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Abstract

Automatic labeling of white matter fibres in diffusion-weighted brain MRI is vital for comparing 

brain integrity and connectivity across populations, but is challenging. Whole brain tractography 

generates a vast set of fibres throughout the brain, but it is hard to cluster them into anatomically 

meaningful tracts, due to wide individual variations in the trajectory and shape of white matter 

pathways. We propose a novel automatic tract labeling algorithm that fuses information from 

tractography and multiple hand-labeled fibre tract atlases. As streamline tractography can generate 

a large number of false positive fibres, we developed a top-down approach to extract tracts 

consistent with known anatomy, based on a distance metric to multiple hand-labeled atlases. 

Clustering results from different atlases were fused, using a multi-stage fusion scheme. Our “label 

fusion” method reliably extracted the major tracts from 105-gradient HARDI scans of 100 young 

normal adults.

1 Introduction

Diffusion tensor magnetic resonance imaging (DT-MRI) recovers the local profile of water 

diffusion in tissues, yielding information on white matter (WM) integrity and connectivity 

that is not available from standard anatomical MRI. Recently, DT-MRI has been extended to 

more sophisticated models of the local diffusion process, such as high angular resolution 

diffusion imaging (HARDI [1]) and diffusion spectrum imaging. These advances allow 

more accurate reconstruction of fibres that mix and cross. WM fibres may be recovered 

using tractography methods that fit a path through the directional diffusion data at each 

voxel. Due to its speed, the streamline technique has been extensively used for whole-brain 

tractography. Streamline methods follow the principal eigenvector in DT-MRI [2] or the 
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dominant directions extracted from orientation distribution functions (ODF) [1] in HARDI 

to trace out a fibre trajectory in 3D.

Clustering methods can group the fibres from tractography, enabling large population 

studies of disease and genetic effects on tract shapes, or tract integrity. Various approaches 

have been proposed for automatically clustering fibres. One simple strategy selects 

anatomically well-known WM tracts that are “seeded” in regions of interest (ROI) [3]. One 

problem with this approach is that ROIs either have to be manually drawn on the scans, or 

must heavily rely on accurate registration of the scans to a previously labeled atlas. Image 

quality inevitably affects streamline tractography results, so many propagated streamlines 

fall short of reaching the ROIs and may be incorrectly excluded from the resulting tracts.

A typical framework for fibre clustering defines a pairwise similarity/distance between each 

pair of fibres in a large set of candidate fibres, to group them into separate and distinct tracts. 

The resulting similarity matrix (that compares all fibres with all others) can serve as the 

input for standard clustering algorithms [4]. It is difficult for a user to specify the number of 

clusters or a threshold to decide when to stop merging or splitting clusters. Clustering results 

vary drastically when different numbers of clusters are chosen. Without any anatomical 

information to guide the clustering, tracts may not correspond to any anatomically familiar 

subdivisions. Some recent work [5-6] has addressed this problem by adding atlas 

information into the framework. However, whole-brain tractography typically produces 

10,000-100,000 fibres per subject. These “bottom-up” methods (clustering individual fibres 

into larger and larger groups until major tracts are aggregated) can fail to filter out the large 

number of erroneous fibres generated by streamline methods.

To group fibres into coherent tracts that are consistently labeled across a population, a 

labeled training dataset (atlas) can be used. In traditional image segmentation, a deformable 

atlas may be used, in which an expertly labeled atlas is non-rigidly registered to the image to 

be segmented. The resulting deformation can then be used to transfer the training labels onto 

the test image. Recently, label fusion became popular for registration-based image 

segmentation [7-8]. Multiple atlases and registrations are used to transfer multiple training 

labels to the test subject space. The final labeling is obtained by applying a weighting 

strategy to the labels transferred from different atlases. Label fusion has two advantages: (1) 

large individual variations in anatomy can be better accommodated if one does not need to 

rely on a single atlas; (2) multiple registrations improve robustness against occasional 

registration failures, and non-global minima of the registration cost function.

Here we introduce a multi-atlas label fusion framework to automatically extract 

anatomically meaningful WM tracts. By organizing the results of whole-brain tractography 

into familiar and recognizable tracts, we provide a robust clustering of fibres for population 

studies. Based on the ROIs from a publicly available parcellated WM atlas [9], we first 

manually construct a number of WM fibre tract atlases, each consisting of a set of several 

major WM tracts. In contrast to prior “bottom-up” methods, we use the WM tracts in 

multiple hand-labeled atlases as prior anatomical information. Our “top-down” approach 

transfers tract labels by selecting only fibres that are similar to the corresponding tracts in 

the atlases, based on a similarity measure. This eliminates many false positive fibres that 
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may be otherwise hidden in the ∼100,000 fibres per subject produced by streamline 

tractography. Multiple atlases help to adapt to the variability of tract shapes in new subjects, 

and further reduce the number of outliers arising from registering a single atlas to diffusion 

images or to whole-brain tractography from a new subject. Finally, we use a multi-stage 

fusion scheme to fuse the clustered results obtained from individual atlases. A workflow 

diagram is shown in Figure 1. To test the robustness of our algorithm, we applied it to a 

population study over 100 HARDI datasets.

2 Label Fusion Clustering Framework

2.1 Data Acquisition

Our 100 subjects were selected from a much larger database of ∼700 healthy young adult 

twins in their twenties from Australia. They were all right-handed. HARDI images were 

acquired with a 4-Tesla Bruker Medspec MRI scanner. Each 3D volume consisted of 55 2-

mm axial slices and 1.79×1.79mm2 in-plane resolution with 128×128 acquisition matrix. 

105 image volumes were acquired per subject: 11 with T2-weighted b0 images and 94 

diffusion-weighted volumes (b = 1159 s/mm2). We only used unrelated subjects in this 

analysis, leaving genetic analysis to future work.

2.2 Tractography

Raw HARDI images were corrected for eddy-current induced distortions with FSL (http://

www.fmrib.ox.ac.uk/fsl/). We performed the whole-brain tractography with Camino (http://

cmic.cs.ucl.ac.uk/camino/), an open source software package that uses both streamline and 

probabilistic algorithms to reconstruct fibre paths. The spherical harmonic (SH) 

representation provides faster ODF estimation, and is more robust to noise and arguably 

more accurate for detecting fibre crossings than the original numerical q-ball reconstruction 

method [10]. Explicitly, the SH basis may be expressed as follows: 

, where l denotes the order, m denotes the phase 

factor, θ ∈ [0, π], φ ∈ [0,2π], and  is an associated Legendre polynomial. Signal at each 

gradient direction may be approximated as a linear combination of a modified version of this 

SH basis. We used the 6th order (l=6) SH series to reconstruct ODFs for our HARDI data 

and a maximum of 3 local ODF maxima (where fibres mix or cross) were set to be detected 

at each voxel. Streamline tractography followed these principal diffusion directions with the 

Euler interpolation method to generate fibres inside the entire brain. The maximum fibre 

turning angle was set to 35°/voxel, and tracing stopped at any voxel whose fractional 

anisotropy (FA) <0.2.

2.3 WM Tract Atlas Construction

We constructed four WM tract atlases, from the healthy twins' HARDI data acquired as in 

Section 2.1. A single-subject template in the ICBM-152 space called the “Type II Eve 

Atlas” (a 32-year old healthy female) [9] were registered to the FA images of each atlas. The 

entire brain of the “Eve” template was previously parcellated using 130 bilateral ROIs. 
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Linear and then non-linear registration was performed with Advanced Normalization Tools 

(ANTs) [11].

The labeled template ROIs were re-assigned to the four registered atlases, respectively, by 

warping them with the deformation fields generated by ANTs. Fibres that traversed the 

ROIs were extracted according to the lookup table in [12]. For example, the corticospinal 

tract was extracted from fibres passing between the precentral gyrus and the cerebral 

peduncle. Each tract was manually edited to remove visible outliers and to add any short 

fibres that incorrectly failed to reach the ROIs. Guevara et al. [13] used a single multi-

subject atlas in their clustering algorithm. In principle, multiple atlases should be more 

robust to inaccuracies in registration.

Currently, each atlas is comprised of 13 major WM tracts: the left/right corticospinal tracts, 

left/right cingulum, left/right arcuate fasciculi (part of the superior longitudinal fasciculi), 

left/right inferior fronto-occipital/longitudinal fasciculi, and five segments of the corpus 

callosum – projecting to both frontal lobes, precentral gyri, postcentral gyri, superior parietal 

lobes, and the occipital lobes. We combined the inferior fronto-occipital fasciculus and 

inferior longitudinal fasciculus as one tract, as they had substantial overlap during manual 

atlas construction due to tractography and our image quality.

Figure 2 shows an example WM tract atlas that we created (top, left side, and back views).

2.4 Fibre Clustering

For each test subject (i.e., each new dataset to be labeled), whole-brain tractography was 

extracted using Camino as well. The same registration registered the subject's FA image to 

each of the four WM tract atlases' FA images, respectively. Each atlas's tracts were then 

warped to the subject space with the corresponding deformation fields generated from the 

FA registration. Ideally, an ODF-based registration method should be used to reorient the 

fibres between different spaces. However, such a registration scheme would have 

tremendous costs in terms of time (a few hours per registration) and computing resources if 

it were performed on a large-scale, as in the label fusion scheme. In contrast, FA registration 

only takes 5 minutes per registration on our datasets. Moreover, it has also been shown that 

fibre alignment is indeed improved significantly with that type of registration [14]. The use 

of multiple atlases also helps to reduce clustering errors due to imperfect registration.

We defined a fibre distance metric to decide the subject's fibres that should be included in 

any individual warped atlas tract, based on an empirical threshold obtained from our training 

data. For any pair of fibres γi and γj, we define the symmetric Hausdorff distance: dH(γi,γj) = 

max(dH'(γi,γj), dH'(γj,γi)), where dH' is the asymmetric Hausdorff distance. dH'(γi,γj) = 

maxx∈γi miny∈γj ‖x – y‖. ‖·‖ is the Euclidean norm and the ordered pair (γi,γj) indicates an 

asymmetric distance from γi to γj. x's and y's are the coordinate points along fibres γi and γj, 

respectively [4].

For each fibre that belonged to a particular tract in an atlas, we computed the distance 

between this fibre and each fibre in the subjects' tractography that traversed within a 
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neighborhood around the points along this atlas fibre. For a particular atlas, a group of the 

subject's fibres was identified as the clustering result for each atlas tract.

2.5 Multi-stage Label Fusion

To correctly fuse all the candidate fibres we obtained in Section 2.4, there are two pieces of 

information we need to consider: the position/geometric shape of the fibre, and the similarity 

between the atlases and the subject.

Majority Voting—We chose the Hausdorff distance metric in the fibre clustering phase 

because streamline tractography produces many false positives and this metric is relatively 

conservative in terms of including outliers. It will only pick streamlines with the similar 

geometric shapes that lie in the region where the particular atlas WM tract is located. 

However, due to the WM variability of individual atlases, they may nominate different 

candidates based on their own tract shapes. Majority voting, although it is probably the 

simplest label fusion method, has been proven to yield accurate segmentation results [15]. 

We decided that if a fibre appeared in at least 2 out of 4 individual clustering results, we 

considered it to be a true fibre that should be considered in the next step; otherwise, it was 

discarded.

Similarity of the Atlas to the Subject—The degree of correspondence between the 

atlas and the subject is another factor that should be taken into account. One way to measure 

it is to evaluate the registration quality locally along the candidate fibre. We first warped 

each candidate fibre that passed majority voting to the corresponding atlases (those who 

picked it out) with the inverse deformation fields generated by FA registration in Section 

2.4. Then the angle between the fibre direction at each point on the warped fibre and the 

dominant direction of the ODF at the same point in the atlas was calculated. Camino uses 

the Euler method to interpolate fibre points. Therefore, the fibre direction is defined as: 

(x⃗i+1-x⃗i)/‖x⃗i+1-x⃗i‖, i=1,…,n-1, where x⃗i is the point on the fibre, n is the number of points on 

the fibre, and ‖·‖ is the magnitude of the vector. The atlas ODF direction is the 3D linearly 

interpolated vector obtained through the closest ODF peak directions found in tractography 

at the 8 neighboring voxels. For each voxel, there may be multiple peak directions detected 

in tractography, so we picked the one or its 180° opposite that has the smallest subtended 

angle (that is, the largest inner product) from the fibre direction as the closest ODF peak 

direction at this voxel. A 3D linear interpolation was then used to find the ODF direction at 

the specified fibre point location. We calculated the percentage of the angles that were 

smaller than a threshold (for example, we used 25°) among all the points on that fibre and 

averaged it over all the atlases that chose the fibre for a particular tract. If the overall 

percentage was above a threshold (for example, 80%), we considered the overall registration 

quality to be good. The fibre picked out by those atlases was reliable and should be labeled 

as being part of that tract; otherwise, it was discarded. Figure 3 illustrates a good and a bad 

local registration based on our criterion.
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3 Results

3.1 Automatic Clustering Results

Figure 4 shows how we obtain the left inferior fronto-occipital/longitudinal fasciculus (in 

green) in a test subject. The first row shows the four atlas versions of the tract. The second 

row shows the four different candidates for this tract in the same test subject, based on using 

each atlas to decide which fibres it should contain. We used the Hausdorff distance (see 

Section 2.4) with the threshold of 10mm to find potential fibre candidates. The final result 

for this tract was obtained by applying the label fusion scheme in Section 2.5. It is not hard 

to see that the label fusion process can help to eliminate outliers or add missing fibres in a 

single candidate. Figure 5 shows the label fusion results for the right cingulum (in cyan) in 

four different subjects. Despite individual variations, the overall tract shapes are consistent 

across the population. Figure 6 shows automatic WM fibre clustering results for two 

representative test subjects. Top, left side, and back views are shown. The types of tracts and 

their colors are as in Figure 1. The average fibre number in our clustering results is ∼10,000 

per subject, a 1 in 10 data reduction relative to the initial tractography.

3.2 Population-Based Statistical Results

Many analyses are possible on these clustered tracts, for example, genetic analysis of fibre 

tract geometry, integrity, and connectivity. As one example of a typical application, we 

calculated the mean FA across all voxels traversed by specific tracts in 100 subjects, and 

tested for any differences in mean FA between the left and right hemispheres (Table 1). 

Interestingly, the mean FA of the left corticospinal tract is significantly higher than that of 

the right one. This is consistent with prior studies since all our subjects are right-handed, and 

there is a tendency towards a higher degree of myelination in tracts that control the right side 

of the body, at least in righthanders.

4 Discussion

Multiple atlases were used in our framework to capture the individual variability of tract 

shapes. However, optimal selection of the number of atlases in label fusion is still an open 

question; for our application we will perform convergence tests once we have sufficient 

ground truth data. The focus of this paper is to show the benefit of using multi-atlases (Fig. 

4). Based on our data, four atlases already offer a reasonable number of tracts to account for 

the WM shape variability in our sample, relative to the time needed to build atlases by hand.

We empirically decided on the Hausdorff threshold (Section 2.4), and the angle and the 

percentage (Section 2.5) as similarity metrics, to help recover similar numbers of fibres in 

the test subjects versus atlases, based on our training data. Quantitative analysis would be 

more convincing, but without having ground truth at the moment, a meaningful comparison 

is not easily achieved; currently, we are working on creating many hand labelled datasets to 

serve as ground truth.

Validation of any particular clustering of real fibre tract data is difficult, as there is no 

agreed ground truth on what fundamental elements the connectivity pattern contains. It is 

very difficult to validate clustering quantitatively except by careful visual inspection, as it is 
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often clearer which fibres are false positives than true positives [4][6]. Clustering relies on 

fibres obtained from tractography, which is already tough to validate, except on phantoms, 

and phantoms may not be realistically complex. Comparing Dice coefficients between 

different approaches and hand-labeled tracts might be feasible and will be part of our future 

work, but is very time consuming. Instead, we show preliminary illustrations to indicate how 

label fusion can add missing fibres or delete obvious false positives, compared to a single 

atlas, in Fig. 4. We also used the FA statistics on the corticospinal tracts in Section 3.2 to 

show that our method can pick up subtle known effects.

5 Conclusion

Here we presented an automatic fibre clustering pipeline that uses anatomical information 

from multiple manually made atlases. It can robustly segment the brain WM fibres into 

major tracts; we showed an illustrative example where we applied it to segment and cluster 

tracts in 100 subjects. The contribution of our work is to extend the well-established label 

fusion technique in atlas-based image segmentation to fibre clustering. This results in a 

powerful approach to large population studies in various neurological and psychiatric 

research fields, as well as in imaging genetics, where vast samples must be phenotyped to 

identify genes that affect brain integrity.
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Fig. 1. A flow chart showing steps in our label fusion algorithm for clustering fibres
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Fig. 2. 
A representative WM fibre atlas computed, and manually edited, from 4-Tesla 105-gradient 

HARDI data, showing major tracts. Top, left side, and back views are shown. Major tracts, 

distinguished in color, include the corticospinal tracts (deep sky blue), the cingulum on each 

side (cyan), arcuate fasciculi (blue), inferior fronto-occipital/longitudinal fasciculi (green), 

and multiple subdivisions of the corpus callosum (warm colors from red to yellow).
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Fig. 3. 
This illustration shows the quality of the matching between the fibre direction of the subject 

and the local ODF principal direction of the atlas. A good match of a corpus callosum fibre 

is shown on the left and a poor match of another corpus callosum fibre is shown on the right 

(the fibre direction is in red and the ODF direction is in green).
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Fig. 4. Label fusion result for the left inferior fronto-occipital/longitudinal fasciculus (in green) in 
a test subject (viewed from the left)
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Fig. 5. Label fusion result for the right cingulum (in cyan) in four different subjects (viewed from 
the left)
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Fig. 6. 
Results of automatic fibre clustering, for two subjects. For the tract names and colors used to 

distinguish them, please see Fig. 1 (view from top, left side, and back, respectively). The 

leftmost column is the original whole-brain tractography, for comparison.
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Jin et al. Page 15

Table 1

Population analysis of asymmetry in FA for various tracts, in 100 subjects.

Tract Name Mean FA (Left/Right) p-value

Corticospinal 0.4644 0.4528 *1.15×10-12

Inferior fronto-occipital 0.4501 0.4544 *0.01

Cingulum 0.4107 0.4034 *7.30×10-5

Arcuate fasciculus 0.4623 0.4566 0.06

*
indicates that the difference is statistically significant.
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