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Abstract. We present two Monte Carlo algorithms for efficiently computing Byzan-
tine agreement in the partially synchronous communication model. The algorithms
assume the existence of a random beacon, which is a stream of random bits known
to all processors. Both algorithms terminate in O(1) expected time. The first algo-
rithm sends O(B + n logn) messages in total, where B is the maximum number
of messages sent by the bad processors in any round and n is the number of pro-
cessors. It ensures all processors reach agreement. The second algorithm sends
Õ(1) messages per processor, and is thus load-balanced, and ensures all but a o(1)
fraction of the processors reach agreement. Both algorithms succeed with prob-
ability 1 − O(1/nk), even against an adaptive adversary that takes over up to a
1/3− ε fraction of the processors, for any fixed positive values ε and k. We prove
the correctness of both algorithms and provide empirical evidence that they re-
quire significantly less bandwidth than state of the art for networks of size greater
than 4,000 processors. Our algorithms work in the full-information model and thus
make no cryptographic assumptions.

1 Introduction
Peer-to-peer networks are not a fad. The idea of a decentralized network, in which each
processor plays the role of both a client and a server, is now an important technique in our
toolkit for designing Internet-scale applications. The peer-to-peer approach continues to
be used in established and thriving applications such as Bittorrent [24] and Skype [25],
and the peer-to-peer approach even now still finds new uses in applications such as Bit-
coin [23].

Peer-to-peer networks offer the promise of improved reliability when compared to
traditional client-server networks. However, such promise will never be achieved unless
we can design a network that is more reliable than any of its individual components. Un-
fortunately, most peer-to-peer algorithms are easily defeated by an adversary that controls
even a single processor.

In this paper, we address this problem by designing scalable algorithms that solve
Byzantine agreement. In the Byzantine agreement problem, there are n processors some
of which are bad, in that they are controlled by an adversary that can cause them to
deviate in an arbitrary way. The remaining processors are good in that they follow the
protocol. The goal is to ensure all good processors output the same bit, and that this bit
equals the input bit of some good processor. Intuitively, a solution to Byzantine agree-
ment allows us to build a reliable system from unreliable components.
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We take a step towards creating Byzantine agreement algorithms that scale to large
networks, like peer-to-peer networks. Our algorithms are scalable in the sense that they
do not require all-to-all communication. Critical to our approach is the utilization of a
random beacon. A random beacon is a random stream of bits available to all the proces-
sors. It was first defined by Rabin in [21] where it was used to build a contract signing
protocol. Maurer et al. in [19,5,2,8] describe a computation model called the Memory
Limited or Limited Storage space Model, which uses the existence of a random beacon,
to build a secure communication system based on private keys.

1.1 Model
Our algorithms assume that n processors can communicate directly via point-to-point
message passing, and that the ID’s of all processors are globally known. Our communi-
cation model is partially synchronous. In particular, we assume a known upper bound on
the time it takes to receive a message. However, we do not assume that processors run
in lock-step, and we can tolerate a rushing adversary that gets to read all the messages
from good processors before sending the messages from bad processors in a round.

We assume the full-information model, meaning that all messages sent are public
and can be seen by the bad processors; we thus make no cryptographic assumptions. We
assume t processors are controlled by an adaptive adversary where t ≤ (1/3 − ε)n for
some fixed ε > 0. The adversary is adaptive in the sense that it can take over processors at
any point in the protocol up to taking over t processors and once processors are corrupted,
they stay corrupted [18]. We also assume that the bits from the random beacon are only
available at the beginning of a round.

1.2 Our Results
This paper describes two algorithms, RBQUERY and RBSAMPLER that can solve Byzan-
tine agreement without all-to-all communication. To the best of our knowledge, this paper
presents the first practical algorithms with this property. Dolev and Reischuk [7] showed
that any algorithm must sendΩ(n2) messages to ensure Byzantine agreement with prob-
ability 1. This lower bound still holds even with the assumption of a random beacon.
Thus, our algorithms are necessarily Monte Carlo, in the sense that they succeed with
probability 1−O(1/nk), for any fixed k.

Our main results are given in the following two theorems. For the first theorem, we
let B be an upper bound on the total number of messages sent in a round by the bad
processors. We note that B is at most θ(n2), but may be much lower, depending on the
resources available to the adversary.1 RBQUERY is described in Section 2.1, and the
proof of Theorem 1 is given in Section 3.1.

Theorem 1. For any positive k, there exist settings of parameters C and ε0, in the algo-
rithm, to ensure the following with probability at least 1−1/nk. RBQUERY is correct, in
that each good processor terminates with the same value and this value equals the input
bit of some good processor, and moreover:

1 We assume that the bad processors can communicate amongst themselves for free, so B counts
only messages that bad processors send to good processors.
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– All good processors terminate in O(log n) rounds; and
– All good processors terminate in O(1) rounds in expectation; and
– The total number of bits sent by all good processors isO(B+n log n) in expectation.

Our next algorithm is called RBSAMPLER. This algorithm make use of a sampler
in determining the communication graph among the processors. RBSAMPLER is thus
non-uniform in the sense that there is a different version of the algorithm for each value
of n. Also, unlike the RBQUERY, RBSAMPLER only achieves agreement that is almost-
everywhere in the sense that all but a o(1) fraction of the processors reach agreement.
RBSAMPLER is described formally in Section 2.2 and the proof of the following theorem
is presented in Section 3.2.

Theorem 2. For any positive k and d, there exist settings of parameters C and ε0, in
the algorithm, to ensure the following with probability at least 1 − 1/nk, for almost all
processors i.e. all butO(logd−1 n). RBSAMPLER is correct, in that almost all processors
terminate with the same value and this value equals the input bit of some good processor;
and moreover:

– Almost all processors terminate in O(log n) rounds; and
– Almost all processors terminate in O(1) rounds in expectation; and
– Almost all processors send polylog(n) bits.

1.3 Our Approach
Our algorithms build on recent work by King and Saia[12] that describe Byzantine agree-
ment algorithms that have θ(log n) latency and require each processor to send Õ(n3/2)
messages. In contrast to [12], our algorithms assume the existence of a random bea-
con. However, our algorithms improve on this previous work in the following ways: 1)
we achieve an expected latency of O(1); 2) we tolerate an adaptive adversary, while the
work in [12] tolerates only a non-adaptive adversary; 3) our algorithms send significantly
fewer messages in practice; and 4) our algorithms are significantly simpler: the algorithm
in [12] is several pages of detailed pseudocode, while our algorithms are each described
in half a page.

Like many Byzantine agreement algorithms, our algorithms follow the basic struc-
ture of Rabin’s algorithm [21]: each processor starts with an individual vote; votes are
exchanged with other processors in each round; and finally each processor updates their
vote for the next round based on messages received. However, to achieve reduced com-
munication costs, the processors in our algorithm are only able to talk to a small sample
of all the processors in the network. The challenging problem is achieving Byzantine
agreement, while using only the information contained in these small samples.

The technically challenging part of this paper is the design of the algorithm RB-
QUERY, and the proof of Theorem 1, which directly addresses how to achieve agreement
while talking only to small samples of processors. Once we have established this al-
gorithm and theorem, it is relatively straightforward to design RBSAMPLER and prove
Theorem 2. In particular, Theorem 2 essentially follows by combining Theorem 1 with a
result on samplers from [13].
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1.4 Related work
The Byzantine agreement problem was first proposed by Lamport et al. [16] as a way
to model basic fault-tolerant distributed computing. Lamport, Shostak and Pease proved
in [16] that Byzantine agreement is only possible when less than n/3 of the processors
are bad. Fischer, Lynch and Paterson in [11] also proved that a single Byzantine fault in
the asynchronous model of communication renders Byzantine agreement impossible for
a deterministic algorithm.

Byzantine agreement is used in peer-to-peer systems such as Farsite [1] and Oceanstore [15,22].
It is also a critical part of proposed systems for many large wireless and mobile networks.
See [14] for a comprehensive discussion of why Byzantine agreement is important for
large-scale peer-to-peer networks.

Rabin in [20] solved a randomized version of the Byzantine agreement problem using
the notion of a common coin (this is what we refer to as a random beacon). A common
coin is a value that is only available to all the processors at the beginning of each round of
computation. It is 0 with probability 1/2 and 1 with probability 1/2. Rabin’s algorithm
[20] takes O(1) expected rounds and requires Θ(n2) messages. Rabin’s algorithm works
in the asynchronous, full information model and is correct with probability 1.

In the empirical section of this paper, we compare the resource costs of our algo-
rithm with a popular Byzantine agreement algorithm proposed by Cachin, Kursawe and
Shoup [4], which we refer to as the CKS algorithm. The CKS algorithm tolerates up to
n/3 bad processors, runs in constant expected time, and sends Θ(n2) messages. It does
not assume a random beacon. However, unlike our algorithms, CKS does require the
establishment of a public key infrastructure.

We choose CKS as a point of comparison, because, in practice, the number of mes-
sages it requires processors to send is the smallest among prior Byzantine agreement. In
particular, in our experiments, CKS generally required only about 4n2 messages, which
is better than other algorithms of which we are aware.

1.4.1 RELATED WORK: RANDOM BEACON

Lee, Clark et al. showed in [17,6] how to build a random beacon using publicly available
information on the Internet, specifically using information from the Dow Jones Industrial
Average (DJIA) or from other financial data. Eastlake in [9,10] also describes how to
build a selection protocol out of a random beacon.

A concern is the actual amount of randomness present in implementations of a ran-
dom beacon from publicly available information, this could be a problem if the publicly
available data could be manipulated in some way and hence introducing some bias into
the random beacon bits. In particular, Clark and Hengartner in [6] determined via exper-
iments the entropy of the stock components of the Dow Jones Industrial Average (DJIA)
and show that the Shannon entropy for a single stock in the DJIA per day is between 6.83
and 9.45. They create a random beacon from the DJIA and show a Shannon entropy of
218 bits for their random beacon.

We further note that hardware implementations of a random beacon have been pro-
posed [21]. These may include: a satellite broadcasting random bits, or a trusted node in
a massively parallel computer or wireless network.
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1.5 Paper Layout
The rest of this paper is organized as follows. In Section 2, we formally describe our
algorithms: RBQUERY in described in Section 2.1, and RBSAMPLER in Section 2.2. In
Section 3, we analyze our algorithms: the proof of Theorem 1 is given in Section 3.1,
and the proof of Theorem 2 is given in Section 3.2. In Section 4, we empirically test
our algorithms via simulations for networks containing up to a million nodes. Finally, in
Section 5, we conclude and give directions for future work.

2 Algorithms and their Description
2.1 RBQUERY

Our first algorithm RBQUERY is presented as Algorithm 2.1 (RBQUERY). This algo-
rithm has two parameters: C and ε0. Both of these values depend on k and ε as is de-
scribed formally in the proof of Lemma 1.2 In our experiments, we set C = 40 and
ε0 = 1/8.

We now describe RBQUERY at a high level. In each round, each processor has a
vote which is the bit held by that processor at the start of the round. Also in each round,
a processor selects Θ(lnn) processors uniformly at random with replacement to query
for their votes. Each processor sends its vote to the processors that queried it, while it
receives votes from the processors that it queried. After each round, the fraction of votes
received that are for the majority bit is computed.

If the fraction of processors that vote for the majority bit is at least (1−ε0)(2/3+ε/2),
then the processor sets its vote to the majority bit. Otherwise the processor sets its bit to
the value from the random beacon. A processor terminates after it has 1) computed a
fraction value at least (1− ε0)(2/3 + ε/2) with a majority bit value b; and 2) the global
coin value equals b twice.

Note that if all processors simply commit to the random beacon, then we would not
be able to solve Byzantine agreement, as the bit from the random beacon may not be the
input bit of any good processor. Such a scenario violates the conditions for Byzantine
agreement.

We analyze the correctness of RBQUERY in Section 3.1.

2.2 RBSAMPLER

We now describe the algorithm RBSAMPLER. The main difference in this algorithm,
compared to RBQUERY, is that it makes use of a sampler in determining the communi-
cation graph among the processors. RBSAMPLER is thus non-uniform in the sense that
there is a different version of the algorithm for each value of n. Also, the neighbors of
each processor are fixed and do not change between rounds, unlike RBQUERY. Finally,
unlike the RBQUERY, RBSAMPLER only achieves almost-everywhere agreement.

We analyze the correctness of RBSAMPLER in Section 3.2.

2 Recall 1/nk is the probability of failure and the fraction of bad nodes is no more than 1/3− ε.
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Initialize:

1. vote← bi
2. Match← FALSE

Repeat until termination:

1. Select C lnn processors uniformly at random with replacement. Set InNeighbors to these
processors. Send request messages to all processors in InNeighbors

2. Receive all request messages. Set OutNeighbors to all processors from which request mes-
sages were received

3. Send vote to all processors in OutNeighbors
4. Collect all votes received from processors in InNeighbors
5. coin← next output of random beacon
6. If Match then

(a) If coin = vote then commit to value vote and terminate
7. Else

(a) maj ← majority vote among InNeighbors
(b) fraction← fraction of votes received for maj
(c) If fraction ≥ (1− ε0)(2/3 + ε/2) then

i. vote← maj
ii. If coin = vote then Match← TRUE

(d) else
i. vote← coin

Algorithm 2.1: RBQUERY

3 Analysis and proofs
In this section, we show the correctness of RBQUERY and RBSAMPLER by proving
Theorem 1 and Theorem 2.

3.1 Analysis and proofs for RBQUERY
We begin with a proof of correctness for RBQUERY. For a fixed round, let b ∈ {0, 1}
be the bit that the majority of good processors vote for in that round (breaking ties arbi-
trarily). Let M be the set of good processors that will vote for b, and let f = |M |/n. Let
0 ≤ ε0 ≤ 1 be a fixed constant to be determined later. We call a processor informed for
the round if the fraction value for that processor obeys the following inequalities:

(1− ε0)f ≤ fraction ≤ (1 + ε0)(f + 1/3− ε)

Lemma 1. For any positive integers C ′ and `, there exists setting of parameters C and
ε0 in Algorithm 2.1 (RBQUERY), such that the following holds. Let `′ be the minimum of
` and r, where r is the first round in which a good processor terminates. Then all good
processors are informed for the first `′ rounds with probability at least 1− 2`′/nC

′
.

Proof. Fix a round r′ ≤ min(`, r). Let G be a bipartite multigraph induced by the
InNeighbors and OutNeighbors selection process defined in RBQUERY for round r′.
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Initialize:

1. vote← bi
2. Match← FALSE
3. Set InNeighbors (resp. OutNeighbors) to all processors that have in-edges (resp. out-edges)

to this processor in the sampler.

Repeat until termination:

1. Send vote to all processors in OutNeighbors
2. Collect votes from all processors in InNeighbors
3. coin← next output of random beacon
4. If Match then

(a) If coin = vote then commit to value vote and terminate
5. Else

(a) maj ← majority bit among InNeighbors
(b) fraction← fraction of votes received for maj
(c) If fraction ≥ (1− ε0)(2/3 + ε/2) then

i. vote← maj
ii. If coin = vote then Match← TRUE

(d) else
i. vote← coin

Algorithm 2.2: RBSAMPLER

G is constructed as follows. There are n nodes on the left hand side and copies of all
these nodes on the right hand side. The adversary chooses a subset of 1/3 − ε of the
nodes on the left that are bad. Edges are created as follows: each good node on the right
chooses C log n neighbors on the left uniformly at random with replacement, and forms
edges with these nodes.

Let b be the bit that the majority of good processors vote for in round r′ and let M be
the set of good processors that vote for b. We know thatM is of size at least (1/3+ε/2)n
since at least half of the good processors must vote for the majority bit. Let f = |M |/n.
Note that the edges in G are chosen independently of the set M .

Fix a good node, p, on the right hand side ofG. LetX be the number of edges from p
into the set M . Note that E(X) = fC lnn. Moreover, each edge from p falls into some
processor in M independently with probability f . Thus, we can apply Chernoff bounds
to say that for any positive ε0,

Pr(X < (1− ε0)E[X]) < e−E[X]ε20/2 = e−(fCε
2
0/4) lnn.

Similarly, we can use Chernoff bounds to say that

Pr(X > (1 + ε0)E[X]) < e−E[X]ε20/3 = e−(fCε
2
0/6) lnn.

Hence the probability that either of these bounds is violated is no greater than the sum
of these two probabilities, or less than 2e−(fCε

2
0/6) lnn. Clearly if both of these bounds

hold, then the fixed good processor is informed for this round.
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Now let ξp,r′ be the event that either of these bounds is violated for some fixed pro-
cessor p in some fixed round r′. Further let ξ be the event that either of these bounds is
violated for any good processor p in any of the first `′ rounds. Then by a union bound,
we have that

Pr(ξ) =
∑
p,r′

Pr(ξp,r)

≤ (n`′)2e−(fCε
2
0/6) lnn

≤ 2`′/nC
′

Note that f ≥ 1/3, so the last equation holds provided that C is sufficiently large,
but depending only on ε0 and C ′.

Lemma 2. Assume 1) all good processors have vote value equal to b at the beginning of
some round r; 2) no good processor has terminated prior to round r; and 3) all proces-
sors are informed in round r. Then all good processors will have vote value equal to b at
the beginning of round r + 1.

Proof. If all good processors have vote value equal to b at the beginning of round r, it
means that f = |M |/n = 2/3+ ε. Since all processors are informed in round r, it means
that for each processor, fraction ≥ (1−ε0)f ≥ (1−ε0)(2/3+ε). Thus, each processor
at the end of round r will set its vote to the majority value, which equals b, and hence
will have vote value equal to b at the beginning of round r + 1.

Lemma 3. Let r be a positive integer and ε0 < (3/4)ε. Assume that 1) all processors are
informed in round r; and 2) that no good processor has terminated prior to round r. Let
Sh be the set of good processors in round r that have fraction ≥ (1− ε0)(2/3 + ε/2).
Then, at the end of round r, all processors in Sh will have the same vote value.

Proof. We show this by contradiction. Assume there are two processors, x and y, where
fractionx (fractiony) are the fraction values of x (y, resp.), such that both fractionx
and fractiony are greater than or equal to (1 − ε0)(2/3 + ε/2). Assume further that x
sets its vote to 0 at the end of the round, while y sets its vote to 1.

Let f0 be the fraction of good processors that vote for 0 during round r; and let
f1 be the fraction of good processors that vote for 1 during round r. By assumption,
fractionx ≥ (1 − ε0)(2/3 + ε/2). By the definition of informed, we also know that
fractionx ≤ (1 + ε0)(f0 + 1/3− ε). This implies that

(1− ε0)(2/3 + ε/2) ≤ (1 + ε0)(f0 + 1/3− ε).

Isolating f0 in this inequality, we get that

f0 ≥
1/3 + (3/2)ε− ε0 + (1/2)εε0

1 + ε0
.

A similar analysis for fractiony implies that

f1 ≥
1/3 + (3/2)ε− ε0 + (1/2)εε0

1 + ε0
.
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But then we have that,

f0 + f1 ≥
2/3 + 3ε− 2ε0 + εε0

1 + ε0
> 2/3 + ε

where the last line is clearly a contradiction (holding if ε0 < (3/4)ε).

Lemma 4. Assume ε0 < (3/4)ε; let r be the first round in which a good processor
terminates; and assume all processors are informed in rounds 1 to r. Further, assume
that some good processor commits to value b in round r. Then 1) all good processors
that commit in round r will commit to b; and 2) in round r + 1, all remaining good
processors will set vote value equal to b and Match value to TRUE. Hence, all good
processors will have committed to b by the next round in which coin = b.

Proof. Consider a processor p that commits to bit value b in round r. Then processor p’s
Match value must be equal to TRUE in round r. This means there must have been some
previous round, r′, in which p’s Match value was first set to TRUE. Among processors
that commit to values in round r, let p be a processor with the smallest such r′ value.
Note that at the point that Match was set to TRUE in round r′, p’s vote value must
have been b, since a processor’s vote value can not change after its Match value is set to
true.

Let Sh be the set of good processors in round r′ that have fraction ≥ (1−ε0)(2/3+
ε/2). By Lemma 3, all processors in Sh set their vote value to b at the end of the round.
Now since processor p set Match to TRUE in round r′, it must be the case that the
outcome of the global coin in that round was equal to b. This means at the end of round
r′, all good processors set their vote values to b.

But then, by then by repeated applications of Lemma 2, for all rounds subsequent
to round r′, all processors will have vote values equal to b and so if they commit to any
value, it will be the value b. Further, note that for p to terminate, in round r, it must be that
coin = b. Thus, all remaining good processors will set their Match values to TRUE at
the beginning of round r.

Lemma 5. Let ε0 < (3/4)ε and r be a positive integer. Assume that all good processors
are informed in round r; and that no good processor has terminated prior to round r.
Then, with probability at least 1/2, at the end of round r, all good processors will have
the same vote value.

Proof. Let Sh be the set of good processors in round r that have fraction ≥ (1 −
ε0)(2/3 + ε/2). By Lemma 3, all processors in Sh will set their vote value to the same
value, call it b, at the end of the round. But with probability 1/2, the global coin in round
r will have value b, and so all the remaining good processors will also set their vote value
to b.

We now prove Theorem 1.

Proof. Throughout this proof, we will assume that ε0 is set such that ε0 < (3/4)ε.
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We first show that, with high probability3, all good processors terminate in O(log n)
rounds; and that all good processors terminate in O(1) rounds in expectation. Fix a con-
stant C1 and let ` = C1 log n; let r′ be the first round in which a good processor termi-
nates; and let `′ = min(`, r′). By Lemma 1, for any constants C ′, there exist settings
of the algorithm parameters such that all good processors will be informed for `′ rounds
with probability at least 1−2C1 log n/n

C′
. By Lemma 4, if r′ is the first round in which

a good processor terminates and commits to value b, then in round r′ + 1, all processor
will set theirMatch value to TRUE and so will terminate the next time coin = b. Thus,
the number of remaining rounds after r′ until all good processors terminate is bounded
by a geometric random variable with success probability 1/2.

We now consider the distribution of r′. By Lemma 5, in each of the first `′ informed
rounds, there is probability at least 1/2 that at the end of that round, all good processors
will have the same vote value. Moreover, by Lemma 2, once all good processors have
the same vote value in some round, they will all continue to have the same vote value, as
long as 1) they are all informed; and 2) none of them terminate. Thus, three events need
to occur for us to reach round r′: 1) all processors first obtain the same vote value, b (this
happens with probability 1/2 in any round); and 2) the value coin equals b two times
(the event coin = b happens with probability 1/2 in any round).

Thus, the distribution of r′ is a random variable that is upper bounded by the sum of
two geometric random variables with success probability 1/2. Hence, the total number
of rounds until all processors terminate is upper bounded by the sum of four geometric
random variables with probability 1/2. Clearly the expected value of such a summation
is O(1) and, with high probability, the sum is no more than C1 log n.

We now argue correctness. First, by Lemma 2, if all good processors initially have
input values equal to b, then they will all always have vote values b, so they will all
eventually commit to b. Next, Lemma 4 shows that if any good processor commits to
some value b, that all good processors will eventually commit to b.

Finally, we count the expected number of bits sent. In any round, a good processor
sends out messages to θ(log n) other processors and the bad processors send out a total of
at most B messages. Thus, the total number of requests received by the good processors
is θ(B + n log n). To answer requests thus requires sending a total of θ(B + n log n)
messages, each containing a single bit. Since the expected number of rounds is O(1), the
expected number of bits sent in total is θ(B + n log n) by linearity of expectation.

3.2 Analysis and proofs for RBSAMPLER
For our new algorithm, we use the same definition as in Section 3.1 to say whether a
processor is informed in a given round. The proof of the following lemma is equivalent
to that in King and Saia [13].

Lemma 6 (Graph existence). For any positive k and positive constants ε0 and d, there
exists a directed multigraph G on k vertices with maximum out-degree no more than
C3 log

d n, where C3 depends only on ε0 and d, such that if this communication graph is

3 We will use the term “with high probability” to mean that there is probability of error no more
than 1/nk for a constant k.
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used in Algorithm 2.2 (RBSAMPLER), then in every round all but a 1/ logd n fraction of
the good processors are informed.

The following simple corollary follows by summing up the number of processors that
are not informed in every round.

Corollary 1. Let C ′ be a positive integer. If the conditions of Lemma 1 are met then all
but a C ′/ logd−1 n fraction of the good processors are informed in every one of the first
C ′ log n rounds.

We will say that a processor is always informed if it is informed for every round from
the start of Algorithm 2.2 (RBQUERY), to the round in which the processor terminates.

The proof of Theorem 2 now follows in the same manner as the proof of Theorem 1,
with the following changes. First, we use Corollary 1 in place of Lemma 1. Second, up
to a O(1/logd−1n) fraction of the good processors are not informed in all rounds and
so may not terminate or may not terminate with the correct value. Finally, all requests
are only answered from neighbors in the sampler, so the total number of bits sent in
expectation is now O(logd n).

4 Experimental Results

In this section, we describe the results of simulating RBQUERY and RBSAMPLER on
networks containing from 1,000 to 1,024,000 nodes. We first describe the experimental
setup and then describe the outcomes.

Fig. 1. Left: Log of number of nodes vs. number of messages sent; Right: Log of number of nodes
vs max messages sent by a node.
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Fig. 2. Left: Log of number of nodes vs. number of bits sent; Right: Log of number of nodes vs
max bits sent by a node.

Fig. 3. Algorithm Latency

4.1 Experimental setup
We used the OpenMP compiler directives in conjunction with the C++11 multi-threading
primitives to speed up the simulation on a machine with 128G of memory and 48 cores.
Because of the computational resources used by the machine we tracked only the total
messages sent and the maximum number of messages sent by any processor. The size of
the network simulated was between 1,000 and 1,024,000 processors.

For our simulations of RBQUERY, we selected a value of the constants as dictated
by our analysis in Section 3.1: ε0 = 1/8, ε > 1/6, C = 40. We also made the size of the
neighbors of a node in the algorithm to beC ln2 n. Increasing by a factor of lnn allows us
to use a smaller C. With these parameter settings, we never observed RBQUERY fail to
bring all processors to agreement in the experiments we ran. We simulated an adversary
that causes each bad processor to send the same number of messages as a good processor
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(i.e. C ln2 n); to send these messages to processors selected uniformly at random with
replacement; and for each of these messages to contain a vote that is 0 with probability
1/2 and 1 with probability 1/2.

For our simulations of RBSAMPLER, we selected a value of the constants as dictated
by our analysis in Section 3.2: ε0 = 1/8, ε > 1/6, C = 6, d = 3, which implies that
the size of the neighbors of a node in the algorithm is C ln3 n. With these parameter
settings, we never observed RBSAMPLER fail to bring all processors to agreement in the
experiments we ran. We simulated an adversary that causes each bad processor to send
messages to all neighboring processors in the sampler; and for each of these messages to
contain a vote that is 0 with probability 1/2 and 1 with probability 1/2.

We compare our algorithms with the CKS algorithm from the paper [4] which has
O(1) latency but requires all-to-all communication. Each data point in our points is an
average over 30 trials.

We make the assumption that the latencies of our algorithms are dominated by the
time it takes to send a message and we can use this as the unit cost of an operation.
Bhatele and Kale [3] provide information via benchmarks about what these numbers
might mean in real world applications. In [3], the values for message latencies are be-
tween 5 and 16 milliseconds for the largest message size in the paper (1MB).

4.2 Results
Figure 1 (left) shows the logarithm of the total messages sent for all algorithms sim-
ulated. We can see that RBQUERY and RBSAMPLER send less messages than CKS
when the network size is larger than 5,000 processors. In particular, RBQUERY sends
less messages than the other algorithms for network sizes greater than 2,000 processors.
Note that RBQUERY sends slightly fewer messages than RBSAMPLER. The slope of the
RBQUERY and RBSAMPLER graph is about 3.5 while that of the CKS is about 4.2.

Figure 1 (right) shows the maximum number of messages sent by a processor. This
gives an idea of the load-balancing properties of the algorithm. The crossover point at
which RBQUERY and RBSAMPLER have a smaller maximum number of messages sent
than CKS is for a network size of 4,000 processors. RBQUERY is slightly better load-
balanced than RBSAMPLER. The slope of the CKS graph is about 1.0, while that of the
RBQUERY and RBSAMPLER algorithms is about 0.1.

Figure 2 (left) shows the total bits sent. For this criteria, RBQUERY and RBSAM-
PLER always perform well. The number of bits sent is dramatically less than that of CKS
since the size of a message in CKS is about the same size as an RSA signature, which can
be quite large. Again RBQUERY has a slight edge over RBSAMPLER. The slope of the
graph for CKS is about 2.2, while RBQUERY and RBSAMPLER have a slope of about
1.3.

Figure 2 (right) shows the maximum bits sent by a processor. RBQUERY and RB-
SAMPLER again perform better than CKS for all the network sizes we consider. RB-
QUERY has a smaller maximum number of bits than RBSAMPLER. The slope of the
graph for the CKS algorithm is about 1.0, while the slope for the RBQUERY and RB-
SAMPLER algorithms is about 0.4.
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Figure 3 shows the latency of the algorithms. The latency of RBQUERY and RB-
SAMPLER are comparable and never exceed 10. RBQUERY and RBSAMPLER seem to
have slightly smaller latency than CKS. The latencies for both the RBQUERY and RB-
SAMPLER vary since the latencies are random variables.

5 Conclusion
We have described two algorithms that make use of a random beacon to significantly
reduce the bandwidth requirements needed to solve the Byzantine agreement problem.
We have proven these algorithms correct and have demonstrated via simulations that, for
large networks sizes, they are significantly more efficient than a state of the art algorithm.
We believe our approach is likely to be useful for solving Byzantine agreement in large
peer-to-peer networks.

Our results bring up several interesting questions for future research including the
following.

– Can we show lower bounds on the total number of messages that must be sent to
solve Byzantine agreement with a random beacon? Can we do better when the ad-
versary is non-adaptive?

– What is the effect if the random beacon is not completely random? How much ran-
domness is really required to compute Byzantine agreement sending Õ(1) messages
per processor?

– Our algorithms work in the partially synchronous model of communication. Is it
possible to modify them so that they work in the completely asynchronous model?
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