
The SEQBIN Constraint Revisited�

George Katsirelos1, Nina Narodytska2, and Toby Walsh2

1 UBIA, INRA, Toulouse, France
george.katsirelos@toulouse.inra.fr

2 NICTA and UNSW, Sydney, Australia
{nina.narodytska,toby.walsh}@nicta.com.au

Abstract. We revisit the SEQBIN constraint [1]. This meta-constraint subsumes
a number of important global constraints like CHANGE [2], SMOOTH [3] and
INCREASINGNVALUE [4]. We show that the previously proposed filtering algo-
rithm for SEQBIN has two drawbacks even under strong restrictions: it does not
detect bounds disentailment and it is not idempotent. We identify the cause for
these problems, and propose a new propagator that overcomes both issues. Our
algorithm is based on a connection to the problem of finding a path of a given
cost in a restricted n-partite graph. Our propagator enforces domain consistency
in O(nd2) and, for special cases of SEQBIN that include CHANGE, SMOOTH and
INCREASINGNVALUE in O(nd) time.

1 Introduction

Global constraints are some of the jewels in the crown of constraint programming.
They identify common structures such as permutations, and exploit powerful math-
ematical concepts like matching theory, and computational techniques like flow algo-
rithms to deliver strong pruning of the search space efficiently. Particularly eye-catching
amongst these jewels are the meta-constraints: global constraints that combine together
other constraints. For example, the CARDPATH meta-constraint [3] counts how many
times a constraint holds down a sequence of variables. The SEQBIN meta-constraint
was recently introduced in [1] to generalize several different global constraints used
in time-tabling, scheduling, rostering and resource allocation. It also generalizes the
CARDPATH constraint where the constraint being counted is binary. Our aim is to re-
visit the SEQBIN meta-constraint and give a new and efficient propagation algorithm.

2 Background

We write D(X) for the domain of possible values for X , lb(X) for the smallest value
in D(X), ub(X) for the greatest. We will assume values range over 0 to d. A constraint
is domain consistent (DC) if and only if when a variable is assigned any of the values
in its domain, there exist compatible values in the domains of all the other variables of

� NICTA is funded by the Australian Government’s Department of Broadband, Communica-
tions, and the Digital Economy and the Australian Research Council. This work was partially
funded by the “Agence nationale de la Recherche”, reference ANR-10-BLA-0214.

M. Milano (Ed.): CP 2012, LNCS 7514, pp. 332–347, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The SEQBIN Constraint Revisited 333

the constraint. Such an assignment is called a support. A constraint is bound consistent
(BC) if and only if when a variable is assigned the lower or upper bound in its domain,
there exist compatible values between the lower and upper bounds for all the other vari-
ables. Such an assignment is called a bound support. A constraint is bounds disentailed
when there exists no solution such that each variable takes value between its lower and
upper bounds. A constraint is monotone if and only if there exists a total ordering ≺ of
the domain values such that for any two values v, w if v ≺ w then v can be replaced
by w in any support [5]. We define π = (πbottom := 0 ≺ . . . ≺ d =: πtop). A binary
constraint is row-convex if, in each row of the matrix representation of the constraint,
all supported values are consecutive (i.e., no two values with support are separated by a
value in the same row without support) [6]. We use xi,j to represent the variable-value
pair Xi = j. Let C be a binary constraint. We write (j, k) ∈ C if C allows the tuple
(j, k). Consider a soft binary constraint C. We denote the cost of the tuple c(j, k). If
(j, k) ∈ C then c(j, k) = 0 and c(j, k) = 1 otherwise. Given two sets of integers
S and R, we denote S � R = {s+ r | s ∈ S, r ∈ R}. Given a constant c, we write
S � c = {s+ c | s ∈ S}. We denote I[X] an instantiation of the variable sequence
X = [X1, . . . , Xn].

3 The SEQBIN Constraint

The SEQBIN meta-constraint ensures that a binary constraint B holds down a sequence
of variables, and counts how many times another binary constraint C is violated.

Definition 1. Given an instantiation I[N,X1, . . . , Xn] and binary constraints B and
C, the meta-constraint SEQBIN(N,X,C,B) is satisfied if and only if for any i ∈ [1, n−
1], (I[Xi], I[Xi+1]) ∈ B holds, and I[N] is equal to the number of violations of the
constraint C, (I[Xi], I[Xi+1]) /∈ C, in I[X] plus 1.

Note that we add 1 for consistency with the definition of SEQBIN in [1].

Example 1. Consider the SEQBIN(N, [X1, . . . , X7], C,B) constraint where N = {3},
B is TRUE andC(Xi, Xj) is a monotone constraint with one satisfying tuple (1, 1) ∈ C,
D(X1) = D(X3) = D(X5) = D(X7) = 1 and D(X2) = D(X4) = D(X6) =
{0, 1}. Consider an instantiation I[N = 3, X1 = 1, X2 = 0, X3 = 1, . . . , X7 = 1].
The constraint C is violated twice: (X1 = 1, X2 = 0) and (X2 = 0, X3 = 1). Hence,
the cost of the assignment is N = 2 + 1 = 3. ��
A number of global constraints can be used to propagate SEQBIN including
REGULAR [7,8], cost REGULAR [9], CARDPATH [3] and SLIDE [5]. However, all are
more expensive than the propagator proposed here. A thorough analysis of related work
is presented in [1]. We will assume that, as a preprocessing step, all binary constraints
B are made DC which takes just O(nd) time for monotone B. We say that an instanti-
ation I[X] is B-coherent iff (I[Xi], I[Xi+1]) ∈ B, i = 1, . . . , n. A value v ∈ D(Xi)
is B-coherent iff there exists a B-coherent instantiation I[X] with I[Xi] = v.

334 G. Katsirelos, N. Narodytska, and T. Walsh

X1 X2 X3 X4 X5 X6 X7

0
1

11

2

21 321 3

32 4

21 3 4 5

32 4 5 6

21 3 4 521 3 4 5 6 7

X0

0*

X8

0*

0

1

2

1 21 3

32 4

21 3 21 3 4 5 21 3 4 5

32 4 5 6

21 3 4 5 6 7

32 4 5 6 7 8

forward costs

backward costs

X0=0 X2=0 X4=0 X6=0 X8=0

X1=1 X3=1 X5=1 X7=1X2=1 X4=1 X6=1

32 4 5 6 71

total costs

3 4 5 6 7 3 4 5 6 7 3 4 5 6 7 32 4 5 6 71

32 4 5 6 71 32 4 51 32 4 5 6 71 21 3 4 5 32 4 5 6 71 21 3 4 5 21 3 4 5 6 7

total costs

0

32 4 5 6 7 8

forward costs

backward costs

1
0

1 1
0

1 1 1

Fig. 1. A 9-partite graph that corresponds to the SEQBIN constraint from Example 1. Dashed
edges have cost one and solid edges have zero cost.

3.1 A Graph Representation of SEQBIN

We present a connection between finding a solution of the SEQBIN constraint and the
problem of finding a path of a given cost in a special n-partite graph where the cost of an
edge is either 0 or 1. We start with a description of the graphG(V,E). For each variable-
value pair xi,j we introduce a vertex in the graph that we label xi,j , V = {xi,j |i =
1, . . . , n, j ∈ D(Xi)}. For each pair (xi,j , xi+1,v) we introduce an edge iff the tuple
(j, v) ∈ B, hence, E = {(xi,j , xi+1,v)|i = 1, . . . , n− 1, j ∈ D(Xi), v ∈ D(Xi+1) ∧
(j, v) ∈ B}. An edge (j, v) is labeled with c(j, v). Note that vertices xi,j , j ∈ D(Xi),
form the ith partition as they do not have edges between them. Moreover, there are edges
only between neighbor partitions i and i + 1, i = 1, . . . , n − 1. Hence, the resulting
graph is a special type of n-partite graph that we call layered. To keep the presentation
clear, we introduce dummy variables X0 and Xn+1 with a single vertex 0∗, and edges
from x0,0∗ to all vertices (values) of X1 with cost 1, and from all vertices of Xn to
xn+1,0∗ with cost 1. To simplify notation, we label a vertex xi,j that is at the ith layer
simply as j in all figures. We also use solid lines for edges of cost zero and dashed lines
for edges of cost one. As variables correspond to layers in the graph we refer to layers
and variables interchangeably. Similarly, as variable-value pairs correspond to vertices
in the graph we refer to vertices at the ith layer and values in D(Xi) interchangeably.
Given two values j at the ith layer and v at the (i + 1)th layer we say that j/v is a
support value for v/j iff there exists an edge (j, v) in the graph.

Example 2. Consider the SEQBIN(N, [X1, . . . , X7], C,B) constraint from Example 1.
Figure 1 shows the corresponding graph representation of the constraint. ��
We now describe an algorithm, PATHDP to find a path of a given cost in a lay-
ered graph. PATHDP is a special case of the dynamic programming algorithm for
the knapsack problem where all items have unit costs. Both the existing propagator
for SEQBIN and our new one are specializations of PATHDP. Another specializa-
tion of PATHDP is the propagator for cost REGULAR [9]. We denote by c(X) the
set of all possible numbers of violations achieved by an assignment to X : c(X) =
{k | I is B-coherent ∧ c(I) = k} and similarly c(xi,j) = {k | I is B-coherent ∧

The SEQBIN Constraint Revisited 335

I[Xi] = j ∧ c(I) = k}. We denote the forward cost from the variable Xi to Xn by
cf (xi,j) = {k | I[Xi, . . . , Xn] is B-coherent ∧ I[Xi] = j ∧ c(I) = k}. This set
contains all the distinct costs that are achievable by paths from the vertex xi,j to the
vertex xn+1,0∗ . We write lbf(xi,j) = min(cf (xi,j)) and ubf(xi,j) = max(cf (xi,j)).
Similarly, we denote the backward cost from the variable X1 to Xi by cb(xi,j) = {k |
I[X1, . . . , Xi] is B-coherent ∧ I[Xi] = j ∧ c(I) = k}. It contains all the distinct costs
that are achievable by paths from the vertex x0,0∗ to the vertex xi,j . We denote by
lbb(xi,j) = min(cb(xi,j)) and ubb(xi,j) = max(cb(xi,j)).

Algorithm 1. The pseudocode code for the PATHDP algorithm
1: procedure PATHDP (G(V,E))
2: for i = n → 0; j ∈ D(Xi) do � Compute the forward cost
3: cf (xi,j) = ∅
4: for k ∈ D(Xi+1), (j, k) ∈ B do
5: cf (xi,j) = cf (xi,j)

⋃
(cf (xi+1,k) � c(j, k))

6: for i = 1 → n + 1; j ∈ D(Xi) do � Compute the backward cost
7: cb(xi,j) = ∅
8: for k ∈ D(Xi−1), (k, j) ∈ B do
9: cb(xi,j) = cb(xi,j)

⋃
(cb(xi−1,k) � c(k, j))

10: for i = 0 → n + 1; j ∈ D(Xi) do � Compute the total cost
11: c(xi,j) = cf (xi,j) � cb(xi,j)

PATHDP performs two scans of the layered graph, one from Xn to X1 to compute
forward costs, and one from X1 to Xn to compute backward costs. The backward pass
processes one layer at a time and computes the set cf (xi,j) for each variable Xi and
value j ∈ D(Xi) (lines 2–5). Dually, the forward pass computes for each variable Xi

and value j ∈ D(Xi), the backward cost cb(xi,j)(lines 6–9). Finally, for each vertex the
set of costs achievable on paths from x0,0∗ to xn+1,0∗ that pass through xi,j is cf (xi,j)�
cb(xi,j). To match the semantics of SEQBIN, we compute cf (xi,j) � cb(xi,j) � (−1)
for each vertex.

The time complexity for SEQBIN using PATHDP is O(n2d2) : the number of distinct
costs is at most n, so getting the union of two cost sets takes O(n) time. Each vertex
has at most d outgoing edges, so the set cf (xi,j) can be computed in O(nd) time for
each xi,j . There are O(nd) vertices in total, giving the stated complexity of O(n2d2).

Example 3. Consider the SEQBIN(N, [X1, . . . , X7], C,B) constraint from Example 1.
Figure 1 shows the forward cost cf (xi,j), the backward cost cb(xi,j) and the total cost
cf (xi,j) � cb(xi,j) � (−1), j ∈ D(Xi), i = 0, . . . , 8 in gray rectangles. We have one
rectangle for each variable-value pair Xi = j. Consider, for example, the vertex ‘1’ at
layer X5. We compute the forward cost cf (x5,1) = (cf (x6,0) � c(1, 0)) ∪ (cf (x6,1) �
c(1, 1)) = {3} ∪ {1} = {1, 3} and the backward cost cb(x5,1) = (cb(x4,0)� c(0, 1))∪
(cb(x4,1) � c(1, 1)) = {3, 5} ∪ {1, 3} = {1, 3, 5}. Then cf (x5,1) � cb(x5,1 � (−1) =
{1, 3} � {1, 3, 5} � (−1) = {1, 3, 5, 7}. ��
Lemma 1. Let G(V,E) be a layered graph constructed from the SEQBIN(N,X,C,B)
constraint as described above. There exists a bijection between B-coherent assignments
I[X] of cost s and paths in the graph G(V,E) of cost s+ 1.

336 G. Katsirelos, N. Narodytska, and T. Walsh

3.2 Revisiting SEQBIN

A domain consistency algorithm for the SEQBIN(N,X,C,B) constraint, SEQBINALG

was proposed in [1] under the restriction that B is a monotone constraint. In this section
we identify two drawbacks of this algorithm that make it incomplete. We show that
SEQBINALG does not detect bounds disentailment and it is not idempotent even if B is
a monotone constraint. It was observed idependently in [10] that SEQBINALG does not
enforce DC. However, the authors do not explicitly explain the source of the problems
of SEQBINALG and only identify a very restricted class of SEQBIN instances where
SEQBINALG does enforce DC.

We will identify the main reason that SEQBINALG fails to enforce DC. This is
important to develop a new algorithm that does enforce DC in O(nd2) time when
B is monotone. SEQBINALG uses Algorithm 1 to compute only the lower and up-
per bounds of the forward and backward cost (Lemma 1 and 2 in [1]). Namely, us-
ing the notations in [1], we compute s(xi,j) = lb(cf(xi,j)), s(xi,j) = ub(cf (xi,j)),
p(xi,j) = lb(cb(xi,j)) and p(xi,j) = ub(cb(xi,j)) in O(nd2). SEQBINALG is based on
these values and runs in 4 steps [1]:

Phase 1 Remove all non B-coherent values in D(X).
Phase 2 For all values in D(X), compute s(xi,j), s(xi,j), p(xi,j) and p(xi,j).
Phase 3 Adjust the min and max value of N with respect to s(X) and s(X).
Phase 4 Using the result of Phase 3 and Proposition 4 [1], prune the remaining B-

coherent values.

The correctness of SEQBINALG relies on Proposition 3. Unfortunately, this proposition
is not correct, and the algorithm is consequently incomplete.

Proposition 3 (in [1]). Given an instance of SEQBIN(N,X,C,B) with monotone
B, SEQBIN(N,X,C,B) has a solution iff [s(X), s(X)] ∩ N
= ∅ where s(X) =
minj∈D(X1) s(x1,j) and s(X) = maxj∈D(X1) s(x1,j).

Issue 1. Bounds disentailment.

Lemma 2. The algorithm SEQBINALG for SEQBIN(N,X,C,B) with monotone B
does not detect bounds disentailment.

Proof. Consider the SEQBIN(N, [X1, . . . , X7], C, TRUE) constraint in Example 1. The
constraint TRUE is monotone. Consider N = 4. Then s(X) = 1 and s(X) = 7. Hence,
[1, 7]∩ {4}
= ∅. However, there is no solution with cost 4. The problem with the proof
of Proposition 3 in [1] is the last sentence which claims that there is a solution for each
value k ∈ [s(x1,v), s(x1,v)] for some v. This is not true as Example 1 demonstrates.
Note also that [s(xi,j) + p(xi,j), s(xi,j) + p(xi,j)] ∩ {4}
= ∅. Hence, according to
Proposition 4 [1] each variable-value pair is DC which is also incorrect. ��

Issue 2. Idempotency. As a consequence of not detecting bounds disentailment,
SEQBINALG is also not idempotent.

Lemma 3. The filtering algorithm SEQBINALG for SEQBIN(N,X,C,B) with mono-
tone B is not idempotent.

The SEQBIN Constraint Revisited 337

X1 X2 X3 X4 X5

2

X0 X6

X2=2 X4=2
total costs

total costs

1
0

2

0

2

0

3

0* 0*

X1=0

32 4 5

2 3 4

X2=1

3 4 5

X3=0

2

X3=2

3 4 5

X4=0

2 3 4 5 32 4 5

X5=3

N=3

X1 X2 X3 X4 X5

2

X0 X6

X2=2
total costs

total costs

1
0

2

0

2

0

3

0* 0*

X1=0

32 4 5

2 3 4

X2=1

3 4 5

X3=0

2

X3=2

3 4 5

32

2 3 4 5 32 4 5

32

X4=2

X4=0

X5=3

N=3

(a) (b)

Fig. 2. A 7-partite graph that corresponds to the SEQBIN constraint from the proof of Lemma 3.
Dashed edges have cost one and solid edges have cost zero. (a) shows initial costs; (b) shows
costs after X3 = 0 is pruned.

Proof. Consider the SEQBIN(N, [X1, . . . , X7], C,B) where N = {3}, B =
{(j, k)|j, k ∈ [0, 3], (j, k)
∈ (0, 0), (1, 0)}. C(Xi, Xj) is a monotone constraint with
three satisfying tuples (2, 0), (0, 2), (0, 3) ∈ C. Finally, D(X1) = {0}, D(X2) =
{1, 2}, D(X3) = D(X4) = {0, 2} and D(X5) = {3}. Figure 2(a) shows the graph
representation of the example. Note that c(x3,0) ∩ N = {2} ∩ {3} = ∅. Hence, the
value 0 is pruned from D(X3). Therefore, the value X4 = 2 loses its support with cost
2 (Figure 2(b)). The new cost of x4,2 is {4, 5} ∩N = ∅ and the value 2 is pruned from
D(X4). Note that the removal of X4 = 2 triggers further propagation as X2 = 2 loses
its support of cost 5, and 2 is removed from D(X2) at the next step. ��
We note that if B is not monotone, SEQBINALG may need O(n) iterations to reach its
fixpoint and Proposition 2 in [1] only works if B is monotone.

Remedy for SEQBINALG. As seen in Lemmas 2–3, the main cause of incomplete-
ness in SEQBINALG is that the set of costs for each vertex is a set rather than an
interval even when B is monotone. One way to overcome this problem is to restrict
SEQBIN(N,X,C,B) to those instances where it is an interval. This approach was taken
in [10] where SEQBIN(N,X,C,B) was restricted to counting-continuous constraints.

Definition 2. The constraint SEQBIN(N,X,C,B) is counting-continuous if and only
if for any instantiation I[X]with k stretches in whichC holds, for any variableXi ∈ X ,
changing the value of Xi in I[X] leads to k, k + 1, or k − 1 violations.

This restriction ensures that the structure of the cost for each variable-value pair is
an interval and, indeed, the filtering algorithm SEQBINALG enforces DC. However,
this approach has a number of drawbacks. First, restricting SEQBIN(N,X,C,B) to
counting-continuous with monotone B excludes useful combinations of B and C. Ex-
ample 1 shows that SEQBIN(N,X,C is monotone, B is TRUE) does not satisfy this
property. Secondly, many practically interesting examples [1] that can be propagated
in O(nd) time do not satisfy these conditions. As was observed in [10], constraints
CHANGE{=, �=} = SEQBIN(N,X,C ∈ {=,
=}, TRUE) and SMOOTH are not counting-
continuous. The INCREASINGNVALUE constraint which is SEQBIN(N,X,=,≤) vio-
lates the condition that B is monotone. The only remaining constraint that satisfies these

338 G. Katsirelos, N. Narodytska, and T. Walsh

restrictions on B and C is CHANGE{<,≤} = SEQBIN(N,X,C ∈ {<,≤}, TRUE).
Unfortunately, the proof relies on the claim that C is monotone, which is false for
C ∈ {<,≤}. Thirdly, we do not currently have a test to check if SEQBIN(N,X,C,B)
is counting-continuous. Despite the problems pointed out above, the filtering algorithm
SEQBINALG enforces DC on INCREASINGNVALUE and CHANGE(C ∈ {<,≤}) in
O(nd) as the counting-continuous property together with the row and column convex-
ity of C are sufficient to achieve this complexity.

In this work we take a different approach. We focus on an extension of the algorithm
to handle non-interval cost sets. The challenge is to perform this extension in O(nd2) as
the generic dynamic programming algorithm PATHDP that handles sets natively runs
in O(n2d2) time. Note that if the cost structure is an unrestricted set of values then
the time complexity of PATHDP is going to be hard to improve as it is a specialization
of a well-studied dynamic programming algorithm for the knapsack problem where all
items have unit cost. Hence, we show that the structure of the costs for a variable-value
pair is restricted if B is monotone. This allows us to perform union operations on sets
in O(1) time rather than O(n).

3.3 Cost Structure

We show that the structure of the cost for each variable-value pair is restricted. First,
we introduce definitions to formalize the structure of forward and backward costs.

Definition 3. A set S is a zipper set if it can be obtained from an interval [a, b] by
removing all odd or all even values. We denote a zipper set as [a ∼ b].

forward costs

X8 X9X7

X9=0*

X8=3

1

0

0*

2

X7=4

X7=3

121

X6=3

2 3 4

X5=4

3

X6X5

1 2 3

X5=0

3

X4

3 4 5

32 4 5

X4=3

1

X4=2

X3

32 4 51

X3=5

32 4 51

X3=0

6

X2

32 4 51

X2=1

32 4 5 76

X2=4

X1

X1=3

32 4 5 76 81

0*

X0=0*

32 4 5 76 8 9

forward costs

The zipper blockThe zipper + i zipper blockThe i zipper block

2
0

3
5

0
1

4
3 3

4 4
3

X0

Fig. 3. A 10-partite graph that corresponds to the SEQBIN constraint from Examples 4–6. Dashed
edges have cost one and solid edges have zero cost.

Note that in a zipper set [a ∼ b], a and b have the same parity. If both are odd, [a ∼ b]
is an odd zipper set, while if both are even, [a ∼ b] is an even zipper set.

Definition 4. A set S is an i·zipper set if it can be written as [a ∼ b] ∪ [b, c] ∪ [c ∼ d],
a ≤ b < c ≤ d. We denote an i·zipper set as [a ∼ b− c ∼ d]. If a = b, we write the set
as [b − c ∼ d] and if c = d we write it as [a ∼ b− c].

Given an i·zipper set [a ∼ b] ∪ [b, c] ∪ [c ∼ d], we denote the left part [a ∼ b] as l · zip,
the middle part [b− c] as i · val and the right part [c ∼ d] as r · zip.

The SEQBIN Constraint Revisited 339

Example 4. Consider the SEQBIN(N, [X1, . . . , X8], C,B) constraint that Figure 3
presents. We only show the forward cost sets. For example, the forward cost set cf (x3,5)
is a zipper [1 ∼ 5], cf (x5,4) = [2 ∼ 4] is an even zipper and cf (x3,5) = [1 ∼ 5] is an
odd zipper. An example of an i·zipper set is cf (x1,3) = [1 ∼ 5− 8]. ��
Our filtering algorithm is based on the following theorem.

Theorem 1. Consider a SEQBIN(N,X,C,B) constraint with monotone B and ar-
bitrary C. Let [b, c], c > b be the maximal interval such that [b, c] ⊆ cf (xi,v),
i = 1, . . . , n, v ∈ D(Xi). If such an interval does not exist we define [b, c] = ∅. Then
the following holds for any value j, k, {j, k} ∈ D(Xi) and i = 1, . . . , n:

1. Uniqueness. The set cf (xi,v) is either a zipper or i·zipper set.
2. Overlapping. If cf (xi,j) and cf (xi,k) are i·zipper sets, cf (xi,j) = [a ∼ b− c ∼ d]

and cf (xi,k) = [s ∼ r − q ∼ t], then [b, c] ∩ [r, q]
= ∅.
3. Structure.

• Bounded holes. If cf (xi,j) is an i·zipper set, [a ∼ b − c ∼ d] then b − a ≤ 4
and d− c ≤ 4

• Closeness. |lbf(xi,j)− lbf(xi,k)| ≤ 2 and |ubf(xi,j)− ubf(xi,k)| ≤ 2.

Theorem 1 shows that the structure of cf (xi,j), j ∈ D(Xi) is limited to few distinct
structures of sets: a zipper and an i·zipper. This allows us to deal with such restricted
sets efficiently. We give an overview of the proof. We identify two key properties of
the problem. The first property is that for all but at most two layers the cost structure
is homogeneous. All costs cf (xi,j) are either zippers or i·zippers. Moreover, layers that
only contain zippers (i·zippers) are consecutive. The layers [n2, . . . , n] only contain
zippers for some n2. The layers [1, . . . , n1] only contain i·zippers for some n1 < n2.
There are at most two heterogeneous layers between these sequences.

Example 5. Consider Figure 3. We only show the forward cost cf (xi,j) for each
variable-value pair in a gray rectangle. The homogeneous consecutive layers [n2 =
4, . . . , n = 8] only contain zippers. The two heterogeneous consecutive layers [2, 3]
contain zippers and i·zippers. The homogeneous consecutive layers [0, n1 = 1] only
contain i·zippers. ��
The second property is that if we consider all cost sets at one layer then their
lower(upper) bounds are at most distance two from each other. This is stated as the
closeness property of the structure in Theorem 1. Section 3.4 proves the first property
and Section 3.5 proves the second property. The rest of the proof of Theorem 1 uses
induction on the number of layers, taking these properties into account. Due to lack
of space, these proofs are in the Appendices in [11]. Appendix C.1 proves Theorem 1
for the sequence of layers that only contain cost sets that are zippers. Moreover, it
imposes an additional property on the structure of zippers. Appendix C.2 proves Theo-
rem 1 for the two heterogeneous layers. This is the most tedious part of the proof using
enumeration of all possible distinct structures of the forward(backward) cost. This enu-
meration is feasible because of the properties of the cost structure in the first sequence.
Appendix C.3 proves Theorem 1 for the last sequence that only contains i·zippers. We
show that no new cost structures may appear in this sequence. Overall, we prove that
there are a bounded number of cost structures at each layer.

340 G. Katsirelos, N. Narodytska, and T. Walsh

3.4 Partitioning of Layers

The proof of Theorem 1 is based on the following lemma that partitions variables
X1, . . . , Xn into three groups based on the structure of the forward costs (the back-
ward costs are similar, but the partition may be different).

Lemma 4. Consider a SEQBIN(N,X,C,B) with monotone B and arbitrary C. Let
Xt = j be the first variable in the reverse order of variables such that there exists a
value j and an interval [a, b], a < b such that [a, b] ⊆ cf (xt,j), i.e., for all t′ ∈ [t+1, n],
j ∈ D(Xt′), there does not exist [a′, b′], a′ < b′, such that [a′, b′] ⊆ cf (xt′,j). Then
for all cf (xs,j), j ∈ D(Xs), s ∈ [1, t− 2], there exists an interval [as,j , bs,j] such that
[as,j , bs,j] ⊆ cf (xs,j).

Proof. Consider the pair of variablesXt and Xt−1. We recall that we consider variables
in the reverse order form n to 0. Let v be the maximum value in the total order π such
that v ∈ D(Xt−1). By the monotonicity of B and the fact that B(Xt−1, Xt) is DC,
we conclude that (v, j) ∈ B. Otherwise, if (v, j) /∈ B, the value j had to be pruned
from D(Xi) by enforcing DC on B(Xt−1, Xt) as v is the top value in the ordering in
D(Xt−1). Therefore, there exists an interval [c, d] ∈ {[a, b], [a+ 1, b+ 1]}, c < d such
that [c, d] ⊆ cf (xt−1,v).

Consider the pair of variables Xt−1 and Xt−2. Due to monotonicity of B we know
that (k, v) ∈ B, q ∈ D(Xt−2) as v is the top value in π such that v ∈ D(Xt−1).
Hence, v is a support for all k and cf (xt−2,k) must contain an interval as cf(xt−2,k) =⋃

w∈D(Xt−1)
(cf (xt−1,w) � c(j, w)) and [c, d] ⊆ cf (xt−1,v), v ∈ D(Xt−1). Hence,

there exists an interval [c′, d′], c′ < d′ such that [c′, d′] ⊆ cf (xt−2,k) for all k ∈
D(Xt−2) including the top value in the ordering π, k′, such that k′ ∈ D(Xt−2). We
repeat the argument for layers s, s ∈ [1, . . . , t− 3]. ��
Corollary 1. Consider a SEQBIN(N,X,C,B) with monotone B and arbitrary C.
Then there are three blocks of consecutive variables [X1, Xn1] ∪ [Xn1+1, Xn2−1] ∪
[Xn2 , Xn] with n1 < n2 ≤ n1 + 3, i.e., the size of the partition [Xn1+1, Xn2−1] is at
most 2, and:

Zipper block. For all i, j, i ∈ [n2, n], j ∈ D(Xi), there does not exist an interval
[a, b] ⊆ [1, πtop], a < b, such that [a, b] ⊆ cf (xi,j).

Zipper + i·Zipper block. There exist i, j, i ∈ [n1 + 1, n2 − 1], j ∈ D(Xi) and an
interval [a, b] ⊆ [1, πtop], a < b, such that [a, b] ⊆ cf (xi,j).

i·Zipper block. For all i, j, i ∈ [1, n1], j ∈ D(Xi) there exists an interval [a, b] ⊆
[1, πtop], a < b, such that [a, b] ⊆ cf (xi,j).

Example 6. Consider Figure 3. The zipper block includes [X4, . . . , X8]. The zipper +
i·zipper block includes variables X2 and X3. The i·zipper block contains X1. ��

3.5 Closeness of Costs

We show that if B is a monotone constraint then the forward cost of the values of
a variable cannot deviate too much from each other. Hence, we prove the closeness
property of the cost structure in Theorem 1.

The SEQBIN Constraint Revisited 341

Lemma 5. Consider a SEQBIN(N,X,C,B) with monotone B and arbitrary C. Con-
sider a variable Xi, i = [1, . . . n]. Then for any two values j, k ∈ D(Xi), j ≺ k, either
ubf(xi,j) ∈ [ubf(xi,k), ubf(xi,k) + 1] or ubf(xi,k) ∈ [ubf (xi,j), ubf(xi,j) + 2].

Proof. By induction on the distance from n. The base case is trivial, as ubf(xn,i) =
lbf(xn,i) = 1 for all i. Suppose this holds for all Xt+1, . . . , Xn. We show that it holds
for Xt. Let v be a value such that ubf(xt,k) = ubf(xt+1,v) + c(k, v) and w be a value
such that ubf(xt,j) = ubf(xt+1,w) + c(j, w).
Property 1. If w = v or ubf(xt+1,v) = ubf(xt+1,w) then lemma holds. Proof: This
follows from the assumption that all costs in C are zero or one. Hence, |ubf(xt,j) −
ubf(xt,k)| ≤ 1.
Property 2. The tuple (k, w) ∈ B. Proof: This follows from monotonicity of B and the
assumption that j ≺ k and from (j, w) ∈ B.
Property 3. If w ≺ v then (j, v) ∈ B. Proof: This follows from monotonicity of B and
the assumptions w ≺ v and (j, w) ∈ B.
Property 4. If (j, v) ∈ B then w = v. Proof: In this case the bipartite
subgraph over four vertices k, j, v, w is complete (Figure 4(a)). Hence, v′ =
argmaxw,v(ubf (xt+1,v), ubf(xt+1,w)) is a potential support for both ubf(xt,j) and
ubf(xt,k) and w and v coincide.

From Properties 1–4 we know that we only have to prove Lemma in the following
case: v ≺ w, v
= w, ubf(xt+1,v)
= ubf(xt+1,w) and (j, v) /∈ B.

By the induction hypothesis, there exist two cases: ubf(xt+1,v) ∈
[ubf(xt+1,w), ubf (xt+1,w) + 1] or ubf(xt+1,w) ∈ [ubf (xt+1,v), ubf(xt+1,v) + 2].

Case 1. We assume ubf(xt+1,v) ∈ [ubf(xt+1,w), ubf (xt+1,w) + 1]. As
ubf(xt+1,v)
= ubf(xt+1,w) we know that ubf(xt+1,v) = ubf(xt+1,w) + 1. We de-
note p = ubf(xt+1,w). Figure 4(b) shows this case. Note as costs of the edges are zero
or one, ubf(xt,k) ∈ {p+ 1, p+ 2}. On the other hand, ubf(xt,j) ∈ {p, p+ 1}. Hence,
ubf(xt,k) ∈ [ubf(xt,j), ubf(xt,j) + 2] as required.

Case 2. We assume ubf(xt+1,w) ∈ [ubf(xt+1,v), ubf(xt+1,v)+2] (Figure 4 (c)) and
since ubf(xt+1,v)
= ubf (xt+1,w), ubf(xt+1,w) > ubf(xt+1,v). As v ≺ w the value w
is a support value for both j and k. Hence, either v = w or ubf(xt+1,v) = ubf(xt+1,w).
This contradicts v
= w and ubf(xt+1,v)
= ubf (xt+1,w). ��

v, ubf (xt+1,v)

Xt+1Xt

(a)

j

k w, ubf (xt+1,w)
Xt+1XtXt+1Xt

(b) (c)

w, ubf (xt+1,w)= p

v, ubf (xt+1,v)= p+1

w, ubf (xt+1,w)= p+2

v, ubf (xt+1,v)= pj

k

j

k

v, lbf (xt+1,v)

Xt+1Xt

(d)

j

k w, lbf (xt+1,w)
Xt+1XtXt+1Xt

(e) (f)

w, lbf (xt+1,w)= p+1

v, lbf (xt+1,v)= p

w, lbf (xt+1,w)= p

v, lbf (xt+1,v)= p+2j

k

j

k

Fig. 4. Computation of the forward cost upper bound, ubf (xi,j), (a)–(c) and the forward cost
lower bound, lbf (xi,j), (d)–(f). Note that we do not distinguish between 0 and 1 cost edges.

342 G. Katsirelos, N. Narodytska, and T. Walsh

Lemma 6. Consider a SEQBIN(N,X,C,B) with monotone B and arbitrary C. Then,
either lbf(xi,j) ∈ [lbf(xi,k), lbf (xi,k) + 2] or lbf(xi,k) ∈ [lbf(xi,j), lbf(xi,j) + 1] for
all variables Xi and values j ≺ k.

Proof. Analogous to Lemma 5 (Figure 4, (d)–(f)). ��

We omit the rest of the proof here due to space limitation (see Appendix B–C). We only
mention Appendix C.1, Lemma 15 that refines Theorem 1 for layers in the zipper block
as we use this result in Section 4. Lemma 15 shows that at the ith layer in the zipper
block, i ∈ [n1 + 3, n], there are at most 4 possible distinct sets cf (xi,j), j ∈ D(Xi).

3.6 Total Cost

Lemma 7. Consider a SEQBIN(N,X,C,B) constraint with monotone B and arbi-
trary C. The set c(xi,j) = cf (xi,j) � cb(xi,j) � (−1), j ∈ D(Xi), i = 1, . . . , n is
either a zipper or an i·zipper set. For any i·zipper set c(xi,j) = [a ∼ b− c ∼ d] it holds
b− a ≤ 4 and d− c ≤ 4. Moreover, c(xi,j) can be computed in O(1) time.

Proof. It is sufficient to consider c(xi,j) = cf (xi,j) � cb(xi,j) as a shift by a constant
does not change the structure of the set. As cf (xi,j) and cb(xi,j) satisfy Theorem 1,
they are either zipper or i·zipper sets. We consider 3 cases.

Case 1. Both cf (xi,j) and cb(xi,j) are zipper sets. Consider zipper sets cf (xi,j) =
[a ∼ b] = {a, a+2, . . . , b} and cb(xi,j) = [c ∼ d] = {c, c+2, . . . , d}. Then c(xi,j) =
{a+ c, a+ 2 + c, . . . , b+ c, b+ c+ 2, . . . , . . . b + d} = [(a+ c) ∼ (b+ d)].

Case 2. Both cf (xi,j) and cb(xi,j), are i·zipper sets. Consider cf (xi,j) = [a ∼
b − r ∼ q] and cb(xi,j) = [c ∼ d − f ∼ e]. We consider the most general case where
a < b, r < q, c < d and f < e.

We perform the operation � in three steps, c(xi,j) = c1 ∪ c2 ∪ c3 where c1 =
cf (xi,j) � [d, f] = [a + d, q + f], c2 = cf (xi,j) � [c ∼ d] = [(a + c) ∼ (b +
d)] ∪ [b + c, r + d] ∪ [(r + c) ∼ (b + q)], and c3 = cf (xi,j) � [f ∼ e] = [(a +
f) ∼ (b + e)] ∪ [b + f, r + e] ∪ [(r + f) ∼ (e + q)]. As (b + c) ≤ (b + d) and
(r + c) ≤ (r + d) we get c2 = [(a+ c) ∼ (b + c)− (r + d) ∼ (b + q)]. Similarly, we
get c3 = [(a+ f) ∼ (b + f)− (r + e) ∼ (e+ q)].

Finally, c(xi,j) = c1∪c2∪c3 = [(a+c) ∼ (min((b+c), (a+d))−max((r+e), (q+
f)) ∼ (e+ q)]. Consider the value min((b+ c), (a+d)− (a+ c)). If b+ c ≤ a+d then
we have (b+c)−(a+c) = b−a ≤ 4. If a+d ≤ b+c then we have (a+d)−(a+c) =
d− c ≤ 4. Similarly, we prove the result (e+ q)−max((r + e), (q + f)) ≤ 4. Hence,
the statement of the lemma holds.

Case 3. Exactly one of {cf(xi,j), cb(xi,j)} is a zipper set. Similar to Case 2.
Complexity. In all three cases above, the proof is constructive and we give an analytic

expression to compute c(xi,j). Hence, this can be done in O(1) time. ��

Example 7. Suppose cf (xi,j) = [2 ∼ 6−8 ∼ 12] and cb(xi,j) = [10 ∼ 16−20 ∼ 22].
Both cf (xi,j) and cb(xi,j) are i·zipper sets. Hence, to compute c(xi,j) = (cf (xi,j) �
cb(xi,j)�(−1)) we use the expression [(2+10) ∼ (min((6+10), (2+16))−max((8+
22), (12 + 20)) ∼ (12 + 22)] � (−1) = [11 ∼ 15− 31 ∼ 33]. ��

The SEQBIN Constraint Revisited 343

4 Domain Consistency Algorithm

In this section we present SEQBINALGNEW, a domain consistency algorithm for
SEQBIN(N,X,C,B) with monotone B. It has the same structure as SEQBINALG:

Phase 1 Remove all non B-coherent values in the domains of X .
Phase 2 For all values in the domains of X , compute cf (xi,j) and cb(xi,j).
Phase 3 Prune the domain of N with respect to cf (x0,0∗).
Phase 4 Prune the remaining B-coherent values.

The main complexity bottleneck is Phase 2 and Phase 4. If we do not put any restrictions
on B and C then it takes O(n2d2) in total to compute these sets. We show that the
complexity of SEQBINALGNEW decreases as we put restrictions on constraints B and
C. With respect to phase 3, we note that the cardinality of both D(N) and cf (x0,0∗) is
at most n, so their intersection can be computed in time O(n).

4.1 Domain Consistency Algorithm in O(nd2) with Monotone B

Phase 2 of SEQBINALGNEW. We exploit the structure of the costs established by The-
orem 1 to improve PATHDP (Phase 2). We show that lines 4–5 and 8–9 can be done in
O(d) time if B is monotone.

Lemma 8. Consider a SEQBIN(N,X,C,B) constraint such that B is monotone. For
all j ∈ D(Xi), i ∈ [1, . . . , n], cf (xi,j) =

⋃
v∈D(Xi+1)

(cf (xi+1,v) � c(j, v)) can be
computed in O(d) time.

Proof. We partition all supports v into two groups based on the value of c(j, v). The first
group S0 contains values such that c(j, v) = 0 and the second group S1 contains values
such that c(j, v) = 1. We find c1 =

⋃
v∈S0

cf (xi+1,v) and c2 =
⋃

v∈S1
cf (xi+1,v).

Then we find cf (xi,j) = c1 ∪ (c2 � 1). We prove the lemma for c1 (c2 is analogous.)

Compute c1. We assume that p is the smallest lower bound among the forward cost sets
of the values in S0 and q+2 is the greatest upper bound: p = minv∈S0 lbf(xi+1,v) and
q + 2 = maxv∈S0 ubf (xi+1,v). We refer to l · zip of cf (xi+1,v) as l · zip(xi+1,v) to
simplify notation (similarly, for the other two parts i · val and r · zip). By Theorem 1
we know that lb(l · zip(xi+1,v)) ∈ [p, p + 2], ub(r · zip(xi+1,v)) ∈ [q, q + 2], lb(i ·
val(xi+1,v)) ∈ [p, p+ 6] and ub(i · val(xi+1,v)) ∈ [q − 4, q + 2]. Hence, we compute
the 20 indicator values J l·zip

y (v), y ∈ [p, p + 2], Jr·zip
y (v), y ∈ [q, q + 2], J i·vallb

y (v),
y ∈ [p, p + 6], and J i·valub

y (v), y ∈ [q − 4, q + 2], v ∈ S0. For example, we define
J l·zip
y (v) = 1, iff lb(l · zip(xi+1,v)) = y and J l·zip

y (S0) = maxv∈S0 J
l·zip
y (v), y ∈

[p, p+2]. Similarly, we compute the other 19 indicators. This can be done in O(d) time
with a linear scan over cf (xi+1,v), v ∈ S0. Then we can compute

⋃
v∈S0

cf (xi+1,v) =
[a∗ ∼ b∗ − c∗ ∼ d∗] in 4 steps, each of which takes O(1) time.

Union of i · val. Theorem 1 shows that all i · val sets must overlap. Hence, the union
of i · val(xi+1,j) forms an interval. We find the minimum value y, y ∈ {p, . . . , p+ 6}
such that J i·vallb

y (S0) = 1. If such a value y exists then we set b∗ = y. Then we find the

largest value y′ ∈ {q − 4, . . . , q + 2} such that J i·valub

y′ (S0) = 1 and set c∗ = y′. Note

344 G. Katsirelos, N. Narodytska, and T. Walsh

that if y exists then y′ exists. If y does not exist we know that all cf (xi+1,v), v ∈ S0 are
zipper sets and we set b∗ = c∗ = ∅.

Union of l ·zip. Suppose b∗
= ∅. We find indicators J l·zip
y (S0), y ∈ [p, p+2], that are

set to one. Set p′ to the minimum among [p, p+2], for which there exists J l·zip
p′ (S0) = 1.

If J l·zip
p+1 (S0) = 1 and J l·zip

p (S0) = 1 or J l·zip
p+2 (S0) = 1 or b∗ ∈ {p, p + 2} then set

a∗ and reset b∗, so that a∗ = b∗ = min(p + 1, p′) otherwise set a∗ = p′ and leave b∗

unchanged. Union of r · zip is similar to union of l · zip.
Union of zippers. Suppose b∗ = ∅. Then we determine which of 4 distinct sets

(Appendix C.1, Lemma 15) are present among c1f (xi+1,v), v ∈ S0. As there are at most
4 such that are zippers we can union them in O(1) time and identify the values a∗, b∗, c∗

and d∗.
We can compute c1 ∪ (c2 � 1) in O(1). We omit the proof here due to space consid-

erations (see Appendix D, Lemma 19).

Complexity. For each j ∈ D(Xi), i ∈ [1, . . . , n], the forward cost set cf (xi,j), can be
computed in O(d). As we have O(nd) such sets, the total time complexity is O(nd2).
One way to reduce this complexity is to compute cf(xi,j) in O(1). ��
Corollary 2. Phase 2 of the algorithm SEQBINALGNEW runs in O(nd2) time.

Phase 4 of SEQBINALGNEW. We present the final phase of SEQBINALGNEW.

Lemma 9. Consider a SEQBIN(N,X,C,B) constraint such that B is monotone. For
each i ∈ [1, . . . , n], the total time complexity to compute c(xi,j) ∩ D(N)
= ∅, j ∈
D(Xi), is O(d). The total time complexity of Phase 4 is O(nd).

Proof. Preprocessing of D(N). We use a preprocessing step to compute cumulatively
sums soddv and sevenv to collect information about the presence of odd and even values
in D(N). Hence, sodd0 = 0, soddj+1 = soddj + (j ∈ D(N) ∧ j is odd), j ∈ [1, . . . , πtop].
Similarly, we compute sevenj .This can be done in O(d). Then the value soddj1 − soddj2−1

shows how many odd values of D(N) are in the interval [j2, j1].
Performing the check. By Lemma 7 we know that c(xi,j) is either zipper or i·zipper.

If c(xi,j) is an even zipper set [a ∼ b] we check if sevenb − sevena−1
= 0. If so the variable-
value pair Xi = j is supported. Similarly, if c(xi,j) is an odd zipper set. Suppose c(xi,j)
is an i·zipper set [a ∼ b− c ∼ d]. Then, we can check separately whether each of three
parts [a ∼ b] ∪ [b − c] ∪ [c ∼ d] has an intersection with D(N) using the cumulative
sum values. Hence, the check can be done in O(1) time. There are O(d) sets c(xi,j),
j ∈ D(Xi). Hence, the total time complexity of one layer is O(d).

Complexity. The graph has O(n) layers. So, the total time complexity is O(nd). ��

4.2 DC Algorithm with Monotone B and Row and Column Convex C

Finally, we show that if C is row and column convex then SEQBINALGNEW runs in
O(nd) time. The only remaining bottleneck is Phase 2.

Lemma 10. Consider a SEQBIN(N,X,C,B) constraint such that B is monotone and
C is row and column convex under that same ordering π that gives monotonicity. The
sets cf (xi,j) and cb(xi,j), j ∈ D(Xi), i ∈ [1, . . . , n], can be computed in time O(d).

The SEQBIN Constraint Revisited 345

Proof. We give an algorithm to compute cf (xi,j). Computing cb(xi,j) is similar. Re-
call that in PATHDP (lines 4–5), cf (xi,j) =

⋃
v∈D(Xi+1),(j,v)∈B (cf (xi+1,v) � c(j, v)).

Since B is monotone, the set of B supports of Xi = j, Supports(xi,j) = {v|(j, v) ∈
B ∧ v ∈ D(Xi+1)}, forms the interval [a, vt], vt ≤ πtop for some a such that vt is that
maximum value in D(Xi+1).

As C is row convex, the interval [a, vt] is partitioned into 3 subintervals [a, vt] =
[a, b]∪ [b, c]∪ [c, vt] such that c(j, v) = 1, v ∈ [a, b]∪ [c, vt] and c(j, v) = 0, v ∈ [b, c]
and we can write cf (xi,j) = c1 ∪ c2 ∪ c3 where c1 =

⋃
v∈[a,b]∩D(Xi+1)

cf (xi+1,v) �
1, c2 =

⋃
v∈[b,c]∩D(Xi+1)

cf (xi+1,v) and c3 =
⋃

v∈[c,d]∩D(Xi+1)
cf (xi+1,v) � 1. We

exploit the fact that c1, c2, c3 are computed over intervals to avoid recomputation of the
indicator values for each c(xi,j), as was necessary in Lemma 8. We do this with an
O(d) time preprocessing step that allows us to then compute each c(xi,j) in O(1). This
reduces the complexity of lines 2–5 from O(n2d2) to O(nd).

The preprocessing step consists in computing cumulative sums over the indicator
values in an interval. For each indicator value Jz

y , z ∈ {l · zip, r · zip, i · val}, we
compute the array cszy(i), which counts the number of values in [1, i] for which the
indicator value is 1. For example, csl·zipy (0) = 0, csl·zipy (v) = csl·zipy (v−1)+J l·zip

y (v),
y ∈ [p, p+2], v ∈ D(Xi+1). To compute the cumulative sums we do a linear scan over
cf (xi+1,v), v ∈ D(Xi+1). Given these sums we can compute whether, for example,
lb(l · zip(xi+1,v)) = y, v ∈ [a′, b′] in constant time by checking whether csl·zipy (b′) −
csl·zipy (a′ − 1) > 0.

The rest of the proof is identical to Lemma 8 (subsection ‘Compute c1’.). It takes
O(1) time to compute c1 given the cumulative sums. We do this for d sets cf (xi,j) and
the preprocessing step takes O(d), so the total time complexity is O(d). ��
Corollary 3. Lemma 10 holds if the negation of C is row and column convex under the
same ordering π that gives monotonicity.

Proof. The only difference from the proof of Lemma 10 is that the interval [a, vt] of
supports of each value j ∈ D(Xi) is partitioned into [a, vt] = [a, b] ∪ [b, c] ∪ [c, vt],
such that c(j, v) = 0, v ∈ [a, b] ∪ [c, vt] and c(j, v) = 1, v ∈ [b, c]. ��
Example 8. Suppose cf (xi+1,v), v ∈ [1, 2, 3] contain the following forward costs:
cf (xi+1,1) = [1 ∼ 5 − 8 ∼ 12], cf (xi+1,2) = [3 ∼ 5 − 6 ∼ 10] and cf (xi+1,3) =
[2 ∼ 6− 8 ∼ 10]. The min value p is 1 and the max value q+2 is 12. First we compute
cumulative sums. The table below shows the non-zero vectors of cumulative sums.

v v v v
Cumulative sums 0 1 2 3 Cumulative sums 0 1 2 3 Cumulative sums 0 1 2 3 Cumulative sums 0 1 2 3

csl·zip1 (v) [0 1 1 1] csr·zip10 (v) [0 0 1 2] cs
i·vallb
5 (v) [0 1 2 2] cs

i·valub
6 (v) [0 0 1 1]

csl·zip2 (v) [0 0 0 1] csr·zip12 (v) [0 1 1 1] cs
i·vallb
6 (v) [0 0 0 1] cs

i·valub
8 (v) [0 1 1 2]

csl·zip3 (v) [0 0 1 1]

Suppose that the values 1, 2 and 3 are supports for cf (xi,1) = [a∗ ∼ b∗ − c∗ ∼ d∗].
Using Lemma 10, we find ∪j=[1,3]i·val(xi+1,j) = [5−8]∪[5−6]∪[6−8] = [5−8]. So
b∗ = 5 and c∗ = 8 Then, we check if there exists lb(l · zip(xi+1,j)) = y, y ∈ {1, 2, 3}
using cumulative sums. For y ∈ {1, 2, 3} we get that csl·zipy (3) − csl·zipy (0) > 0.

346 G. Katsirelos, N. Narodytska, and T. Walsh

So we set a∗ and reset b∗ so that a∗ = b∗ = min(2, 1) = 1. Finally, we check if
there exists ub(r · zip(xi+1,j)) = y, y ∈ {10, 11, 12}. For y ∈ {10, 12} we get that
csr·zipy (3) − csl·zipy (0) > 0. Moreover, the value q + 1 = 11 does not occur among
ub(r · zip(xi+1,j)). Hence, we set d∗ = 12. This gives cf (xi,1) = [1− 8 ∼ 12] ��
Corollary 4. The filtering algorithm SEQBINALGNEW enforces domain consistency
on CHANGE and SMOOTH in O(nd) time.

Proof. CHANGE is SEQBIN(N,X,C ∈ {=,
=, <,≤, >,≥}, TRUE). This satisfies
Lemma 10 as {=, <,≤, >,≥} are row/column convex as is the negation of {
=}.
SMOOTH is SEQBIN(N,X,C is {|Xi−Xi+1| > cst}, TRUE), cst ∈ N , is the negation
of row/column convex constraint {|Xi −Xi+1| ≤ cst}. ��
Corollary 5. The filtering algorithm SEQBINALGNEW enforces domain consistency
on INCREASINGNVALUE in O(nd) time.

Proof. INCREASINGNVALUE(X,N) is SEQBIN(X,N,≤,=) [1]. This version of
the SEQBIN constraint is counting-continuous and therefore c(xi,j) is an interval.
Hence, all costs cf , cb are intervals. Moreover, = is row and column convex, so
SEQBINALGNEW reduces to SEQBINALG and enforces GAC in O(nd). ��
Finally, we note that we can slightly generalize SEQBIN so that it does not require the
same B and C for every pair of variables as the proof of Theorem 1 does not rely on
the property that B and C are the same for each pair of consecutive variables.

5 Conclusions

The SEQBIN meta-constraint subsumes a number of important global constraints like
CHANGE, SMOOTH and INCREASINGNVALUE. We have shown that the filtering al-
gorithm for SEQBIN proposed in [1] has two drawbacks even under strong restric-
tions: it does not detect bounds disentailment and it is not idempotent. We identified
the cause for these problems, and proposed a new propagator that overcomes both
issues. Our algorithm is based on a connection to the problem of finding a path of
a given cost in a restricted n-partite graph. Our propagator enforces domain consis-
tency in O(nd2) and, for special cases of SEQBIN that include CHANGE, SMOOTH,
and INCREASINGNVALUE, in O(nd) time.

References

1. Petit, T., Beldiceanu, N., Lorca, X.: A generalized arc-consistency algorithm for a class of
counting constraints. In: Proceedings of the 22nd International Joint Conference on Artificial
Intelligence (IJCAI 2011), pp. 643–648 (2011)

2. Cosytec: CHIP Reference manual (1997)
3. Beldiceanu, N., Carlsson, M., Rampon, J.X.: Global constraint catalog. Technical report

2005-08, Swedish Institute of Computer Science (2010)
4. Beldiceanu, N., Hermenier, F., Lorca, X., Petit, T.: The Increasing Nvalue Constraint. In:

Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 25–39. Springer,
Heidelberg (2010)

The SEQBIN Constraint Revisited 347

5. Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: Slide: A useful special case
of the cardpath constraint. In: Proceedings of the 18th European Conference on Artificial
Intelligence, pp. 475–479 (2008)

6. Dechter, R., van Beek, P.: Local and Global Relational Consistency. In: Montanari, U., Rossi,
F. (eds.) CP 1995. LNCS, vol. 976, pp. 240–257. Springer, Heidelberg (1995)

7. Pesant, G.: A Regular Language Membership Constraint for Finite Sequences of Variables.
In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer, Heidelberg (2004)

8. Beldiceanu, N., Carlsson, M., Petit, T.: Deriving Filtering Algorithms from Constraint
Checkers. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 107–122. Springer, Hei-
delberg (2004)

9. Demassey, S., Pesant, G., Rousseau, L.M.: A cost-regular based hybrid column generation
approach. Constraints 11(4), 315–333 (2006)

10. Petit, T., Beldiceanu, N., Lorca, X.: A generalized arc-consistency algorithm for a class of
counting constraints: Revised edition that incorporates one correction. CoRR abs/1110.4719
(2011)

11. Katsirelos, G., Narodytska, N., Walsh, T.: The SeqBin Constraint Revisited (2012), Available
from CoRR http://arxiv.org/abs/1207.1811

http://arxiv.org/abs/1207.1811

	The SeqBin Constraint Revisited
	Introduction
	Background
	The SeqBin Constraint
	A Graph Representation of SeqBin
	Revisiting SeqBin
	Cost Structure
	Partitioning of Layers
	Closeness of Costs
	Total Cost

	Domain Consistency Algorithm
	Domain Consistency Algorithm in O(nd2) with Monotone B
	DC Algorithm with Monotone B and Row and Column Convex C

	Conclusions

