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Abstract. Platform-as-a-Service (PaaS) clouds free companies of build-
ing infrastructures dimensioned for peak service demand and allow them
to only pay for the resources they actually use. Being a PaaS cloud cus-
tomer, on the one hand, o↵ers a company the opportunity to provide
applications in a dynamically scalable way. On the other hand, this scal-
ability may lead to financial loss due to costly use of vast amounts of
resources caused by program errors, attacks, or careless use.
To limit the e↵ects of involuntary resource usage, we present DQMP, a
decentralized, fault-tolerant, and scalable quota-enforcement protocol. It
allows customers to buy a fixed amount of resources (e. g., CPU cycles)
that can be used flexibly within the cloud. DQMP utilizes the concept
of di↵usion to equally balance unused resource quotas over all processes
running applications of the same customer. This enables the enforcement
of upper bounds while being highly adaptive to all kinds of resource-
demand changes. Our evaluation shows that our protocol outperforms a
lease-based centralized implementation in a setting with 1,000 processes.

1 Introduction

Cloud computing is considered a fundamental paradigm shift in the delivery ar-
chitecture of information services, as it allows to move services, computation,
and/or data o↵ site to large utility providers. This o↵ers customers substantial
cost reduction, as hard- and software infrastructure needs not to be owned and
dimensioned for peak service demand. With Platform-as-a-Service (PaaS) clouds
like Windows Azure [1] and Google App Engine [2] providing a scalable comput-
ing platform, customers are able to directly deploy their service applications in
the cloud. In the ideal case, cloud customers only pay for the resources their ap-
plications actually use; that is, “. . . pricing is based on direct storage use and/or
the number of CPU cycles expended. It frees service owners from coarser-grained
pricing models based on the commitment of whole servers or storage units.” [3]

While it is very inviting to have virtually unlimited scalability and pay for it
like electricity and water, this freedom poses a serious risk to cloud customers:
the use of vast amounts of resources, caused, for example, by program errors,
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attacks, or careless use, may lead to high financial losses. Imagine an unforeseen
input leads to a livelock that consumes massive amounts of CPU cycles. The
costs for the resources used unintentionally could be tremendous and may even
exceed the estimated profits of running the service.

To address this problem, we propose to employ a quota-enforcement service
that allows cloud customers to specify global quotas for the resources (e. g., CPU,
memory, network) used by their applications. Such a service can be integrated
with the cloud infrastructure in order to ensure that the combined usage of
all processes assigned to the same customer does not exceed the upper bound
defined for a particular resource.

In domains like grid computing, where application demands are predictable,
enforcing global quotas can be done statically during the deployment of an ap-
plication [4]. However, for user-accessed services in a dedicated utility computing
infrastructure [5] like a PaaS cloud, this problem needs to be solved at run time
once previously unknown services get dynamically deployed. Further, the quota-
enforcement service must not impose any specific usage restrictions: processes
must be able to freely allocate resources on demand as long as free quota is avail-
able. In this respect, the enforced global quota can be compared to a credit-card
limit, which protects the owner from overstepping his financial resources while
not making any assumptions on when and how the money is spent. All in all,
dealing with a dynamically varying number of processes with unknown resource
usage patterns makes quota enforcement a challenging task within clouds.

The straight-forward approach would be to set up a centralized service that
manages all quotas of a customer and grants resources to applications on de-
mand. However, as shown in our evaluation, such a service implementation does
not scale for applications comprising a large number of processes, which is a
common scenario in the context of cloud computing. Moreover, additional mech-
anisms like, for instance, state-machine replication had to be applied in order
to provide a fault-tolerant and highly available solution. Otherwise, the quota-
enforcement service would represent a single point of failure.

To avoid the shortcomings of a centralized approach, we devised a decentral-
ized quota-enforcement service including a novel protocol named Di↵usive Quota

Management Protocol, short DQMP. DQMP is fault-tolerant and highly scalable
by design, two properties that are indispensable for cloud environments. Its basic
idea is to use the concept of di↵usion to balance information about free quotas
across all machines hosting a certain application of a customer. By distributing
quota information, the permissions to allocate resources can be granted via local
calls. Our service o↵ers a simple and lightweight interface that can be easily in-
tegrated to extend existing infrastructures with quota-enforcement support. An
evaluation of our prototype with up to 1,000 processes residing on 40 machines
shows that DQMP scales well and outperforms a centralized solution.

The remainder of this paper is structured as follows: Section 2 discusses
related approaches, Section 3 presents the architectural components of our quota-
enforcement service, Section 4 outlines the concept of di↵usive quota enforcement
and presents the DQMP protocol, Section 5 presents results gained from an
experimental evaluation of our prototype, and Section 6 concludes.



2 Related Approaches

Whereas earlier work on di↵usion algorithms and distributed averaging ad-
dressed various areas such as dynamic load balancing [6,7,8], distributing replicas
in unstructured peer-to-peer networks [9], routing in multihop networks [10] and
distributed sensor fusion [11], none of them handles quota enforcement. Kar-
mon et al. [12] proposed a quota-enforcement protocol for grid environments
that relies on a decentralized mechanism to collect information about free re-
source quotas as soon as an application issues a demand. In contrast, our proto-
col proactively balances such information over all machines serving a customer,
which allows granting most demands for free quota instantly. Furthermore, this
paper goes beyond [12] in extending fault tolerance and in discussing how to
integrate with cloud computing. Raghavan et al. [13] proposed an approach
targeting distributed rate limiting using a gossip inspired algorithm in cloud-
computing environments. They specifically focus on network bandwidth and ne-
glect fault tolerance. Pollack et al. [14] proposed a micro-cash–inspired approach
for disk quotas that provides lower overhead and better scalability than central-
ized quota-tracking services. A quota server acts as a bank that issues resource
vouchers to clients. Clients can spend fractions of vouchers to allocate resources
on arbitrary nodes of a cluster system. For good resource utilization and to pre-
vent overload of the quota server bank, this requires previous knowledge about
the resource demand. Gardfjäll et al. [15] developed the SweGrid accounting sys-
tem that manages resources via a virtual bank that handles a hierarchical project
namespace using branches. Based on an extended name service, each branch can
be hosted on a separate node. This approach requires explicit management to
be scalable and misses support for fault tolerance. Furthermore, there are dis-
tributed lock systems [16,17] that provide fault-tolerant leases based on variants
of the Paxos algorithm. Contrary to the presented approach, they are dedicated
to manage low volume resources like specific files. As shown by the evaluation,
our decentralized protocol scales above such replicated service solutions.

3 Architecture

In this section, we present the key components of our quota-enforcement service
which is realized on basis of DQMP and explain how these components interact
with existing cloud infrastructures.

3.1 Host Architecture

DQMP uses a decentralized approach to manage the resource quota of customers.
It distributes information about free quota units across the machines running
applications of the same customer, providing each machine with a local quota.
Quota enforcement in DQMP spans two levels: (1) At the host level, a resource

controller guarantees that the local resource usage of an application process does
not exceed the local quota. (2) At the global level, a network of DQMP daemons

enforces a global quota by guaranteeing that the sum of all local quotas does not
exceed the total quota for a particular resource, as specified by the customer.

Figure 1 shows the basic architecture of a PaaS cloud host that relies on
our protocol to enforce quota for two customers A and B. For each of them, a
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Fig. 1. Basic architecture of a PaaS cloud host running DQMP to enforce resource
quotas: quota requests issued by applications of di↵erent customers are handled by
di↵erent DQMP daemons relying on a set of resource controllers (e. g., for memory
usage (RCM), network transfer volume (RCN), and CPU cycles (RCC)).

separate DQMP daemon is running on the host. Each DQMP daemon is assigned
a set of resource controllers (RC⇤) which are responsible for enforcing quotas for
di↵erent resource types (e. g., memory, network, and CPU).

Resource Controller In general, PaaS computing platforms provide means to
monitor the resource consumption of an application process [18]. For DQMP,
we extend these mechanisms with a set of resource controllers, one for each
resource type. Each time an application seeks to consume additional resources,
the corresponding resource controller issues a resource request to its local DQMP
daemon and blocks until the daemon grants the demand.

DQMP Daemon A cloud host executes a separate DQMP daemon for every
customer executing at least one application process on the host; that is, a DQMP
daemon serving a certain customer is only executed on a host when there actually
runs a process that may demand resource quota. The main task of a DQMP
daemon is to fulfill the resource demands of its associated resource controllers.
To do so, the daemon is connected to a set of other DQMP daemons (assigned
to the same customer) that run on di↵erent cloud hosts, forming a peer-to-peer
network. For the remainder of this paper, we will refer to daemons connected in a
DQMP network as nodes. Moreover, the first node that joins the network is called
quota manager. It serves as a stable access point for the infrastructure, since the
composition of a DQMP network is dynamic as nodes join and leave depending
on whether their local machines currently host processes for the customer.

3.2 Node Registry

In addition to the DQMP components running on the same hosts as the customer
applications, we provide a node-registry service that manages information about
all nodes (i. e., DQMP daemons) assigned to the same customer. We assume
the node registry to be implemented as a fault-tolerant service; for example, by
using multiple registry instances. When a new node joins the DQMP network,
the registry sets up an entry for it. As each node periodically sends a heartbeat
message the registry is able to garbage collect entries of crashed nodes. When a
node leaves the DQMP network (e. g., due to the last local application process
having been shut down), the node instructs the registry to remove its entry.
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Fig. 2. Example scenario for di↵usion-based quota balancing: (a) The local free quotas
are balanced across nodes. (b) Processes on nodes i and k demand resources ! the
di↵usion of quota starts. (c) The free quotas have been rebalanced.

4 The DQMP Protocol

This section presents the algorithms used by our decentralized quota-enforcement
protocol DQMP to enforce global resource quotas of customers. In addition to a
description of the basic protocol, we also discuss extensions for fault tolerance.

4.1 Di↵usion-based Quota Balancing

We give a basic example scenario to outline how the general concept of di↵usion is
applied to balance free global quota information. In this example, three machines
have been selected to host the application of a customer. For simplicity, we
examine the di↵usive balancing process of a single resource quota.

Each node (i. e., DQMP daemon) in the DQMP network is connected to a
set of neighbor nodes (or just “neighbors”). Quota balancing is done by pairwise
balancing the free local quota of neighbors. As neighbor sets of di↵erent nodes
overlap, a complete coverage is achieved. In our example (see Figure 2), nodes i
and j form a pair of neighbors, and nodes j and k form another pair of neighbors.
At start-up, the global quota of the customer (180 units in our example) is
balanced over all participating nodes (see Figure 2a).

When the application starts executing, the resource controller at node i de-
mands 50 resource units and the resource controller at node k demands 10 units.
Figure 2b shows that nodes i and k react by reducing the amount of locally
available free quota q. Thus, both nodes can grant their local resource demands
immediately. Changing the amounts of free quota starts the di↵usive quota-
balancing process and causes nodes i and k to exchange quota information with
other nodes; in this case node j. As the free quota of node j exceeds the free
quota of node i (i. e., qj > qi), d qj�qi

2 e quota units are migrated to i. The same
applies to nodes j and k which, again, leads to di↵erent amounts of free quota
on nodes i and j. As a result, further balancing processes are triggered and bal-
ancing continues until equilibrium is reached. The equilibrium (see Figure 2c)
enables node i to be well prepared for future resource demands, as its amount
of free quota has risen to the global average of 40.

In case a resource controller issues a resource demand that exceeds q, a
node obtains the requested quota by successively reducing q after each balancing
process. As soon as the node has collected the full amount, it grants the resource
demand to the resource controller.



def initial connect (nodes):
for node in nodes:

if node.connect(self ):
neighbors.append(node)
if level == None

or level > node.level:
level = node.level + 1
uplink = node

def connect(node):
if node not in neighbors:
neighbors.append(node)
return true

return false
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Fig. 3. Connecting nodes Fig. 4. Example tree in a DQMP network

Using discrete quota, there might be an imbalance of one unit between two
neighboring nodes if mod(

P
q, n) 6= 0 (n is the total number of nodes), causing

balancing to never stop. To avoid this, we restrict balancing to di↵erences above
one unit. As a result, this introduces a potential system-wide gradient, which
we cope with using probabilistic migration [19]. This strategy migrates small
amounts of quota with a certain probability, even if the imbalance is not reduced.

4.2 Basic Protocol

This section describes the basic DQMP protocol. We assume a fail-stop behavior
of nodes and the reliable detection of node and connection failures.

Connection Process When a new application is deployed, our quota-enforce-
ment service starts local DQMP daemons on the corresponding hosts and selects
one of these nodes to be the quota manager (see Section 3.1). Then, our service
supplies all nodes of this first set with the addresses of all other nodes. Next,
each node establishes a connection to some of the other nodes, adding them to
its neighbor set (see initial connect() in Figure 3 and Table 1).

During this procedure, every node determines its level in a tree (see Figure 4)
that is formed as a by-product of the connection process. At first, only the quota
manager (representing the tree root) is part of the tree and is therefore assigned
level zero. Next, all other nodes join the tree using the following algorithm:
(1) A node collects the level information of all of its neighbors. (2) It selects the
neighbor n that has the lowest level ln (i. e., the node with the smallest distance

Field Description

level Level in the quota tree
neighbors List of neighbors, where each entry is a triple

of connection, counter, and level

quota Available local resource quota
consumed Consumed resource quota (see Section 4.3)

Table 1. Data structures managed by a DQMP daemon



def do balancing():
for n in neighbors:

free = quota
# ask other node how to change my quota

quota += n.balance(free)

def balance(remote free):
free = quota
avg = (free + remote free) / 2
quota += avg � free
return �(avg � free)

Fig. 5. Simplified quota balancing process

to the tree root) to be its parent node in the tree. From now on, we refer to the
connection to n as the uplink ; in Section 4.3, we investigate how the uplink is
used to provide fault tolerance. (3) The node sets its own level to ln + 1.

When a node has connected a predefined number of neighbors, it sends an
announcement including its contact details and level information to the node
registry managing a list of nodes assigned to the customer (see Section 3.2). In
case the application of a customer scales up capacity by starting processes on
additional hosts, newcomers query the node registry for addresses of nodes in the
DQMP network. This information is then used as input for initial connect().

Quota Balancing When the set of initial nodes is connected, nodes can be
provided with quota by simply initializing the quota manager’s local free quota
with the amount of globally granted quota. In consequence, the di↵usion process
starts and every node balances its free quota with all connected neighbors.

Figure 5 outlines the basic balancing process, organized in rounds, each com-
prising a single call to do balancing(). During a round, for each neighbor, a
node d determines the amount of free quota and sends it to the neighbor via
balance(). This method adjusts the free quota at the neighbor and returns the
amount by which to change the local free quota of d. The round ends when d

has balanced quota with each of its neighbors. Note that quota balancing with
a neighbor only takes a single message round-trip time.

If the local free quota has changed during a round of balancing, a node
immediately starts another round. Otherwise, the next round is triggered when
the node receives a demand from a local resource controller or when the quota
exchange with another node modifies the local free quota.

4.3 Extension for Fault Tolerance

In this section, we describe how to extend the basic protocol presented in Sec-
tion 4.2 in order to tolerate node failures.

General Approach To handle faults, every node maintains a counter for each
neighbor link. This link counter represents the net amount of free quota trans-
ferred to the neighbor and is updated on each quota exchange via the corre-
sponding link: if a node passes free quota to a neighbor, it increments the local
link counter by the amount transferred; the neighbor decrements its counter by
the same amount. A negative counter value indicates that a node has received
more free quota over that link than the node has passed to the neighbor.

When a node crashes, all connected neighbors detect the crash: each neighbor
removes the crashed node from its neighbor set and adds the counter value of
the failed link to its local amount of free quota (see Figure 6). This way, the
free quota originally held by the crashed node is reconstructed by all neighbors,



def fix crashedNode(neighbor):
quota += neighbor.counter
neighbors.remove(neighbor)
# check if uplink is concerned

replace crashedNode()

Fig. 6. Recovery after neighbor crash

def do balancing():
for n in neighbors:

free = quota
if n. level < level :
# pass the consumed quota

# up to the root

n.counter += consumed
result = n.balance(id, free ,

consumed)[0]
consumed = 0

else:
# receive consumed quota

# from lower nodes

(remote consumed, result) =
n.balance(id, free )

n.counter �= remote consumed
consumed += remote consumed

n.counter �= result
quota += result

def balance(id, remote free,
remote consumed = 0):

neighbor = neighbors[id]
free = quota
avg = (free + remote free) / 2

# handle the consumed quota

if neighbor. level < level :
remote consumed = consumed
neighbor.counter += remote consumed
consumed = 0

else:
neighbor.counter �= remote consumed
consumed += remote consumed

# balance the remaining quota

if remote free < 0 and free < 0:
# nothing left on both sides

return (remote consumed, 0)
elif remote free < 0 or free < 0:
# take care of negative quotas

# [...]

else: # free quota on both sides

quota += avg � free
neighbor.counter �= avg � free
return (remote consumed,

�(avg � free))

Fig. 7. Issuing a balancing request Fig. 8. Responding to a balancing request

requiring no further coordination. Note that such a recovery may temporarily
leave single nodes with negative local free quota. However, the DQMP network
compensates this by quickly balancing quota among remaining nodes.

Consumed Quota So far, this approach is only suitable for refundable quota
like disk space, since link counters are unaware that non-refundable quota, like
CPU cycles, transferred to a node may have been consumed by a local application
process. Thus, neighbors would reassign more free quota than the crashed node
actually had. To address this, nodes gather and distribute information about
consumed quota, and adjust their link counters to prevent its reassignment.

For each resource, a node maintains a consumed counter (see Table 1) that
is updated whenever a local application process consumes quota. Each node
periodically reports the value of its consumed counter to its uplink, which in
turn passes it to its own uplink, and so on, all up to the quota manager. Having
reported the consumed quota, a node increments its uplink link counter by the
amount announced; the uplink in turn decrements its link counter by the same
value, similar to the modifications triggered during quota balancing. As a result,
link counters are adjusted to reflect the reduced global free quota. Figures 7
and 8 show updated listings of the balancing process presented in Figure 5.



Handling Cluster Node Failures Link counters are an easy and lightweight
mean to compensate link crashes and single node failures. They also allow toler-
ating multiple crashes of directly connected nodes, because adjacent nodes can
be seen as one large node with many neighbors. In case a node set is separated
from the rest of the network, the node set that is not part of the quota-manager
partition eventually runs out of quota, since free quota is always restored in the
direction of its origin (i. e., the quota manager). However, after reconnection,
the balancing process re-distributes the free quota, enabling the application pro-
cesses on all nodes to make progress again. To avoid permanent partitions within
the network, the protocol makes use of the level information. When a node except
the quota manager and its direct neighbors loses the connection to its uplink, it
has to select a node with a lower level than its own as new uplink. Preferably,
the node uses one of its current neighbors for that purpose; however, it can also
query the node registry (see Section 3.2) for possible candidates. If a suitable
uplink cannot be found, the node is shut down properly.

Handling Crashes of the Quota Manager If the quota manager crashes, its
neighbors do not consolidate their link counters. If they did, all global quota of a
customer would vanish as it has been originally injected via the quota manager.
Instead, all links to the quota manager are marked initial links and are therefore
ignored during failure handling, allowing the network to proceed execution.

However, we assume a timely recovery of the quota manager as an application
cannot be provided with additional quota while this node is down. We therefore
assume that its state can be restored (e. g., using a snapshot). Note that the state
of the quota manager to be saved is small: it only includes the set of neighbor
addresses as well as the quota, consumed, and counter values (see Table 1) for
every managed resource, making frequent snapshots and a fast recovery feasible.

At restart, the quota manager reconnects all level-one nodes. In case of one
or more of them having crashed in the meantime, it starts the regular failure
handling. At this point, we cannot tolerate network partitions between the quota
manager and its neighbors, as this would lead to a duplication of free quota.

5 Evaluation

We evaluate DQMP on basis of a prototype implemented in Java. The tests are
performed on 40 hosts, all equipped with 2.4GHz quad-core CPU, 8GB RAM,
and connected over switched Gigabit Ethernet. Each host executes up to three
Java virtual machines (JVMs) to support the simulation of larger networks. In
this set-up, raw ping times range from 0.2 to 0.5ms and simple Java RMI method
calls take between 0.7 and 1.0ms. On top of the physical network, two DQMP
networks, consisting of 100 and 1,000 nodes, are simulated, with the maximum
number of neighbors set to 6. Comparison measurements show, that simulating
up to nine nodes within a single JVM has no significant impact on the results.

Test runs are performed as follows: After the DQMP network is built up, a
quota amount of 50,000 units per node is injected. When the initial equilibrium
is established, all nodes are instructed to begin with the execution of the actual
test. After a test has finished, the local results of the nodes are collected. Except
time charts, all presented results are the average of at least three test runs.
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5.1 Response Time Behavior of DQMP

Single Demands In the first test, we examine the response times of DQMP for
single demands within the small network containing 100 nodes. In this scenario,
a subset of nodes orders a predefined amount of quota at the same time. The
proportion of demanding nodes is raised stepwise from 1% to 100% and the
overall amount of quota requested by this proportion is varied between 25% and
100%. This means that in one case, for instance, a single node requests the entire
quota available and in another case, each of 100 nodes requests 1% of it.

From the results, as depicted in Figure 9, it can be inferred that the decisive
factor for the performance of our protocol is the ratio between the free local
quota held by each node and the size of the local demand: the smaller the demand
compared to the local quota, the faster it can be satisfied. Since DQMP aims to
an even distribution of free quota over all nodes, the demand size can be put into
relation to the globally free quota: if demands of single nodes exceed the average
size of free quota held by each node to a great extent, it is likely that quota has to
be transferred not only from nearer nodes but also from farther ones to satisfy the
demand. For instance, if a single node asks for the entire available quota, every
quota unit in the network has to reach the same destination. With our settings,
this takes about 7.8 seconds and 770 balancing rounds per node. However, this
case is not realistic as only such nodes participate in DQMP networks that are
actually used by processes demanding quota. If 50 nodes request 95% of the
overall quota, the provisioning time already drops below 30ms. Here, it takes
about 45 balancing rounds per node until the request is fulfilled and until the
network comes to a rest, that is, until no messages are transmitted anymore.
Moreover, if only a small amount of the overall quota is needed or a large demand
is split between many nodes, DQMP can provide extremely low response times.
When a demand of a node can be fulfilled by its local quota, the DQMP daemon
is even able to instantly grant the demanded amount, turning the assignment of
global quota within a distributed system into a local operation.

Crashes of Nodes After this first evaluation, we now examine how our proto-
col behaves in the presence of node crashes, since fault tolerance was a primary
objective for the design of DQMP. As basis for this evaluation, we choose a



scenario in which nodes demand and release quota constantly. In detail, each
node performs the following in a loop: It adds a randomly chosen delta d, with
�10, 000  d  +10, 000, to its previous quota demand. It ensures that the
new demand does not exceed the upper bound b of 50, 000 units, which limits
the demand of all nodes combined to 100% of the overall quota injected into
the system. According to the calculated value, the node issues a request either
demanding new or releasing already granted quota. Subsequently, it waits un-
til the request is fulfilled. Then it sleeps for a randomly chosen time between
25 and 75ms to simulate fluctuating resource requirements.

Figure 10 shows the course of response times from a single test run with
100 requesting nodes, issuing a total of approximately 14,000 requests within
8 seconds, and an induced crash of 25 nodes at t = 0. The first outcome of
this test is, that under the given scenario, which simulates the distribution of a
large demand over all available nodes, almost all quota requests can be fulfilled
locally, leading to a standard response time below 0.2ms. For the same reason,
the processing of most requests is hardly a↵ected by crashes of neighbors. Quota
releases are inherently not a↵ected at all anyway. Consequently, despite the crash
of 25% of the nodes, there are only 4 requests for which it took between 10 and
30ms to process them and 8 requests that lie in the range between 1 and 10ms.
Thus, the balancing process of DQMP is able to compensate node crashes very
quickly by redistributing the quota over all remaining nodes.

5.2 Comparison of Di↵erent Architectures

Next, we compare DQMP to other architectures addressing quota enforcement in
distributed systems. For this purpose, we implemented a RMI-based quota server
and a passively replicated variant of it by means of the group communication
framework JGroups1. During test runs, the quota server as well as each replica
is executed by a dedicated machine. In the following, the term “node” is not
confined to DQMP daemons; it also denotes clients in the other architectures.2

As scenario for the comparison serves an extended variant of the scenario
used for examining the behavior of DQMP in the presence of nodes crashes
(see Section 5.1). Di↵erent to the previous scenario, here, a network of 1,000
nodes is used and the proportion p of requesting nodes is varied between 1%
and 100%. Further, the combined demand of all requesting nodes is limited to
75% of the overall injected quota in one case and to 100% in another. This is
achieved by setting the maximum demand of a single node b to b75% = 37.500

p

and b100% = 50.000
p , respectively. The delta d for every simulated demand change

is randomly chosen between �0.2b and +0.2b quota units.

Single-cluster Network For a first comparison, all network connections have
similar latencies, just as in the previous tests and just as found within a local

1
http://www.jgroups.org/

2 We also implemented a quota-enforcement service based on the coordination service
Apache ZooKeeper (http://zookeeper.apache.org/). However, the optimistic lock
approach of ZooKeeper is not suitable for the high number of concurrent writes
needed in such systems, resulting in some orders of magnitude higher response times.

http://www.jgroups.org/
http://zookeeper.apache.org/
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Fig. 11. DQMP compared to other architectures regarding response times

area network, for instance within a single data center of a cloud provider. The
results of this scenario are depicted in Figure 11a. Since response times of the
central quota server and its replicated variant are only dependent on the number
of quota requests that have to be processed, and particularly are independent of
quota amounts, only a single set of results is reported for these architectures.

This test reveals the deficiencies of not completely decentralized systems in
terms of scalability: Due to limited resources such as CPU power, memory and
bandwidth and due to the contention arising from the shared usage of such
resources, these systems have a limited rate they can process requests at. In
our settings, for instance, all quota-server–based systems are able to process the
requests of a smaller number of requesting nodes within less than 2ms on average.
However, in the presence of 1,000 requesting nodes, a single quota server already
requires about 28ms. Using a more reliable replicated server system makes this
even worse. The increased communication overhead leads to an average response
time of over 40ms.

In contrary, using DQMP response times decrease when demands are split
up between more nodes. DQMP is able to fulfill requests within an average of
1ms, and is thus faster than the server systems when the proportion of request-
ing nodes exceeds 25%. Beyond 50% the response time drops constantly below
0.2ms. Since the total demand was fixed to either 75% or 100% of the globally
injected quota, single demands get smaller with an increasing number of re-
questing nodes, leading to a higher chance that requests can be fulfilled through
the local quotas of the nodes. That is the reason why, as shown by our results,
DQMP is even able to outperform a non-saturated central quota server in terms
of average response times when demands are distributed over multiple nodes.

Clustered Network Normally, cloud providers do not maintain only a single
data center but multiple ones, spread all over the world. These data centers form
a clustered network, a network in which groups of well-connected nodes can only
communicate among each other over relatively slow connections. To simulate
such an environment, respectively wide area networks in general, we assign each
out of 1,000 nodes to one of 10 clusters and artificially delay message exchange
between nodes from di↵erent clusters by 20ms.



The results, as presented in Figure 11b, suggest the conclusion that a cen-
tral quota server is not well suited for the scenario described here. The server
is located in one of the 10 clusters, which entails that 90% of all nodes experi-
ence prolonged delays while communicating with it. Thus, in 90% of all quota
requests, demands or releases, the delay of 20ms is fully added as an o↵set to the
processing time. In case of DQMP, nodes can exchange quota with all of their
neighbors in parallel, mitigating the e↵ects of slower connections. Furthermore,
all requests that can be fulfilled locally, including all releases, are not a↵ected
at all by communication delays. These are the reasons, why DQMP is able to
provide better response times than a quota server in this scenario already when
only 10% of the nodes demand and release quota.

Protocol Overhead Concerning the protocol overhead of DQMP regarding
network transfers, it can be observed that DQMP has completely di↵erent char-
acteristics than a traditional quota server. If a quota server is used, each quota
request leads to the exchange of two messages, a request message and its reply.
In our implementation, the two messages require about 100 bytes. With DQMP
instead, requests have only an indirect influence on the balancing process and
hence, on the number of messages transferred. For the unrealistic case (see above)
that relatively large demands are infrequently issued by a single node, causing,
in the worst case, continuous balancing processes all over the network, the ra-
tio between number of requests and messages transferred is unfavorable. With
an increasing number of requests, however, the ratio gets more appropriate. In
the scenario of 1,000 constantly requesting nodes our protocol requires about
3 kilobytes per request in average. Although this is still more than needed by
the quota-server system, it has to be noted, that DQMP provides fault-tolerant
operation while a central quota server does not and that network tra�c between
hosts of the same data center is usually not billed by cloud providers, hence,
using DQMP would not generate additional transfer costs for cloud customers.

6 Conclusion

In this paper, we presented DQMP, a decentralized quota-enforcement protocol
that provides the fault tolerance and scalability required by cloud-computing
environments. DQMP can help customers of platform services, to prevent them-
selves from financial losses due to errors, attacks, or careless use causing involun-
tary resource usage. The utilized di↵usion-based balancing of free quota enables
customers to enforce global limits on resource usage while retaining flexibility
and adaptability regarding the actual local demands within their deployments.
Nonetheless, DQMP is not confined to this application. Cloud providers can
employ it, for example, to restrict customers of their platform or infrastructure
services on a global level by enforcing quota for virtual machines. As the evalu-
ation of our prototype implementation shows, DQMP is able to provide better
response times than a centralized service in a setting with 1,000 nodes. Moreover,
our protocol is well suited for clustered networks as formed by interconnected
data centers. Both is important since traditional, not fully decentralized solu-
tions might soon reach their limit as distributed systems get larger and larger.
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J.: FaTLease: scalable fault-tolerant lease negotiation with Paxos. In: Proc. of the
17th Intl. Symp. on High Performance Distributed Computing. (2008) 1–10

17. Burrows, M.: The Chubby lock service for loosely-coupled distributed systems. In:
Proc. of the 7th Symp. on Operating Systems Design and Implementation. (2006)
335–350

18. Weissman, C.D., Bobrowski, S.: The design of the Force.com multitenant Internet
application development platform. In: Proc. of the 35th SIGMOD Intl. Conf. on
Management of Data. (2009) 889–896

19. Douglas, S., Harwood, A.: Di↵usive load balancing of loosely-synchronous parallel
programs over peer-to-peer networks. ArXiv Computer Science e-prints (2004)

http://www.microsoft.com/windowsazure/
http://code.google.com/appengine/

	 DQMP: A Decentralized Protocol to Enforce Global Quotas in Cloud Environments 

