  defines the manipulator configuration. Further, to take into account 

particularities of the considered technological application, it is reasonable to limit the 

possible configurations set by a single one 
0

q , which is treated as a typical for the 

manufacturing task. It is obvious that definition of 
0

q  ("test-pose") is a non-trivial 

step that completely relies on the user experience and his/her understanding of the 

technological process. The main substantiation for this approach is to take into 

account that all geometrical errors have different influence on the end-effector 

position and this influence varies throughout the workspace. However, in practice, 

high accuracy is required in the neighborhood of the prescribe trajectory only.  

Taking into account that the geometric parameter estimate П̂  is computed via the 

best fitting of the data set { , }
i i

p q  by the function (1), the expectation of the position 

errors after compensation is equal to zero, i.e.   0
p

E ε . However, the standard 

deviation  T

p p
E ε ε  essentially depends on the measurement configurations (which, 

from point of view of the experiment design theory, can be treated as the plan of the 

calibration experiments). This allows us to present the considered problem in the 

following way: 

Problem: For a given number of experiments m , find a set of measurement 

configurations 
1
, ..{ }.

m
q q  defined by the vectors of the joint variables 

i
q  that ensures 

minimum value of the position error s.t.d. for the test configuration 
0

q : 

  
1{ .

2

. }
0 0

.

ˆ|| ( , ) ( , ) || min
m

E g g 
q q

q П q П  (5) 



where 
p

ε  denotes the Euclidian norm of the vector 
p

ε . 

In the following sections this optimization problem will be solved subject to the 

additional constraints imposed by the application area. 

3   Influence of measurement errors 

For comparison purpose, let us first evaluate the influence of the measurement errors 

on the accuracy of the geometrical parameters identification. Using the linear 

approximation of the geometrical model (3), the deviation of the desired parameters 

with respect to their nominal values 
0

ˆ  П П П  can be obtained from the minimum 

least-square formulation  

    
1

m in
i i i

m
T

i

i




      
П

J П p J П p  (6) 

which yields expression  

 

1

1 1

ˆ ·
T T

i i i i

m m

i i



 


   

     
   
 J JΠ J p  (7) 

where 
0i i i

  p p p  denotes the shift of the end-effector position 
i

p  for the i-th 

experiment with respect to the location corresponding to the nominal geometrical 

parameters 
0

П  and measurement configuration 
i

q . To increase the identification 

accuracy, the foregoing linearized procedure has to be applied several times, in 

accordance with the following iterative algorithm: 

Step 1. Carry out experiments and collect the input data in the vectors of 

generalized coordinates 
i

q  and end-effector position 
i

p . Initialize 0 П . 

Step 2. Compute end-effector position via direct kinematic model (1) using initial 

generalized coordinates 
i

q  

Step 3. Compute residuals and unknown parameters П  via (7) 

Step 4. Modify mathematical model and generalized coordinates П  and 
i

q . 

Step 5. If required accuracy is not satisfied,  repeat from Step 2. 

Further, to integrate the measurement errors 
i

ε  in equation (7), 
i

p  can be 

expressed as 

 
i i i
  p П εJ  (8) 

where 
i

ε  are assumed to be independent identically distributed (i.i.d.) random values 

with zero expectation E ( )
i

ε 0  and the variance 
2

E ( )
T

i i
ε ε . Hence, as follows 

from (7), the geometric parameters estimate Π̂  can be presented as the sum  

 

1

0

1 1

ˆ
m m

T T

i i i i

i i



 

   
    

   

  J J εП JП  (9) 



where the first term corresponds to the expectation of this random variable. From the 

latter expression, the covariance matrix of Π̂ , which defines the identification 

accuracy, can be computed as 

 

1 1

1 1 1

cov( ) Eˆ
m m m

T T T T

i i i i i i i i

i i i

 

  

     
      
     
  J J J ε ε J J JП . (10) 

So, considering that   2
E

T

i i
ε ε I , the desired covariance matrix can be simplified 

to: 

 

1

2

1

cov( )ˆ
m

T

i i

i







 
  

 
 J JП  (11) 

where   is the s.t.d. of the measurement errors. Hence, the impact of the 

measurement errors on the identified values of the geometric parameters is defined by 

the matrix sum 
1

m T

i ii J J  that is also called the information matrix. 

It should be stressed that most of the related works [9-11] reduce the calibration 

experiment design problem to the problem of covariance matrix minimization, which 

is evaluated by means of the determinant, Euclidian norm, trace, singular values, etc. 

However, because of some essential disadvantages mentioned in the previous section, 

this approach may provide a solution, which does not guarantee the best position 

accuracy for typical manipulator configurations defined by the manufacturing 

process. This motivates another approach presented below. 

4   Test-pose based approach  

To overcome the above mentioned difficulty, it is prudent to introduce another 

performance measure, which is directly related to the robot accuracy after 

compensation of the geometrical errors. Besides, to take into account that the desired 

accuracy should be achieved for rather limited workspace area, it is proposed to limit 

possible manipulator configurations by a single one (corresponding to joint variables 

0
q ), which further will be referred to as a test-pose. It is evident that this performance 

measure is attractive for practicing engineers and also allows to avoid the 

multiobjective optimization problem that arises while minimizing all elements of the  

covariance matrix (11) simultaneously. In addition, using this approach, it is possible 

to find a balance between accuracy of different geometrical parameters whose 

influence on the final robot accuracy is unequal. 

In more formal way, the proposed performance measure 
0

  may be defined as the 

s.t.d. of the distance between the desired end-effector position and its real position 

achieved after application of the geometrical error compensation technique. 

Using the notations from the previous section, this  distance may be computed as 

the Euclidean norm of the vector 
0
δ p J Π , where the subscript '0' is related to the 

test pose 
0

q  and ˆδ  Π Π Π  is the difference between the estimated and true values 

of the robot geometrical parameters. It can be proved that the above presented 



identification algorithm provides an unbiased compensation, i.e.  E  p 0 , while 

the standard deviation of the compensation error E ( )
T

 p p  can be expressed as 

  2

0 0 0
E

T T
   Π J J Π  (12) 

Taking into account geometrical meaning of 
0

 , this value will be used as a 

numerical measure of the error compensation quality (and also as a quality measure of 

the related plan of calibration experiments). This expression can be simplified by 

presenting the term T
 p p  as the trace of the matrix T

 p p , which yields  

   0 0

2

0
trace E

T T
   J Π Π J  (13) 

Further, taking into account that E ( )
T

 Π Π  is the covariance matrix of the 

geometrical parameters estimate Π̂ , the proposed performance measure (13) can be 

presented in the final form as  

 
2

0

1

0

1

2

0
trace

m

T T

i i

i

 





  
      

J J J J  (14) 

As follows from this expression, the proposed performance measure 2

0
  can be 

treated as the weighted trace of the covariance matrix (11), where the weighting 

coefficients are computed using the test pose coordinates. It has obvious advantages 

compared to previous approaches, which operate with "pure" trace of the covariance 

matrix and involve straightforward summing of the covariance matrix diagonal 

elements, which may be of different units.  

Using this performance measure, the problem of calibration experiment design can 

be reduced to the following optimization problem  

 
1

1

0 0
{ ... }

1

trace m in
m

m

T T

i i

i





  
     


q q

J J J J  (15) 

whose solution gives a set of the desired manipulator configurations 
1

{ , ... }
m

q q . It is 

evident that here an analytical solution can hardly be obtained, so a numerical 

approach is the only reasonable one. An application of this approach for the design of 

the manipulator calibration experiments and its advantages are illustrated below. 

Geometrical interpretation of the proposed approach is presented in Fig. 1, where the 

performance measure 
0

  defines the position error for the target point after 

calibration. 

Target point

 0,gp q П
End-point position 

before calibration

End-point position 

after calibration

 0,g  p q П Π

 ,gp q П

0 min 

Calibration

 

Fig. 1. Geometrical interpretation of the test-pose based approach 



5   Illustrative example  

Let us illustrate the advantages of the test-pose-based approach by an example of 

the geometrical calibration of the 2-link manipulator. For this manipulator, the end-

effector position can be computed as  

 
   

   

1 1 1 2 2 1 2

1 1 1 2 2 1 2

cos cos( )

sin sin( )

x l q l q q

y

l l

l ll q l q q

     

     
 (16) 

where x  and y  define the end-effector position, 
1 2
,l l  and 

1 2
,l l   are nominal link 

lengths and their deviations (that should be identified), 
1

q , 
2

q  are the joint 

coordinates that define manipulator configuration. It can be proved that, in the case of 

1 2
( , )l l  П  the parameter covariance matrix does not depend on the angles 

1i
q  

and can be expressed as:  

 
2 2

1

2

2
2

2
1

1

cos

cov( )

co

ˆ

scos

m

i

i

m
m

i
i

i
i

m q

q mm q







 
 

 
         







П  (17) 

where m  is the number of experiments and 1,...i m .  

For comparison purposes the design of experiment problem was solved using both 

the known approaches and the proposed one. It can be shown that here it is not 

reasonable to use the A-criterion (the goal of A-criterion is to minimize the trace of 

the covariance matrix) because the trace of the relevant information matrix does not 

depend on the plan of experiments. Further, it was proved that the criteria that operate 

with the covariance matrix determinant (D and D* criteria, [8]; the goal of D-criterion 

is to minimize the determinant of the covariance matrix, the goal of D*-criterion is to 

ensure independence of the identified parameters and to minimize the determinant of 

the covariance matrix that is diagonal) lead to minimization of 
21

cos
m

ii
q

 . This 

solution provides good accuracy on average, but not for the test configuration 

10 20
( , )q q . 

For the proposed performance measure 2

0
 , the basic expression (14) can be 

transformed to 

 

2

2 2 2

0 20 2 2

1 1

2 cos cos cos

m m

i i

i i

m q q m q 
 

    
           

   (18) 

Here, the minimum value of 2

0
  is achieved when 

  2 20 20

1

cos 1 sin cos

m

i

i

q m q q


   (19) 

and is equal to  



    2 2 2

0 min 20 20
cos 1 sinq qm    (20) 

It is evident that general solution of equation (19) for m  configurations can be 

replaced by the decomposition of the whole configuration set by the subsets of 2 and 

3 configurations (while providing the same identification accuracy). This essentially 

reduces computational complexity and allows user to reduce number of different 

configurations without loss of accuracy.  

Compared with other approaches, it should be mentioned that in the test pose 

10 20
( , )q q , the D-criterion insures the accuracy 2 2

2
D

m   only. Corresponding loss 

of the accuracy is presented in Table 1. It is shown that the test-pose based approach 

allows us to improve the accuracy of the end-effector position up to 41%.  

Table 1.  Accuracy comparison for D-based and test-pose based approaches.  

20
q , deg 0° 30° 60° 90° 120° 150° 180° 

2 2

D
   1 1 1 1 1 1 1 

2 2

0
   0.5 0.75 0.83 1 0.83 0.75 0.5 

0D
  , % 41 15 10 0 10 15 41 

 

To illustrate advantages of the proposed approach, Fig. 2 presents three plots 

showing geometrical error compensation efficiency for different calibration plans. 

These results correspond to the manipulator parameters 
21

1 m , 0.8 ml l  , two 

measurement configurations 2m  , the test pose 
0

( 45 , 20 ) q
  , and s.t.d. of the 

measurement errors 3
m10


 . The calibration experiment has been repeated 100 

times. In the case (a), the plan of experiments corresponds to 
1

(0 , 10 ) q
   and 

2
(0 ,10 )q

  . In the case (b), the measurement configurations are 
1

(0 , 90 ) q
   

and 
2

(0 , 90 )q
   and insure that 

2

21
cos 0

ii
q


 . And for the case (c), the 

measurement configurations 
1

(0 , 46 ) q
   and 

2
(0 , 46 )q

   were computed using 

equation (19). These results show that the proposed approach allows us to increase 

accuracy of the end-point location on average by 18% comparing to the calibration 

using D-optimal plan and by 48% comparing to the calibration using non-optimal 

plan.  
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Fig. 2. The accuracy of geometrical error compensation for different plans of calibration 

experiments: identification of parameters 
1 2
,l l   for measurement errors with 3

m10


  
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Fig. 3. The accuracy of geometrical error compensation for different plans of calibration 

experiments: identification of parameters 
1 2 1 2
, , , ql ql     for measurement errors with 

3
m10


   

In the frame of this example, it was also studies the case of the joint offsets 

calibration, where 
1 2

( , )q q  П . It has been proved that expressions (18)-(20) are 

also valid in this case . This allows us to suggest a hypothesis that a more general case 

of simultaneous calibration of the link lengths and joint offsets 

1 2 1 2
( , , , )ql l q    П  can be also solved using the same expressions. This 

hypothesis has been confirmed by the simulation results presented in Fig. 3, where 

calibration was based on three measurements ( 3m  ). Here, case (a) employees the 

configurations 
1

(0 , 10 ) q
  , 

2
(0 , 0 )q

   and 
3

(0 ,10 )q
  ; case (b) uses the 

configurations 
1

(0 , 120 ) q
  , 

2
(0 , 0 )q

   and 
3

(0 ,120 )q
  ; and case (c) is 

based on the optimal configurations 
1

(0 , 57 ) q
  , 

2
(0 , 0 )q

   and 
3

(0 , 57 )q
  . 

As follows from these results, here the proposed approach allows us to increase the 

robot accuracy by 18% compared to D-optimal plan and by 56% compared to non-

optimal plan of experiments. 

6   Application example: calibration of Kuka KR270  

Now let us present a more sophisticated example that deals with calibration 

experiments design for the industrial robot KUKA KR-270 (Fig. 4a). The geometrical 

model and parameters of the robot are presented in Fig. 4b [13]. For this case study, 

the parameters 
0 5 6
, ,d d q  do not affect the robot accuracy. For this reason, they are 

eliminated from the list of parameters used in the experiment design. 

Accordingly, the optimization problem (15) associated with the calibration 

experiment plans for  3, 4,12m   has been solved. While solving this problem, it 

was assumed that the end-effector position is estimated using FARO laser tracker 

(Fig 3c) [14], for which the measurement errors can be presented as unbiased random 

values with s.t.d. 0.03 mm  . For the computations, the workstation Dell Precision 

T7500 with two processors Intel® Xeon® X5690 (Six Core, 3.46GHz, 12MB 

Cache12) and 48 GB 1333MHz DDR3 ECC RDIMM has been used. Since the 

optimisation problem (15) is quite sensitive to the starting point, parallel computing 



with huge number of the initial points were used. To increase robustness of the 

proposed approach, the starting points were selected taking into all constraints. 

Besides, filtering of the points that correspond to the high values of 
0

  has been 

applied. 

0d1d

2d
3d

4d

5d

x

y

z

1q

2q

3q
4q

6q
5q

(a) robot Kuka KR-270 (c) FARO laser tracker(b) geometrical model of robot Kuka KR-270  

Fig. 4. Robot Kuka KR-270, its geometrical model and FARO laser tracker   

The obtained results and comparison study with random plan are summarized in 

Table 2. Here, random plans have been generated 20 000 times using joints and 

workspace limits. Table 2 includes maximum, minimum and mean values of the 

performance measure 
0

  for the generated sets of configurations. It has been shown 

that within the proposed plan of experiments, the calibration is much more efficient 

and high accuracy can be achieved using 3-4 measurement configurations only. 

Table 2 also includes some additional results obtained by multiplication of the 

measurement configurations, which show that it is not reasonable to solve 

optimization problem for 12 configurations (that produce 72 design variables). 

However, almost the same accuracy of the error compensation can be achieved by 

carrying out 12 measurements in 4 different configurations only (3 measurements in 

each configuration). 

For comparison purposes, Fig 5 presents simulation results obtained for different 

types of calibration experiments. Here, each point corresponds to a single calibration 

experiment with random measurement errors. As follows from the obtained results, 

any optimal plan (obtained for the case of three, four or twelve calibration 

experiments) improves the accuracy of the compliance error compensation in the 

given test pose by about 75% comparing to the random plan. Also, it is shown that 

repeating experiments with optimal plans obtained for the lower number of 

experiments provides almost the same accuracy as the "full-dimensional" optimal 

plan. Thus, this idea of the reduction of the measurement pose number looks very 

attractive for the engineering practice. 

 

Table 2. Accuracy of the error compensation 
6

0
,[m 10 ]


  for different plans of experiments.  

Number of experiments 3 4 3×4 4×3 12 

Random plan 

max 47.1×106 8078 23.6×106 2693 144 

min 101 76.2 50.0 44.0 44.3 

mean 0.49×106 375 0.24×106 217 67.2 

Proposed plan 63.7 52.1 31.9 30.1 30.0 
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Fig. 5. The accuracy of errors compensation in the test configuration for different plans of 

calibration experiments for Kuka KR-270 robot for 0.03 mm  : (1) random plan 
0 , rand

 ; 

(2a) four experiments for optimal plan obtained for three calibration experiments 0, 3opt ,     

(2b) three experiments for optimal plan obtained for four calibration experiments 0, 4opt ,    

(2c) experiments for optimal plan obtained for twelve calibration experiments, 0 , 12opt ;         

(3) expectation for the plan (1) 3
0, 52.7·10rand mm


 ; (4a) expectation for the plan (2a) 

3
0, 3 32.7·10opt mm


 ; (4b) expectation for the plan (2b) 3

0, 4 30.3·10opt mm


 ; (4c) 
3

0, 12 29.8·10opt mm


 ;  

7   Conclusions 

The paper presents a new approach for the design of calibration experiments for 

robotic manipulators that allows essentially reducing the identification errors due to 

proper selection of the manipulator configurations. In contrast to other works, the 

quality of the calibration experiment plan is estimated using a new performance 

measure that evaluates the efficiency of the error compensation in the given test-pose. 

This approach ensures the best position accuracy for the given test configuration.  

The advantages of the developed technique are illustrated by two examples that 

deal with the calibration experiment design for 2 d.o.f. and 6 d.o.f. manipulators. The 

results show that the combination of the low-dimension optimal plans gives almost 

the same accuracy as the full-dimension plan. This heuristic technique allows user to 

reduce essentially the computational complexity required for the calibration 

experiment design. In a future work, an additional investigation will be performed for 

the experiment design for the set of the test poses (or for a long machining path). 
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