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Abstract. Data is often communicated from different locations in ap-
plication memory and is commonly serialized (copied) to send buffers or
from receive buffers. MPI datatypes are a way to avoid such interme-
diate copies and optimize communications, however, it is often unclear
which implementation and optimization choices are most useful in prac-
tice. We extracted the send/recv-buffer access pattern of a representa-
tive set of scientific applications into micro-applications that isolate their
data access patterns. We also observed that the buffer-access patterns in
applications can be categorized into three different groups. Our micro-
applications show that up to 90% of the total communication time can
be spent with local serialization and we found significant performance
discrepancies between state-of-the-art MPI implementations. Our micro-
applications aim to provide a standard benchmark for MPI datatype im-
plementations to guide optimizations similarly to SPEC CPU and the
Livermore loops do for compiler optimizations.

1 Introduction

The MPI (Message Passing Interface) Standard [14] has become the de-facto
standard to write distributed high-performance scientific applications. The ad-
vantage of MPI is that it enables a user to write performance-portable codes.
This is achieved by abstraction: Instead of expressing a communication step as a
set of point-to-point communications in a low-level communication API it can be
expressed in an abstract and platform independent way. MPI implementers can
tune the implementation of these abstract communication patterns for specific
machines. MPI plays a similar role in the development of performance portable
codes than high-level languages: Instead of coding a loop in inline assembly and
using SIMD instructions the same loop can be expressed in a high-level lan-
guage, using auto-vectorization features of the compiler. The programmer does
not have to understand the details of the target platform and possible optimiza-
tion techniques to write efficient application kernels.

MPT Derived Datatypes (DDTs), allow the specification of arbitrary data
layouts in all places where MPI functions accept a datatype argument (i.e.,
MPI INT). We give an an example for the usage of DDTs to send/receive a



vector of integers in Figure 1. All elements with even indices are to replaced by
the received data, elements with odd indices are to be sent. Without the usage
of MPI DDTs one would have to allocate temporary buffers and manually pack-
/unpack the data. The usage of MPI DDTs greatly simplifies this example. If the
used interconnect supports non-contiguous transfers (such as Cray Gemini [2])
the two copies can be avoided completely. Therefore the usage of DDTs not only
simplifies the code but also can improve the performance due to the zero-copy
formulation.

send to process p-1 Without DDTs: With DDTs:

sbuf = malloc(...); MPI_Datatype nt;
rbuf = malloc(...); MPI_Type_vector(n/2, 1, 2, MPL_INT, &nt);
for (i=1; i<n; i+=2) sbuf[i/2] = datalil; MPI_Type_commit(&nt);
MPI_Isend(sbuf, n/2, MPI_INT, ...); MPI_lsend(&data[1], 1, nt, ...);
MPI_Irecv(rbuf, n/2, MPI_INT, ...); MPI_lrecv(&data[0], 1, nt, ...);
MPI_Waitall(...); MPI_Waitall(...);
for (i=0; i<n; i+=2) datal[i] = rbuf[i/2]; - no explicit copies
free(sbuf); free(rbuf); - less code

recv from process p+1

Fig. 1. An example use case for MPI derived datatypes

Not many scientific codes leverage MPI DDTs, even though their usage would
be appropriate in many cases. One of the reasons might be that current MPI
implementations in some cases still fail to deliver the expected performance, as
shown by Gropp et al. in [9], even though a lot of work is done on improving
DDT implementations [6, 18, 20]. Most of this work is guided by a small num-
ber of micro-benchmarks. This makes it hard to gauge the impact of a certain
optimization on real scientific codes.

Coming back to the high-level language analogy made before and comparing
this situation to the that of people developing new compiler optimizations tech-
niques or microachitecture extensions we see that, unlike for other fields, there is
no application derived set of benchmarks to evaluate MPI datatype implementa-
tions. Benchmark suites such as SPEC [8] or the Livermore Loops [13] are used
by many (e.g., [1]) to evaluate compilers and microarchitectures. To address this
issue, we developed a set of micro applications® that represent access patterns
of representative scientific applications as optimized pack loops as well as MPI
datatypes. Micro applications are, similarly to mini-applications [3,5, 10], ker-
nels that represent real production level codes. However, unlike mini-applications
that represent whole kernels, micro-applications focus on one particular aspect
(or “slice”) of the application, for example the I/0O, the communication pattern,
the computational loop structure, or, as in our case, the communication data
access pattern.

1.1 Related Work

Previous work in the area of MPI derived datatypes focuses on improving its
performance, either by improving the way derived datatypes are represented
in MPI or by using more cache efficient strategies for packing and unpacking
the datatype to and from a contiguous buffer [6]. Interconnect features such

3 which can be downloaded from http://unixer.de/research/datatypes/ddtbench



as RDMA Scatter/Gather operations [20] have also been considered. However,
performance of current datatype implementations remains suboptimal and has
not received as much attention as latency and bandwidth, probably due to the
lack of a reasonable and simple benchmark. For example Gropp et al. found that
several basic performance expectations are violated by MPI implementations in
use today [9].

The performance of MPI Datatypes is often measured using micro-
benchmarks such as those proposed by Reussner [16]. Several application studies
demonstrate that MPI datatypes can outperform explicit packing in real-world
application kernels [11,12]. Those results are often either artificial (randomly
chosen access patterns) or too complex to compare different implementations
efficiently (part of a large application for which the performance is influenced by
too many factors such as CPU speed). For example, many datatype optimization
papers ignore the unstructured access class that we identify in this work com-
pletely even though this access pattern is found in many molecular dynamics
and finite element codes.

However, the issue of preparing the communication buffer has received very
little attention compared to tuning the communication itself. In this work, we
show that the serialization parts of the communication can take a share of up to
90% of the total communication overheads because they happen at the sender
and at the receiver.

Our micro-applications offer three important features: (1) they represent a
comprehensive set of application use cases, (2) they are easy to compile and
use on different architectures, and (3) they isolate the data access and commu-
nication performance parts and thus enable the direct comparison of different
systems. They can be used as benchmarks for tuning MPI implementations as
well as for hardware/software co-design of future (e.g., exascale) network hard-
ware that supports scatter/gather access.

2 Representative Communication Data Access Patterns

We analyzed many parallel applications, miniapps and application benchmarks
for their local access patterns to send and receive memory. Our analysis covers
the domains of atmospheric sciences, quantum chromodynamics, molecular dy-
namics, material science, geophysical science, and fluid dynamics. We created
7 micro apps to span all application areas. Table 1 provides an overview of in-
vestigated application classes, their test cases, and a short description of the
respective data access patterns. In detail, we analyzed the complex applications
WREF [17], SPECFEM3D GLOBE [7], MILC [4] and LAMMPS [15], represent-
ing the fields of weather simulation, seismic wave propagation, quantum chromo-
dynamics and molecular dynamics. We also included existing parallel computing
benchmarks and mini-apps, such as the NAS [19], the Sequoia benchmarks as
well as the Mantevo mini apps [10].

We found that MPI derived datatypes (DDTs) are rarely used and thus we
analyzed the data access patterns of the (pack and unpack) loops that are used



Application Class Testname |Acccss Pattern

WRF_x_vec struct of 2D /3D /4D face exchanges in

Atmospheric Sci WRF _y_vec different directions (x,y), using different
mospheric weience WRF_x_sa (semantically equivalent) datatypes: nested

WRF _y sa vectors (_vec) and subarrays (_sa)
Quantum Chromodynamics |MILC su3 zd 4D face exchange, z direction, nested vectors

NAS_MG_x 3D face exchange in each direction (x,y,z)

NAS_MG_y with vectors (y,z) and nested vectors (x)
Fluid Dynamics NAS MG =z ’

NAS LU x 2D face exchange in x direction (contiguous)

NAS LU y and y direction (vector)

FFT 2D FFT, different vector types on send/recv side

Matrix Transpose

SPECFEM3D_mt|3D matrix transpose,

LAMMPS _full unstructured exchange of different particle
LAMMPS _atomic|types (full/atomic), indexed datatypes

Molecular Dynamics

SPECFEMS3D _ oc |unstructured exchange of acceleration data

Geophysical Science SPECFEM3D _cm|for different earth layers, indexed datatypes

Table 1. Overview of the Application Areas, Represented Scientific Applications, and
Test Names for our Micro-Applications.

to (de-)serialize data for sending and receiving. Interestingly, the data access
patterns of all those applications can be categorized into three classes: Cartesian
Face Exchange, Unstructured Access and Interleaved Data.

In the following we will describe each of the three classes in detail and give
specific examples of codes that fit each category.

2.1 Face Exchange for n-dimensional Cartesian Grids

Many applications store their working set in n-dimensional arrays that are dis-
tributed across one or more dimensions. In a communication face, neighboring
processes then exchange the “sides” of “faces” of their part of the working set.
For this class of codes, it is possible to construct matching MPI DDTs using the
subarray datatype or nested vectors. Some codes in this class, such as WRF,
exchange faces of more than one array in each communication step. This can
be done with MPI DDTs using a struct datatype to combine the sub-datatypes
that each represents a single array.

The Weather Research and Forecasting (WRF') application uses a regu-
lar three-dimensional Cartesian grid to represent the atmosphere. Topographical
land information and observational data are used to define initial conditions of
forecasting simulations. WRF employs data decompositions in the two horizontal
dimensions only. WRF does not store all information in a single data structure,
therefore the halo exchange is performed for a number of similar arrays. The
slices of these arrays that have to be communicated are packed into a single
buffer. We create a struct of hvectors of vector datatypes or a struct of subar-
rays datatypes for the WRF tests, which are named WRF _{x,y} {sa,vec}, one
test for each direction, and each datatype choice (nested vectors or subarrays).

NAS MG communicates the faces of a 3d array in a 3d stencil where each
process has six neighbors. The data access pattern for one direction is visualized



in Figure 2(a). The pack function in MG could be replaced by constructing an ap-
propriate subarray datatype or using vector datatypes. Our NAS MG micro-app
has one test for the exchange in each of the three directions NAS MG _{x,y,z}
using nested vector datatypes.

NX/P+2

NY/P+2,

|

[[1]

(a) NAS MG (b) NAS LU
Fig. 2. Data Layout of the NAS LU and MG benchmark

The NAS LU application benchmark solves a three dimensional system of
equations resulting from an unfactored implicit finite-difference discretization of
the Navier-Stokes equations. In the dominant communication function, LU ex-
changes faces of a four-dimensional array. The first dimension of this array is of
fixed size (5). The second (nx) and third (ny) dimension depend on the prob-
lem size and are distributed among a quadratic processor grid. The fourth (nz)
dimension is equal to the third dimension of the problem size. Figure 2(b) visu-
alizes the data layout. Our NAS LU micro-app represents the communication
in each of the two directions NAS LU {x,y}.

The MIMD Lattice Computation (MILC) Collaboration studies Quan-
tum Chromodynamics (QCD), the theory of strong interaction, a fundamental
force describing the interactions of quarks and gluons. The MILC code is publicly
available for the study of lattice QCD. The su3 _rmd application from that code
suite is part of SPEC CPU2006 and SPEC MPI. Here we focus on the CG solver
in su3_rmd. Lattice QCD represents space-time as a four-dimensional regular
grid of points. The code is parallelized using domain decomposition and must
be able to communicate with neighboring processes that contain off-node neigh-
bors of the points in its local domain. MILC uses 48 different MPI DDTs [11] to
accomplish its halo exchange in the 4 directions. The MILC su3 _zd micro-app
performs the communication done for the —z direction.

An important observation we made from constructing datatypes for the ap-
plications in the face-exchange class is that the performance of the resulting
datatype heavily depends on the data-layout of the underlying array. For exam-
ple, if the exchanged face is contiguous in memory (e.g., for some directions in
WRF and MG), using datatypes can essentially eliminate the packing overhead
completely. That is the reason we included tests for each direction applicable.

2.2 Exchange of Unstructured Elements

The codes in this class maintain some form of scatter-gather lists which hold the
indices of elements to be communicated. Molecular Dynamics applications (e.g.,
LAMMPS) simulate the interaction of particles. Particles are often distributed
based on their spatial location and particles close to boundaries need to be



communicated to neighboring processes. Since particles move over the course
of the simulation each process keeps a vector of indices of local particles that
need to be communicated in the next communication step. This access pattern
can be captured by an indexed datatype. A similar access pattern occurs in
Finite Element Method (FEM) codes (i.e., Mantevo MiniFE/HPCCG) and the
Seismic Element Method (SEM) codes such as SPECFEM3D GLOBE. Here
each process keeps a mapping of mesh points in the local mesh defining an
element and the global mesh. Before the simulation can advance in time the
contributions from all elements which share a common global grid point need to
be taken into account.

LAMMPS is a molecular dynamics simulation framework which is capable
of simulating many different kinds of particles (i.e., atoms, molecules, polymers,
etc.) and the forces between them. Similar to other molecular dynamics codes
it uses a spatial decomposition approach for parallelization. Particles are mov-
ing during the simulation and may have to be communicated if they cross a
process boundary. The properties of local particles are stored in vectors and
the indices of the particles that have to be exchanged are not known a priori.
Thus, we use an indexed datatype to represent this access. We created two tests,
LAMMPS _{full,atomic}, that differ in the number of properties associated with
each particle.

SPECFEM3D GLOBE is a spectral-element application that allows the
simulation of global seismic wave propagation through high resolution earth
models. It is used on some of the biggest HPC systems available [7]. Grid
points that lie on the sides, edges or corners of an element are shared between
neighboring elements. The contribution for each global grid point needs to be
collected, potentially from neighboring processes. Our micro-app representing
SPECFEMS3D has two tests, SPECFEM3D _{oc,cm}, which differ in the amount
of data communicated per index.

Our results show that current derived datatype implementations are often
unable to improve such unstructured access over packing loops. Furthermore,
the overheads of creating datatypes for this kind of access (indexed datatypes)
are high.

2.3 Interleaved Data or Transpose

Fast Fourier Transforms (FFTs) are used in many scientific =~ «_sue
applications and are among the most important algorithms in
use today. For example, a two-dimensional FFT can be com-

puted by performing 1d-FFTs along both dimensions. If the in- _

put matrix is distributed among MPI processes along the first ie: e
dimension, each process can compute one a 1d-FFT without
communication. After this step the matrix has to be redis-
tributed, such that each process now holds complete vectors
of the other dimension, which effectively transposes the dis- Fig. 3.
tributed matrix. After the second 1d-FFT has been computed Datatype
locally the matrix is transposed again to regain the original data ¢y opD-FFT

<> <>
blocklen blocklen




layout. In MPI the matrix transpose is naturally done with an MPI _Alltoall oper-
ation. Hoefler and Gottlieb presented a zero-copy implementation of a 2d-FFT
using MPI DDTs to eliminate the pack and unpack loops in [11] and demon-
strated performance improvements up to a factor of 1.5 over manual packing.
The FFT micro-app captures the communication behavior of a two-dimensional
FFT.

SPECFEM3D GLOBE exhibits a similar pattern, which is used to trans-
pose a distributed 3D array. We used Fortran’s COMPLEX datatype as the base
datatype for the FF'T case in our benchmark and a single precision floating point
value for the SPECFEM3D MT case. The MPI DDTs used in those cases are
vectors of the base datatypes where the stride is the matrix size in one dimen-
sion. To interleave the data this type is resized to the size of one base datatype.
An example for this technique is given in Figure 3.

3 Micro-Applications for Benchmarking MPI Datatypes

We implemented all data access schemes that we discussed above as micro appli-
cations with the various tests. For this, we use the original data layout and pack
loops whenever possible to retain the access pattern of the applications. We also
choose array sizes that are representing real input cases. The micro-applications
are implemented in Fortran (the language of most presented applications) and
compiled with highest optimization.

We then perform a ping-pong-like benchmark between two hosts using
MPI_Send() and MPI_Recv() utilizing the original pack loop and our datatype
as shown in Figure 4. We also perform packing with MPI using MPI Pack() and
MPI_Unpack(), cf. Figure 4(c). For comparison we also perform a traditional
ping-pong of the same data size as the MPI DDTs type size.

Process 0
(takes timings)

Process 1 Process 0

(takes timings)

Process 1 Process 0

(takes timings)

Process 1

alloc buffer

manual pack

MPI_Send

inner ping-
loop pong

MPI_Recv

manual unpack

alloc buffer

MPI_Recv

manual unpack
manual pack
MPI_Send

free buffer

inner
loop

MPI_Type_create

MPI_Type._free

MPI_Type_create

MPI_Recv

MPI_Send

MPI_Type_free

inner
loop

MPI_Type_create
+ alloc buffer

MPI_Pack

I

MP|_Send

ping-
pong

MPI_Recy

MPI_Unpack

MPI_Type_create
+ alloc buffer

MPI_Recv
MPI_Unpack
MPI_Pack
MPI_Send

MPI_Type_free
+ free buffer

MP|_Type_free
+ free buffer

free buffer

(a) Manual Pack Loop  (b) Send/Recv with DDTs (¢) MPI_Pack
Fig. 4. Measurement Loops for the Micro-Applications

The procedure runs two nested loops: the outer loop creates a new datatype in
each iteration and measures the overhead incurred by type creation and commit;
the inner loop uses the committed datatype a configurable number of times. Time
for each phase (rectangles in Figure 4) is recorded to a result file and is analyzed
with statistical software packages such as GNU R, for which we provide some
example scripts. Measurements are done only on the client side, so the benchmark
does not depend on synchronized clocks.



Let tp,, be the time for a round-trip including all packing operations (implicit
or explicit) and ¢pqcr, the time to perform explicit packing (manual loop or pack-
/unpack). In the DDT case is tpqer = 0. The network communication part can
then be expressed as tner = tpp — tpack and is equivalent to a traditional normal
ping-pong result. The overheadt for packing relative to the communication time

p—lnet

t
can be expressed as ovh = £
pp

The serial communication time t,.; was practically identical for the tested
MPI implementations (< 5% variation). This enables us to plot the relative
overheads for different libraries into a single diagram for a direct comparison.
Figure 5 shows those relative pack overheads for some representative micro-
application tests performed with Open MPI 1.6 as well as MVAPICH 1.8 on
a cluster with AMD Opteron 270 HE dual core CPUs and an SDR Infiniband
interconnect; we always ran one process per node to isolate the off-node com-
munication. We observe that the datatype engine of Open MPI performs better
than MVAPICH’s implementation. We also see that the dimensions/direction
in which face exchanges occur have a significant impact on their performance
(cf. WRF tests where the y direction has a much smaller packing overhead).
This can be explained if we consider the memory layout of the underlying array
- for some dimensions contiguous “strips” of data can be sent, while for others
each element to be sent has a large stride. The SPECFEMS3D tests show that
unordered accesses with indexed datatypes are not implemented efficiently by
both Open MPI and MVAPICH. This benchmark shows the importance of opti-
mizing communication memory accesses: up to 80% of the communication time
of the WRF _x_vec test case are spend with packing/unpacking data, which
can be reduced to 70% with MPI DDTs. In the NAS LU x case, which sends
a contiguous buffer, using MPI DDTs reduce the packing overhead from 40% to
15%.
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Fig. 5. Packing overheads (relative to communication time) for different micro-apps
and datasizes

Note that the overhead for the creation of the datatype was not included
in the calculations of the packing overheads in Figure 5. We show the creation



overheads and the absolute times for small number of tests in Figure 6 (the
available space does not allow for presenting all collected results). We plot ¢,
as the communication time for the manual packing case. We note that the explicit
packing numbers in the plot were doubled for a comparison with DDTs because
DDTs implicitly pack at the sender and unpack at the receiver. Our results

WRF_y_vec manual
Open MPI WRF_y_vec mpi_ddt [ R O ddt_create / malloc
MVAPIGH WRF_y_vec mpi_ddt | - gg;ﬁ;:gmcm
SPECFEM3D_cm manual [N
Open MPI SPECFEM3D_cm mpi_ddt ]
MVAPICH SPECFEM3D_cm mpi_ddt |
[ T T 1
e 8 8 S
© 2 2
Time [us]

Fig. 6. Representative absolute benchmark results for comparing datatype creation
and commit overheads, manual packing, and datatype communication overheads.

indicate that Open MPI’'s DDT engine is faster than manual packing for WRF,
even if the datatypes were created for each communication (which is unnecessary
in this case). But we also see that Open MPI has a much higher overhead for
creating indexed datatypes, as used in SPECFEM3D, than MVAPICH.

4 Conclusions and Future Work

We analyzed a set of scientific applications for their communication buffer ac-
cess patterns and isolated those patterns in micro-applications to experiment
with MPI datatypes. In this study, we found three major classes of data ac-
cess patterns: Face exchanges in n-dimensional Cartesian grids, irregular access
of datastructures of varying complexity based on neighbor-lists in FEM, SEM
and molecular dynamics codes as well as access of interleaved data in order to
redistribute data elements in the case of matrix transpositions. In some cases
(such as WRF) several similar accesses to datastructures can be fused into a
single communication operation through the usage of a struct datatype. We pro-
vide the micro-applications to guide MPI implementers in optimizing datatype
implementations and to aid hardware-software co-design decisions for future in-
terconnection networks.

We demonstrated that the optimization of data packing (implicit or explicit)
is crucial, as packing can make up up to 90% of the communication time with the
data access patterns of real world applications. We showed that in some cases
zero-copy formulations can help to mitigate this problem.

In the future we plan to extend our benchmark to allow for assessment of the
overlap potential of different datatype engines. Another interesting possibility is
studying how well different MPI DDT implementations make use of the available
cache hierarchy. Of course the benchmark can also be extended by incorporating
more application derived access patterns, for example by investigating parallel
graph algorithms and codes.
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