Skip to main content

A New 4M Model-Based Human-Machine Interface for Lower Extremity Exoskeleton Robot

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7506))

Included in the following conference series:

Abstract

This paper presents a Human-Machine Interface (HMI) for controlling lower limb exoskeleton robot intelligently with the joint torque estimated by a new biomechanical model of skeletal muscle. Based on the Microscopic working Mechanism of Molecular Motor (4M) in sacromere, this 4M model is established to reveal the relation between the characteristics of sEMG signal and active contraction force of muscle fiber. We discuss the interaction mechanism between human body and exoskeleton via analyzing the dynamics of exoskeleton robot and knee joint respectively. The knee joint torque that generated by skeletal muscle can be predicted accurately with the 4M model via measuring the sEMG signals on muscle surface. An active strategy for controlling exoskeleton robot has been proposed to train the lower limb on human intention. Experimental results show that the operator can exercise harmoniously with the exoskeleton, which prove the validity of this theoretical biomechanical model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, B.Z., Kazerooni, H., Chu, A.: Biomechanical design of the Berkeley Lower Extremity Exoskeleton (BLEEX). IEEE/ASME Trans. Mechatron. 11, 128–138 (2006)

    Article  Google Scholar 

  2. Kawamoto, H., Sankai, Y.: Power assist method based on phase sequence and muscle force condition for HAL. Adv. Robot. 19, 717–734 (2005)

    Article  Google Scholar 

  3. Veneman, J., Kruidhof, R., Hekman, E., Ekkelenkamp, R., Van Asseldonk, E., van der Kooij, H.: Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans. Neural. Syst. Rehabil. Eng. 15, 379–386 (2007)

    Article  Google Scholar 

  4. Banala, S., Kim, S., Agrawal, S., Scholz, J.: Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Trans. Neural Syst. Rehabil. Eng. 17, 2–8 (2009)

    Article  Google Scholar 

  5. Riener, R., Lunenburger, L., Jezernik, S., Anderschitz, M., Colombo, G.: Patient-Cooperative Strategies for Robot-Aided Treadmill Training: First Experimental Results. IEEE Trans. Neural. Syst. Rehabil. Eng. 13, 380–394 (2005)

    Article  Google Scholar 

  6. Fleischer, C., Hommel, G.: A Human–Exoskeleton Interface Utilizing Electromyography. IEEE Trans. Robot. 24, 872–882 (2008)

    Article  Google Scholar 

  7. Fan, Y.J., Guo, Z., Yin, Y.H.: sEMG-Based neuro-fuzzy controller for a parallel ankle exoskeleton with proprioception. Int. J. Robot. Autom. 26, 450–460 (2011)

    Google Scholar 

  8. Buchanan, T.S., Lloyd, D.G., Manal, K., et al.: Neuromusculoskeletal Modeling: Estimation of Muscle Forces and Joint Moments and Movements From Measurements of Neural Command. J. Appl. Biomech. 20, 367–395 (2004)

    Google Scholar 

  9. Lloyd, D., Besier, T.: An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J. Biomech. 36, 765–776 (2003)

    Article  Google Scholar 

  10. Yin, Y.H., Guo, Z., Chen, X., Fan, Y.J.: Study on biomechanics of skeletal muscle based on working mechanism of myosin motors: An overview. Chin. Sci. Bull. (in press, 2012)

    Google Scholar 

  11. Rosen, J., Brand, M., Fuchs, M.B., Arcan, M.: A Myosignal-Based Powered Exoskeleton System. IEEE Trans. Syst., Man, Cybern. 31, 210–222 (2001)

    Article  Google Scholar 

  12. Guo, Z., Yin, Y.H.: Coupling mechanism of multi-force interactions in the myosin molecular motor. Chin. Sci. Bull. 55, 3538–3544 (2010)

    Article  Google Scholar 

  13. Yin, Y.H., Guo, Z.: Collective mechanism of molecular motors and a dynamic mechanical model for sarcomere. Sci. China-Technol. Sci. 54, 2130–2137 (2011)

    Article  MATH  Google Scholar 

  14. Guo, Z., Yin, Y.H.: A dynamic model of skeletal muscle based on collective behavior of myosin motors—Biomechanics of skeletal muscle based on working mechanism of myosin motors (I). Sci. China-Technol. Sci. 55, 1589–1595 (2012)

    Article  Google Scholar 

  15. Yin, Y.H., Chen, X.: Bioelectrochemical control mechanism with variable-frequency regulation for skeletal muscle contraction-Biomechanics of skeletal muscle based on the working mechanism of myosin motors (II). Sci. China-Technol. Sci. 55, 2115–2125 (2012)

    Article  MathSciNet  Google Scholar 

  16. Yin, Y.H., Fan, Y.J., Xu, L.D.: EMG & EPP-Integrated Human-machine Interface between the Paralyzed and Rehabilitation Exoskeleton. IEEE T. Inf. Technol. B. 3, 542–549 (2012)

    Article  Google Scholar 

  17. https://simtk.org/home/opensim

  18. Zhang, J.J., Yin, Y.H.: SMA-based bionic integration design of self-sensor–actuator-structure for artificial skeletal muscle. Sens. Actuators A: Phys. 181, 94–102 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guo, Z., Fan, Y., Zhang, J., Yu, H., Yin, Y. (2012). A New 4M Model-Based Human-Machine Interface for Lower Extremity Exoskeleton Robot. In: Su, CY., Rakheja, S., Liu, H. (eds) Intelligent Robotics and Applications. ICIRA 2012. Lecture Notes in Computer Science(), vol 7506. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33509-9_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33509-9_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33508-2

  • Online ISBN: 978-3-642-33509-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics