Skip to main content

Wireless Electrical Power to Sub-millimeter Robots

  • Conference paper
Book cover Intelligent Robotics and Applications (ICIRA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7507))

Included in the following conference series:

  • 4486 Accesses

Abstract

A sub-millimeter scale coil is investigated as an alternative means to power electronics for small-scale robots. The AC voltage is induced by time-varying magnetic field. FEM analysis of employing magnetic field concentrators to increase the field density is carried out, concluding with their ineffectiveness to offset the occupied space. The choice of conductive versus non-conductive photoresist is investigated. The coil fabrication process is based upon three-dimensional, two-photon-absorption photolithography. Additional steps include metal sputtering, microlaser patterning and wire-bonding. The steps detailing the entire design process are described. With the coil occupying a volume of 0.45 pico m3, the maximum AC voltage of approximately 84 nV, with power density of about 1.96 mW per meter cube were measured. The study concludes with proposing ways to increase the induced voltage to a useable voltage of 2 V.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Frutiger, D.R., Vollmers, K., Kratochvil, B.E., Nelson, B.J.: Small, Fast, and Under Control: Wireless Resonant Magnetic Micro-agents. IJRR 29(5), 613–636 (2010)

    Google Scholar 

  2. Pawashe, C., Floyd, S., Sitti, M.: Modeling and Experimental Characterization of an Untethered Magnetic Micro-Robot. IJRR 28(8), 1077–1094 (2009)

    Google Scholar 

  3. Nawrocki, R.A., Shaheen, S.E., Voyles, R.M.: A Neuromorphic Architecture From Single Transistor Neurons With Organic Bistable Devices For Weights. In: Proc. IEEE IJCNN, pp. 450–456 (2011)

    Google Scholar 

  4. http://www.excellatron.com/advantage.html (last accessed August 31, 2011)

  5. Jeea, S.H., Leeb, M.J., Ahnc, H.S., Kimc, D.J., Choid, J.W., Yoond, S.J., Name, S.C., Kime, S.H., Yoon, Y.S.: Characteristics of a new type of solid-state electrolyte with a LiPON interlayer for Li-ion thin film batteries. Solid State Ionics 181(19-20), 902–906 (2010)

    Article  Google Scholar 

  6. Peckerar, M., Dilli, Z., Dornajafi, M., Goldsman, N., Ngu, Y., Proctor, R.B., Krupsaw, B.J., Lowy, D.A.: A novel high energy density flexible galvanic cell. Energy & Environmental Science 4, 1807–1812 (2011)

    Article  Google Scholar 

  7. Lal, A., Duggirala, R., Li, H.: Pervasive power: A radioisotope-powered piezoelectric generator. IEEE Pervasive Computing 4, 53–61 (2005)

    Article  Google Scholar 

  8. Pana, C.T., Liua, Z.H., Chenb, Y.C., Liu, C.F.: Design and fabrication of flexible piezo-microgenerator by depositing ZnO thin films on PET substrates. Sensors and Actuators A 159, 96–104 (2010)

    Article  Google Scholar 

  9. Hollar, S., Flynn, A., Bellew, C., Pister, K.S.J.: Solar powered 10 mg silicon robot. In: IEEE Micro Electro Mechanical Systems, pp. 706–711 (2003)

    Google Scholar 

  10. Churman, W.A., Gerratt, A.P., Bergbreiter, S.: First leaps toward jumping microrobots. In: IEEE IROS, pp. 1680–1686 (2011)

    Google Scholar 

  11. Arnold, D.P.: Review of Microscale Magnetic Power Generation. IEEE Trans. on Magnetics 43(11), 3940–3951 (2007)

    Article  Google Scholar 

  12. Cepnik, C., Wallrabe, U.: A micro energy harvested with 3D wire bonded microcoils. Transducers, 665–668 (2011)

    Google Scholar 

  13. Mack, B., Kratt, K., Stürmer, M., Wallrabe, U.: Electromagnetic Micro Generator Array Consisting of 3D Micro Coils Opposing a Magnetic PDMS Membrane. In: Transducers 2009, pp. 1397–1400 (2009)

    Google Scholar 

  14. Brauer, J.R.: Magnetic actuators and sensors, p. 20. John Wiley and Sons (2006)

    Google Scholar 

  15. Yeadon, W.H., Yeadon, A.W.: Handbook on small electric motors, p. 1.67. McGraw-Hill (2001)

    Google Scholar 

  16. http://www.nanoscribe.de/ (August 31, 2011)

  17. http://www.gersteltec.ch/userfiles/1197841690.pdf (August 31, 2011)

  18. Sheats, J.R., Biesty David, D., Noel, J., et al.: Printing technology for ubiquitous electronics. Circuit World 36, 40–47 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nawrocki, R.A., Frutiger, D.R., Voyles, R.M., Nelson, B.J. (2012). Wireless Electrical Power to Sub-millimeter Robots. In: Su, CY., Rakheja, S., Liu, H. (eds) Intelligent Robotics and Applications. ICIRA 2012. Lecture Notes in Computer Science(), vol 7507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33515-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33515-0_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33514-3

  • Online ISBN: 978-3-642-33515-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics