An Optimal Filtering Algorithm for Table Constraints

Jean-Baptiste Mairy', Pascal Van Hentenryck?, and Yves Deville!

1 ICTEAM, Université catholique de Louvain, Belgium
{Jean-Baptiste.Mairy, Yves.Deville}@uclouvain.be
2 Optimization Research Group, NICTA, University of Melbourne, Australia
pvh@nicta.com.au

Abstract. Filtering algorithms for table constraints are constraint-based, which
means that the propagation queue only contains information on the constraints
that must be reconsidered. This paper proposes four efficient value-based algo-
rithms for table constraints, meaning that the propagation queue also contains in-
formation on the removed values. One of these algorithms (AC5TC-Tr) is proved
to have an optimal time complexity of O(r.t + r.d) per table constraint. Exper-
imental results show that, on structured instances, all our algorithms are two or
three times faster than the state of the art STR2+ and MDD¢ algorithms.

1 Introduction

Domain-consistency algorithms are usually classified as constraint-based (i.e., the prop-
agation queue only contains information on the constraints that must be reconsidered)
or value-based (i.e., removed values are also stored in the propagation queue). For ta-
ble constraints, which have been the focus of much research in recent years, all exist-
ing algorithms (except in [14]) are constraint-based. This paper proposes four original
value-based algorithms for table constraints, which are all instances of the AC5 generic
algorithm. The proposed propagators maintain, for every value of the variables, the in-
dex of its first current support in the table. They also use, for each variable of a tuple,
the index of the next tuple sharing the same value for this variable. The algorithms
differ in their use of information on the validity of the tuples. Three of the proposed
algorithms have a time complexity of O(r2 - t + r - d) per table constraint and one of
them (AC5TC-Tr) has the optimal time complexity of O(r - t + r - d), where r is the
arity of the table, d the size of the largest domain and ¢ the number of tuples in the table.
One of the proposed algorithms, AC5TC-Recomp, is the (unpublished) propagator of
the Comet system.

Experimental results show that, on structured instances, our algorithms improve upon
the state-of-the-art STR2+ [11] and MDD*® [3]: The speedup is between 1.95 and 3.66
over STR2+ and between 1.83 and 4.57 over MDD . Our (theoretically) optimal algo-
rithm is not always the fastest in practice. Interestingly, on purely random tables, our
algorithms do not compete with STR2+ and MDD¢. Since most real problems are struc-
tured, we expect our algorithms to be an interesting contribution to the field. The rest
of this paper is organized as follows. Section 2 presents background information and
related work. Section 3 describes the first two table-constraint propagators. Section 4
presents our optimal propagator, while Section 5 proposes an efficient variant of our
first algorithms. Section 6 describes the experimental results.

2 Background

A CSP (X, D(X),C) is composed of a set of n variables X = {x1,...,z,}, a set of
domains D(X) = {D(x1),...,D(z,)} where D(z) is the set of possible values for
variable x, and a set of constraints C = {c1,...,c.}, with Vars(¢;) C X (1 <i<e).
We let d = maxi<i<n(#D(x;)), and D(X)4, =, be the set of tuples v in D(X) with
v; = a.GivenY = {x1,..., 2} C X, the set of tuples in D(z1) X ... x D(zy) is
denoted by D(X)[Y] or simply D(Y"). A support in a constraint ¢ for a variable value
pair (x,a) is a tuple v € D(Vars(c)) such that ¢(v) and v[z] = a. The following
(Inconsistent and Consistent) sets are useful for specifying domain consistency and
propagation methods. Let ¢ be a constraint of a CSP (X, D(X), C) with y € Vars(c),
and B(X) be some domain.

Inc(c, B(X))={(z,a)| v € Vars(c) Na € D(x) AN¥v € B(Vars(c))z=q : 7c(v)}
Cons(c,y,b) ={(z,a)|lz € Vars(c) N a € D(x) ANIv:v[z] =aAv[y|=bAc(v)}
Inc(c) =Inc(e, D(X))

A constraint ¢ in a CSP (X, D(X), C) is domain-consistent iff Inc(c) = (. A CSP
(X, D(X), C) is domain-consistent iff all its constraints are domain-consistent.

Table Constraints. Given a set of tuples T' of arity r, a table constraint ¢ over T holds
if (x1,...,2,) € T. The size t of a table constraint ¢ is its number of tuples, which is
denoted by c.length. We assume an implicit ordering of the tuples: o..; denotes the i*
element of the table in ¢ and o, ;[] is the value of o, ; for variable . We introduce a
top value T (resp. bottom value L) greater (resp. smaller) than any other value. We also
introduce a universal tuple o, 7, with o 7[z] = * forall z € X and abuse notations in
postulating that Va € D(z), * = a. This implies that, for any table T, 0. T € T'. Given
a table constraint, we say that a tuple o is allowed if it belongs to the table. A tuple o
is valid if all its values belong to the domain of the corresponding variables. To achieve
domain consistency, one must at least check the validity of each tuple and, in the worst
case, remove all the values from the domains. Hence a domain-consistency algorithm
has a complexity 2(r - t 4+ r - d) per table constraint in the worst case. An AC5-like
algorithm with a complexity O(r -t + - d) per table constraint is thus optimal. As usual
for such algorithms, if a domain-consistency algorithm has a time complexity of O(f),
then the time complexity of the aggregate executions of this algorithm along any path
in the search tree is also O(f).

Related Work. A lot of research effort has been spent on table constraints. The existing
propagators can be categorized in 3 classes: index-based, compression-based, and based
on a dynamic table. The index-based approaches use an indexing of the table to speed
up its traversal. Examples of such propagators are GAC3_allowed and other constraint-
based variants (GAC3,.,,,_allowed, GAC2001_allowed) [10,1,12,6]. For each variable
value pair (z, a), the index data structure has an array of the indexes of the tuples with
value a for 2. The space complexity of the data structure is O(r-t). The time complexity
of GAC3_allowed is O(r® - d - t +r - d?) per table constraint. GAC2001_allowed has a
time complexity of O(r2-d-t+1r2 -t) per table constraint. Indexing can also be used in

value-based propagators. In [14], the authors propose a value-based propagator for table
constraints implementing GAC6. It uses a structure which indexes, for each variable
value pair (z, a) and each tuple, the next tuple in the table with value a for x. The space
complexity of the data structure is O(r - d - t). This space usage can be reduced by using
a data structure called hologram [13]. Another index type, proposed in [7], indexes,
for each tuple and variable, the next tuple having a different value for the variable.
Compression-based propagators compress the table in a form that allows a fast traversal.
One of such compressed forms uses a trie for each variable [7]. Another example of
compression-based techniques [3,2] uses a Multi Valued Decision Diagram (MDD) to
represent the table more efficiently. During propagation, the tries or MDD are traversed
using the current domains to perform the pruning. These algorithms are constraint-
based and have a time complexity of O(72 - d - t) per table constraint. Compression and
faster traversal can also be achieved by using compressed tuples, which represent a set
of tuples [8,16]. Propagators based on dynamic tables maintain the table by suppressing
invalid tuples from it. The STR algorithm [18] and its refined version, STR2 [11], are
constraint-based and scan only the previously valid tuples to extract the valid values.
The time complexity of STR2 is O(r? - d? + 72 - d - t) per table constraint. The or-
tool propagator [15] also maintains a dynamic table. It uses a bitset on the tuples of the
table to maintain their validity. One bitset per variable value (x, a) is also used for easy
access of the tuples with value a for variable x. This propagator has a O(r - d - t) time
complexity per table constraint.

The AC5 Algorithm. ACS [19,4] is a generic value-based domain-consistency algo-
rithm. In a value-based approach, information on the removed values is also stored
in the queue for the propagation. Specification 1 describes the main methods of AC5
which uses a queue @ of triplets (¢, z,a) stating that the domain consistency of con-
straint ¢ should be reconsidered because value a has been removed from D(x). When
a value is removed from a domain, the method enqueue puts the necessary informa-
tion on the queue. In the postcondition, @, represents the value of) at call time. The
method post(c,A) is called once when posting the constraint. It computes the incon-
sistent values of the constraint ¢ and initializes specific data structures required for the
propagation of the constraint. As long as (¢, x, a) is in the queue, it is algorithmically
desirable to consider that value « is still in D(z) from the perspective of constraint c.
This is captured by the following definition.

Definition 1. The local view of a domain D(x) wrt a queue @Q for a constraint ¢ is
defined as D(z,Q,c) = D(x) U {a|(c,z,a) € Q}.

For table constraints, a tuple o is Q-valid if all its values belong to D(X, @, c). The
central method of ACS5 is the valRemove method, where the set A\ is the set of values
becoming inconsistent because b is removed from D(y). In this specification, b is a
value that is no longer in D(y) and valRemove computes the values (x, a) no longer
supported in the constraint ¢ because of the removal of b from D(y). Note that values
in the queue are still considered in the potential supports as their removal has not yet
been reflected in this constraint. The minimal pruning A; only deals with variables and
values previously supported by (y, b). However, we give valRemove the possibility
of achieving more pruning (A,), which is useful for table constraints.

enqueue (in X: Variable;in &a: Value; inout Q: Queue)

/I Pre: x € X, a ¢ D(x)

// Post: Q = Qo U {(c, x,a)|c € C,x € Vars(c)}

post (in c: Constraint;out A: Set of Values)

/IPre:ce C

/I Post: A = Inc(c) + initialization of specific data structures

valRemove (in c: Constraint; in y: Variable; in b: Value;
out A: Set of Values)

/IPre:ce C, bé¢ D(y, Q,c)

/I Post: Ay C A C Ay with Ay =Inc(e, D(X, Q,c)) N Cons(c, y, b)

I and A, = Inc(c)

- O © 0O N O g~ WN =

—_ o

Specification 1: The enqueue, post, and valRemove Methods for AC5

3 Efficient Value-Based Algorithms for Table Constraints

Our value-based approaches use a data structure FS memorizing first supports. Intu-
itively FS[x, a] is the index of the first Q-valid support of the variable value pair (z, a).
To speed up the table traversal, our algorithms use a second data structure called next
that links all the elements of the table sharing the same value for a given variable. The
next data structure is semantically equivalent to the index of [12]. More formally, for a
given table constraint ¢, S and next satisfy the following invariant (called FS-invariant)
before dequeuing an element from Q).

Vx € Vars(c) Va € D(z,Q,c) : FS[z,a] =i &
ocilrl=aNi#T ANoe; € D(Vars(c),Q,c) A
Vi <i:og z] =a= 0; & D(Vars(c),Q,c)
Vo € Vars(c) V1 < i < clength : next[z,i| = Min{jli < j A ocj[x] = oci[z]}

The next data structure, illustrated in Figure 1, is static as it does not depend on
the domain of the variables. However, F'S must be trailed during the search. Meth-
ods postTC and valRemoveTC are given in Algorithms 1 and 2. They use the
seekNext SupportTC method (Algorithm 3) which searches the next Q-valid tu-
ple. Abstract method 1sQvValidTC (c, i) tests whether o.; is Q-valid (i.e., o.; €
D(X, @, c)) and can be implemented in many ways. One simple way is to record the Q-
validity of tuples in some data structure, initialized in method init SpecStructTC
and updated in method setQInvalidTC. Method postTC initializes the F'S and
next data structures and returns the set of inconsistent values. Method valRemoveTC
has only to consider the tuples in the next chain starting at F'S[y, b]. When one of these
tuples o ; is the first support of an element a = o ;[x], a new support F'S[z, a] must
be found. If such a support does not exist, then (x, a) belongs to the set AA;. Method
valRemoveTC thus computes the set /A; and maintains the FS-invariant.

Not considering initSpecStructTC, method postTC has a time complexity of
O(rt + rd). After the post TC method, the domain size of x is O(t). We now estab-
lish the complexity of all executions of valRemoveTC for a given table constraint,

1 postTC(in C: Constraint;out A: Set of Values) {

2 | // Pre:c e C, cis atable constraint

3 | // Post: A = Inc(c) + initialization of the next, FS and specific data structures
4 A = 0;

5 initSpecStructTC(C);

6 forall(x in Vars(c), a in D(x)) c.FsS[x,al=T;

7 forall(x in Vars(c), i in 1..c.length) c.next[x,i] = T;
8 forall (i in c.length..1)

9 if (o¢; in D(Vars(c))) {

10 forall (x in Vars(c)) {

11 C.next [X,i] = FS[X,0¢ix]];

12 C.FS[X,0ci[X]] = i;

13 }

14 }

15 else setQInvalidIC(c,/);

16 forall(x in Vars(c),a in D(x))

17 if(c.Fs[x,al==T) A += (x,a);

18 }

Algorithm 1: Method post TC for Table Constraints

assuming this table constraint is one of the constraints of the CSP on which domain
consistency is achieved. Consider first all executions of valRemoveTC without line
13. For a given variable y, these executions follow the different next chains of the vari-
able y. The chains for all values of y have a total number of ¢ elements. The complexity
of lines 9—16 (without line 13) is O(r). Since the table has r variables, the complexity of
all valRemoveTC executions during the fixed point (without line 13) is thus O(r? -),
assuming a O(1) complexity of setQInvalidTC. Consider now all executions of
line 13 in valRemoveTC for a variable x. Since line 13 always increases the value of
FS[x, a] in the next chain of (z,a), we have a global complexity of O(V - t) for the
variable x, where V is the time complexity of 1sQValidTC. All executions of line 13
in valRemoveTC thus take time O(V - r - t). The time complexity of all executions
of valRemoveTC is then O(r? -t + V - r - t). Even with a O(1) the time complexity
of 1sQValidTC, the algorithm is not optimal but it turns out to be more efficient than
state-of-the-art algorithms on different classes of problems. The ACS5 algorithm with
the post TC and valRemoveTC implementation for table constraint is called AC5TC
(ACS for Table Constraints).

Proposition 1. Assuming that initSpecStructTCand setQInvalidTC have a
time complexity of O(r -t +r - d) and O(1) respectively and allow a correct implemen-
tation of 1sQValidTC to have a complexity of O(r), then ACSTC is correct and has
a time complexity of O(r? - t + r - d) per table constraint.

We now present two implementations of ACSTC. They differ in the implementations
of methods 1sQValidTC, setQInvalidTC and initSpecStructTC. AC5STC-
Bool, the first implementation of AC5STC, is shown in Algorithm 4. It uses a data
structure isQValid[i] to record the Q-validity of the element o ;. It satisfies invariant

1 valRemoveTC (in c: Constraint;in y: Variable; in b: Value;
2 out A: Set of Values) {

3 | //Pre:c e C, cis atable constraint and b ¢ D(y, Q, ¢)

4 | /I Post: Ay C A C Ay with Ay =Inc(e, D(X, Q,c)) N Cons(c,y, b)

5 |/ and Az = Inc(c, x)

6 A= 0;

7 i = c.FS[y,bl;

8 while (i!=T) {

9 setQInvalidTC (c,i) ;

10 forall (x in Vars(c): x!=y){

11 a = ogilx];

12 if (Cc.Fs[x,al==i) {

13 C.FS[X,a] = seekNextSupportTC(C,X,i);

14 if (c.Fs[x,al==T s&& a in D(x)) A += (x,a);
15 }

16 }

17 i = c.next[y,il;

18 }

19 }

Algorithm 2: Method valRemoveTC for Table Constraints.

T next
T Yy 2
3 4 31
5 T 44
4 T 57
T5 T
TTT

B WD =

W

Fig. 1: Example of a next data structure of a table T (arrow pointers for variable z only).

isQValidli] < o.; € D(X,Q,c) before dequeuing an element from Q (1 < i <
c.length). The data structure must be trailed as it depends on the domains. The meth-
ods for Q-validity are given in Algorithm 4. As the methods isQvalidTC-Bool
is correct, AC5STC-Bool is correct. The time complexity of 1sQValidTC-Bool and
setQInvalidIC-Bool is O(1) and initSpecStructTC-Bool is O(t). The
time complexity of ACSTC-Bool is then O(r? - t + - d) per table constraint.

ACSTC-Bool must trail the isQValid boolean array. We now propose an implementa-
tion that only trails one integer, building upon an idea in STR and STR2 [18,11]. The
implementation simply keeps invalid elements at the end of the table, with a single
variable size representing the boundary between valid (before position size) and in-
valid elements (after position size). When an element becomes invalid, it is swapped
with the element at position size and size is decremented by one. The size variable
must be trailed but the table does not need to: The valid elements are automatically
restored, albeit at a different position in the table. This is sometimes called seman-
tic backtracking [20]. Instead of swapping tuples, our implementation uses two arrays

function seekNextSupportTC(in C: Constraint; in X: Variable;
in /: Index) : Index {
/I Pre: ¢ € C, cis a table constraint, x € Vars(c), 1 < i < c.length
/I Post: return the first index greater than i which is Q—valid
i = Cc.next[X,i];
while (/!=T) {
if (isQvalidTC(c,i)) return i;
i = c.next[X,i];
}

return T;

- O © 0O N O g~ WN =

—_ o

Algorithm 3: Function seekNext SupportTC for Table Constraints.

initSpecStructTC-Bool (in C: Constraint) {
forall (/i in 1..c.length) c.isQvalidl[i] = true;
}
function isQValidTC-Bool (in C: Constraint;in i: Index) {
// Pre: ¢ € C, cis atable constraintand 1 </ < c.length
// Post: returns o¢; € D(X, Q, c)
return c.isQvalid[i];

0 N O O~ WN =

}

setQInvalidIC-Bool (in €: Constraint;in i: Index) {

/I Pre: ¢ € C, cis a table constraint and 1 < i < c.length
Cc.isQvalid[i] = false;

_ A
N = O ©

}
Algorithm 4: Implementation of the specific methods of AC5TC-Bool

Map and Dyn that give the virtual position of the tuples and the positions of the virtual
tuples in the table. These arrays do not have to be trailed. For a given table constraint c,
the data structures satisfy the following invariants before dequeuing an element from ()
(1 <i < c.length): Mapli]| < size & 0; € D(X,Q,c) N Dyn[Mapli]] =i

The implementations are given in Algorithm 5 and the algorithm is called AC5TC-
CutOff. The time complexity of 1sQvValidTC-CutOff and setQInvalidTC-CutOff
is O(1) and initSpecStructTC-CutOff takes time O(t). The time complexity

of ACSTC-CutOff is thus O(r2 - t + 7 - d).

4 An Optimal Algorithm

In method valRemoveTC, executions of the seekNext SupportTC (line 12 of Al-
gorithm 2) take O(r - t) assuming isQValidTC takes constant time. However, the
method revisits Q-invalid tuples because the next data structure is static. To remedy this
situation, the idea is to make the next data structure dynamic and to always ensure that
the element following a Q-valid element in a next chain is also Q-valid. This avoids un-
necessary Q-validity checks and can be easily implemented using a doubly-linked list.

1 initSpecStructTC-CutOff (in C: Constraint) {

2 forall (i in 1..c.length) {

3 c.Mapl[i] = i;

4 c.Dynlil = i;

5 }

6 c.size = c.length;

7 }

8 | function isQValidTC-CutOff (in €: Constraint; in j: Index;out b: Bool) {
9 | //Pre:c € C, cis atable constraintand 1 < i < c.length

10 | // Post: return (o¢; € D(X, Q,)

11 return (C.Mapl[i] <= C.size);

12 }

13 setQInvalidIC-CutOff (in C€: Constraint; in Jj: Index) {
14 | // Pre: c € C, cis atable constraintand 1 < i < c.length

15 c.Dyn[C.Map[i]] = c¢.Dyn[C.size]l;
16 c.Dyn[cC.size[cCc]] = i;

17 c.Map[c.Dyn[Cc.Map[i]l]]] = ¢.Maplil;
18 C.Map[i] = C.size;

19 C.size——;

20 }

Algorithm 5: Implementation of the specific methods of AC5TC-CutOff

More formally, for a given table constraint c, the data structure satisfies the following
invariant before dequeuing an element from @)

Vo € Vars(c) V1 < i < c.length :
nextTr(z, i) = Min{j|i < j Ao jlz] = oc]x]
A (o € D(X,Q,¢c) = o0.; € D(X,Q,¢))}
predTr|z, nextTr[x,i]] = i

The nextTr and predTr data structures should be trailed as they depend on the current
domains. The algorithm also uses the F'S data structure with its original invariant. No
other data structures are necessary.

Methods post TC—Tr and valRemoveTC—Tr are given in Algorithms 6 and 7. Method
postTC—Tr now initializes predTr as well. Method valRemoveTC-Tr(c,y, b) does
not need to search for a support as the next element in the nextTr chain is necessarily
Q-valid. However, if the first support for (x, a) is before FS[y,b] (it cannot be after
because of the FS invariant), nextTr and predTr must be updated to ensure that the
new invalid tuples are no longer in the next chains. It will thus never be visited twice.
Method valRemoveTC—-Tr computes the set A and maintains the invariants on F'S
and on nextTr / predTr.

Method post TC-Tr has a time complexity of O(r - t + r - d). We establish the com-
plexity of all executions of valRemoveTC-Tr for a given table constraint during
the fixed point algorithm, assuming the presence of other constraints on which domain
consistency is also enforced. We first show that all executions of lines 7 and 21 lead to

1 postTC-Tr (in C: Constraint; out A: Set of Values) {

2 | // Pre:c e C, cis atable constraint

3 | // Post: A = Inc(c) + initialization of the next, pred and FS data structures
4 A = 0;

5 forall(x in Vars(c), a in D(x)) c.FS(x,al=T;

6 forall (x in Vars(c), [in 1..c.length)

7 C.nextTr[x,i] = T; C.predTr[x,i] = 1;

8 forall (/i in c.length..1l: o¢; in D(Vars(c)))

9 forall (x in Vars(c)) {
10 C.nextTr[X,i] = C.FS[X,0¢ix]];
11 if (C.FS[X,04i[X]1'=T) C.predIr[X,FS[X,0cix]] = i;
12 C.FS[X,0¢i[X]] = i;
13 }
14 forall (x in Vars(c),a in D(x))
15 if(c.Fs[x,al==T) A += (x,a);
16 }

Algorithm 6: An optimal post TC—Tr method for Table Constraints
different values of 7 in {1, ..., ¢} (except when ¢ == T). By the FS invariant, we never
have ¢ == T at line 7. For a given value ¢ # T, by the FS invariant, F'S[z,a] == i
or F'S[x,a] < i holds at line 11. If F'S[x,a] == i, F'S[z,a] is incremented and the

tuple ¢ will never be reconsidered by removing a from D(x). If F'S[x,a] < i, the tuple
1 is removed from the nextT'r chain and will never be reconsidered. This holds for all
variables # y. Hence the tuple 7 will never be reconsidered in future executions of
valRemoveTC—Tr. Hence, lines 9-20 are executed O(¢) times. Since the complexity
of lines 9-20 is O(r), the aggregate complexity of all executions of valRemoveTC-Tr
is O(r - t). The AC5 algorithm with the post TC-Tr and valRemoveTC—Tr imple-
mentation for table constraint is called AC5TC-Tr (AC5 for Table Constraints with
Trailing).

Proposition 2. AC5TC-Tr is correct and has an optimal time complexity of O(r-t+r-d)
per table constraint.

S A Variation Based on Recomputation

We now propose a variation of the AC5TC algorithm, called AC5TC-Recomp, that does
not require any data structure to maintain the Q-validity of tuples. ACSTC-Recomp is
the (unpublished) table constraint algorithm of the Comet system. It replaces the Q-
validity test by a function isvValidTC that tests the validity of the tuples. The straight-
forward implementation of the i svValid function is given in Algorithm 8. Method
initSpecStructTCand setQInvalidTC are just empty. Since AC5STC-Recomp
tests validity instead of Q-validity, method valRemoveTC must be slightly modified;
the test a € D(z) should be moved from line 14 to line 10 which becomes?
forall(z in Vars(c): z!=y && oci[z] in D(x)) {

3 This modification also maintains the correctness of our generic ACSTC algorithm but requires
a more sophisticated FS-invariant. With this change, our earlier algorithms would have the
same theoretical complexity but are less efficient in practice.

1 valRemoveTC-Tr (in c: Constraint; in y: Variable; in b: Value;
2 out A: Set of Values) {

3 | //Pre:c e C, cis atable constraint and b ¢ D(y, Q, ¢)

4 | /I Post: Ay C A C Ay with Ay =Inc(e, D(X, Q,c)) N Cons(c,y, b)

5 |/ and A, = Inc(c)

6 A= 0;

7 i = c.Fs[y,bl;

8 while (i!'=T) {

9 forall (x in Vars(c): Xx!=y) {

10 a = ocilx];

11 if(c.Fs(x,al == i) {

12 C.FS[x,a8] = C.nextTr[x,i];

13 if(c.FsS[x,al==T &«& a in D(x)) A += (x,a);

14 } else { //c.FS[x,a]l<i

15 if (c.predTr(x,i]!'=1l)

16 C.nextTr[X,C.predTr[X,i],c] = C.nextTr[X,i,C];
17 if (C.nextTr[x,i]'=T)

18 C.predTr([X,C.nextTr[X,i],c] = C.predTr[X,i,Cl;
19 }

20 }

21 i = c.next[y,il;

22 }

23 }

Algorithm 7: An Optimal valRemoveTC-Tr method for Table Constraints

This modified version of valRemoveTC exploits the flexibility of its specification by
computing a set A between /A\; and Ay. AC5TC-Recomp has a runtime complexity of
is O(r? - t + r - d) and per table constraint and improves state-of-the-art algorithms on
some classes of problems.

6 Experimental Results

All proposed algorithms have been implemented on top of Comet, including AC5TC-
Recomp. For comparison, classical constraint-based algorithms have also been imple-
mented on top of Comet. The GAC3-Allowed algorithm has been chosen because it
is the standard GAC3 algorithm for the table constraints [10]. The two state-of-the-art
methods were also reimplemented: The STR2+ algorithm from [11] and the MDD®
algorithm from [3]. They are respectively called STR and MDD in the experimental
results. All experiments were conducted on an Intel Xeon 2.53GHz using Comet 2.1.1.
The algorithms are compared within a MAC search. This section presents results on
fully random instances, on the geometric problem, on Langford problem, and on the
Traveling Salesman Problem.

For each instance set, the experimental results report the mean execution times in sec-
onds (fotTime), the mean “posting” times in seconds (postT), the number of propagator
calls (nProp), the percentage to the best with respect to execution time (%best), the
mean of percentage to the best algorithm in terms of execution time (u%best), the num-

10

function isValid(in C: Constraints;in Jj: Index) : Bool {
/I Pre: ¢ € C, cis atable constraintand 1 < i < c.length
/I Post: return (o¢,; € D(X))
forall (x in Vars(c))
if (!ogi[x] in D(x)) return false;
return true;

N o g~ W NN =

Algorithm 8: The 1 sValid Function of AC5TC-Recomp.

ber of validity checks (valChk), Q-validity checks (QvalChk), and the number of point-
ers followed (pFollow). The difference between the %best and (1 %best is the following:
for %best, the execution times are averaged before computing the quantity. There is thus
one best algorithm. For 1 %best, the percentages are computed instance by instance and
aggregated with a geometrical mean at the end. This measure takes into account that
different instances may have different best algorithms. The u%best measure uses a ge-
ometrical mean as suggested in [5]. The last reported quantity, pFollow, has different
meanings for different algorithms. For GAC3-Allowed, it corresponds to the number of
times the tuples are accessed. For the AC5TC algorithms, it is defined as the number
of times the next or nextTr structures are used to traverse the table. For MDD, it corre-
sponds to the number of edges followed in the MDD structure. Although referring to
different quantities, pFollow is useful for comparing the behavior of the propagators as
it reflects the usage of their specific structures.

Random Instances These instances contain random table constraints of random scope
generated by the RD-model [22]. Parameters are chosen to generate instances close to
the phase transition, using Theorems 1 and 2 from [22]. The instances have 10 variables,
a uniform domain size of 10, and 15 table constraints of arity 5. The expected number
of tuples in each table is thus 20000. 10 instances were generated with those settings.
The search strategy is the dom heuristic with lexicographic value ordering.

propagator totTime postT nProp %best p%best valChk QvalChk pFollow
GAC3-Allowed 3000 1.5 614k 2725 2660 523M 0 523 M
AC5TC-Bool 4 636 1.0 28M 4211 4070 19k 257TM 481 M
ACSTC-CutOff 3991 0.8 28M 3626 3538 19k 257TM 481 M
ACSTC-Tr 994 52 28M 903 930 19k 0 16 M
ACS5TC-Recomp 3874 0.8 24M 3519 3357 98M 0 305 M
STR2 483 0.7 614k 439 455 22M 0 0
MDD 110 124 614k 100 100 0 0 12M

Table 1: Results of the propagators on fully random instance set (times in seconds)

Table 1 summarizes the results, which remain similar for other parameter settings.
The standard STR2 and MDD algorithms outperform our value-based propagators. Ob-
serve the large number of validity checks of ACSTC-Recomp and Q-validity checks of

11

ACS5TC-Bool and ACSTC-CutOff, as well as the number of times they follow a pointer.
ACSTC-Tr, the best value-based propagator, follows far less pointers than our other
propagators because it does not follow pointers to a previously inspected tuple. Due
to the lack of structure of the constraint set, the first three ACSTC propagators check
multiple times the same tuples. Also, those random instances have large tables, which
makes the cost of the trailable nextTr structure in AC5TC-Tr too high.

The Geometric Problem Instances of the geometric problem are random instances gen-
erated following a specific structure proposed by Rick Wallace [21]. Each variable is
randomly placed in the unit square. A fixed distance (less than 1/2) is randomly cho-
sen. For each pair of variables (x, y), if the distance between their associated points is
less than or equal to this fixed distance, the arc (x, y) is added to the constraint graph.
Constraint relations are then created like in fully random CSP instances. We use the
instance set from [9] which counts 100 instances. The search strategy uses the heuristic
dom/deg with lexicographic value ordering. A timeout of 5 minutes has been used. The
quantity %solv gives the percentage of solved instances.

propagator totTime postT nProp %best p%best %solv valChk QvalChk pFollow
GAC3-Allowed 10.1 0.3 288k 128 138 8 28k 0 28 k
ACS5TC-Bool 12.5 0.3 867k 158 159 84 300 25k 50 k
ACS5TC-CutOff 10.8 0.2 867k 137 131 86 300 25k 50k
ACSTC-Tr 9.6 0.8 867k 122 200 87 300 0 13k
AC5TC-Recomp 7.9 0.2 831k 100 100 87 6k 0 29k
STR2 24.9 03 288k 315 316 82 26k 0 0
MDD 14.7 1.6 288k 186 337 86 0 0 65k

Table 2: Results of the propagators on the geom instances (times in seconds)

Table 2 presents the experimental results. The quantities are computed on instances for
which none of the techniques timeout. All our propagators outperform the state-of-the-
art STR and MDD. AC5TC-Tr and AC5STC-Recomp are also better than the classical
AC3-Allowed. AC5TC-Recomp is the fastest on these instances. which are relatively
easy and contain only binary tables. Checking the validity (not costly for binary tables)
allows AC5TC-Recomp to follow less pointers than AC5TC-Bool and AC5TC-CutOff
by performing longer jumps in the table. The cost of the data structures in AC5TC-Tr
is too expensive and outweights its benefits. The large difference between %best and
1%best for ACSTC-Tr is due to the easiest instances, where the propagator is even more
disadvantaged due to the cost of its data structures. AC5TC-Recomp also performs less
validity checks than STR2 and the number of pointers followed by our propagators are
less than those of MDD.

Langford Number Problem Langford number problem L(k, n) amounts to arranging k

sets of numbers 1 to n into a sequence of numbers, so that each occurrence of a number
m is m numbers apart from its previous occurrence. Those problems are modeled with

12

binary (positive) table constraints only. The search strategy used is dom/deg with lexi-
cographic value ordering. Problems where all the propagators take more than 5 minutes
are removed from the sets. For k = 2, 12 instances are used: n € {5..12, 15,16, 19, 20},
for k = 3, 8 instances: n € {3..10} and for k = 4, 9 instances: n € {3..11}. The results
for k of 2, 3 and 4 can respectively be found in Table 3.

propagator totTime postT nProp %best u%best valChk QvalChk pFollow
k=2
GAC3-Allowed 16.3 0.6 1M 173 172 166k 0 166 k
ACS5TC-Bool 18.6 0.8 2M 197 182 576 178k 316k
ACS5TC-CutOff 16.8 0.5 2M 178 147 576 178k 316 k
ACSTC-Tr 94 2.5 2M 100 260 576 0 42 k
AC5TC-Recomp 10.1 0.4 2M 107 106 27k 0 154 k
STR2 26.7 1.3 1M 283 342 46 k 0 0
MDD 26.6 3.7 1M 282 517 0 0 307 k
k=3
GAC3-Allowed 2.5 0.3 75k 162 148 12k 0 12k
ACS5TC-Bool 3.5 03 242k 227 184 380 10k 21k
ACSTC-CutOff 2.5 02 242k 163 147 380 10k 21k
ACS5STC-Tr 2.2 09 242k 140 198 380 0 4k
ACS5TC-Recomp 1.5 0.2 239k 100 107 2k 0 12k
STR2 3.7 0.6 75k 240 243 5k 0 0
MDD 3.9 1.5 75k 249 360 0 0 22k
k=4
GAC3-Allowed 234 1.3 419k 137 155 19k 0 19k
AC5TC-Bool 42.5 1.6 1.6M 250 215 677 20k 36k
ACS5TC-CutOff 29.8 1.0 1.6M 175 157 677 20k 36k
ACSTC-Tr 21.8 50 1.6M 128 254 677 0 5k
ACSTC-Recomp 17.0 0.8 1.58M 100 100 3k 0 18k
STR2 33.2 33 419k 195 277 10k 0 0
MDD 31.2 73 419k 183 392 0 0 35k

Table 3: Experimental Results on Langford instances (times in seconds)

Except for AC5TC-Bool on the £ = 4 set of instances, all our propagators improve the
state-of-the-art STR and MDD. AC5TC-Tr and AC5STC-Recomp are also better than
the classical AC3-Allowed. ACSTC-Tr is the fastest propagator for k = 2 and AC5TC-
Recomp is the fastest on the other instance sets. Observe that the number of followed
pointers is globally higher for the first instance set (k = 2), due to inclusion of instances

13

with larger n. The number of calls to the propagators during the search is also higher
for the & = 2 set. This suggests that ACSTC-Tr requires harder instances (found in the
k = 2 set) for amortizing the cost of its data structures. For the last two sets, ACSTC-Tr
is the second fastest propagator in terms of mean solving time. AC5TC-Tr is closer to
ACS5TC-Recomp on the £ = 4 instance set. The £ = 4 instance set includes an instance
for which n = 11 (for £ = 3: n < 10). Here again, the large difference between %best
and p%best for ACSTC-Tr can be attributed to the easiest instances.

Traveling Salesman Problems We conclude with results of the propagators on the Trav-
eling Salesman Problem (TSP) constraint satisfaction instances. We used the set of in-
stances tsp-20 and tsp-25 [9]. Those structured instances are composed of very different
table constraints. Their arity varies between 2 and 3 and they may count up to 20 000
tuples but also as few as 20. The variables also have quite different domains: Some have
small domains, while others feature domains containing up to 1000 values. There are
61 variables and 230 table constraints in zsp-20 instances. The zsp-25 instances count
76 variables and 350 constraints. The negative table constraints found in those instances
have been transformed into positive ones. The search strategy used here is dom/deg with
lexicographic value ordering.

propagator totTime postT nProp %best p%best valChk QvalChk pFollow
GAC3-Allowed 797 1.7 67M 733 587 11M 0 11M
ACS5TC-Bool 186 0.8 21.2M 171 187 2k 1M 2M
ACSTC-CutOff 153 0.5 21.2M 141 144 2k 1M 2M
ACSTC-Tr 120 33 212M 111 164 2k 0 466 k
ACS5TC-Recomp 109 03 209M 100 104 391k 0 1M
STR2 398 14 67M 366 353 803k 0 0
MDD 456 190 67M 419 769 0 0 ™

Table 4: Results of the propagators for instance set TSP-20 (times in seconds)

propagator totTime postT nProp %best p%best valChk QvalChk pFollow
GAC3-Allowed 6 607 24 T73M 606 509 23M 0 23 M
ACS5TC-Bool 2 625 1.3 198M 241 233 2k 11M 19M
ACS5TC-CutOff 1937 0.7 198 M 178 175 2k 11M 19M
ACSTC-Tr 1089 52 198 M 100 100 2k 0 3iM
AC5TC-Recomp 1315 0.5 196 M 121 120 3M 0 10M
STR2 3740 29 T73M 343 333 5M 0 0
MDD 4974 252 T3M 457 425 0 0 28 M

Table 5: Results of the propagators for instance set TSP-25 (times in seconds)

Tables 4 and 5 present the results. We first observe that STR2 and MDD perform worse
than our propagators. ACSTC-Recomp is the winning strategy on zsp-20 instances while

14

ACSTC-Tr is faster on the tsp-25 ones. The latter instances are more difficult. We can
also see that checking the validity instead of the Q-validity allows AC5TC-Recomp to
follow less pointers and perform fewer validity checks than the Q-validity checks of
ACS5TC-Bool and AC5TC-CutOff. Moreover, on these instances, the small arity makes
the validity check (O(r)) cheap compared to Q-validity. Again, on those instances, the
light-weight trailable structures of ACSTC-CutOff make it faster than AC5STC-Bool.

When we merge binary tables in tsp-20 instances into higher arity tables, we observed
that AC5TC-Tr, our optimal algorithm, solves more instances than STR2, and with a
smaller total execution time on the instances solved by both solvers. MDD does not
compete on these instances. On simple instances, STR2 is more efficient than AC5STC-
Recomp which is also more efficient than ACSTC-Tr. However, on hard instances, the
optimality of AC5TC-Tr pays off and it becomes the best algorithm.

Summary We conclude that, for the fully random instances, the lack of structure in the
tables prevents our propagators from competing with state-of-the-art algorithms. How-
ever, for structured instances, our propagators are faster. Globally, AC5TC-Bool and
ACSTC-CutOff are slower than AC5TC-Recomp since they are testing Q-validity, not
validity, and hence they perform smaller jumps in the table. Moreover, maintaining their
data structures is costly. Only the optimal ACSTC-Tr outperforms AC5TC-Recomp on
difficult instances while using Q-validity. However, on easier instances, the cost of its
trailable nextTr data-structure makes it slower than AC5TC-Recomp.

7 Conclusion

This paper proposed four different value-based, domain-consistency algorithms for ta-
ble constraints, all using the AC5 generic framework. The new propagators record, for
every value of the variables, the index of its first current support in the table. They
also use, for each variable of a tuple, the index of the next tuple sharing the same
value for this variable. They differ in their use of information on the validity of the tu-
ples. ACSTC-Tr and AC5TC-Recomp are the two best value-based algorithms: AC5TC-
Recomp does not maintain any validity information and recomputes it on demand and
ACS5TC-Tr embeds the Q-validity information into the indexing structure, avoiding un-
necessary visits of invalid tuples and leading to an optimal algorithm with a time com-
plexity of O(r-t+r-d) per table constraint. Our other algorithms have a time complexity
of O(r2-t+7-d) per table constraint. Experimental results show that on, purely random
tables, our algorithms do not compete with the state-of-the-art STR2+ and MDD¢ algo-
rithms. On structured instances, our propagators outperform STR2+ and MDD¢, with
a speed up varying between 1.83 and 4.57. As future work, it would be interesting to
extend AC5TC to handle negative tables through its disallowed tuples and to integrate
the compressed representation of tuples introduced in [17].

Acknowledgments The authors want to thank the anonymous reviewers for their helpful
comments. The first author is supported as a Research Assistant by the Belgian FNRS
(National Fund for Scientific Research). This research is also partially supported by the
Interuniversity Attraction Poles Program (Belgian State, Belgian Science Policy) and
the FRFC project 2.4504.10 of the Belgian FNRS.

15

References

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

C. Bessiere and J.-C. Régin. Arc consistency for general constraint networks: Preliminary
results. In IJCAI (1), pages 398-404, 1997.

. M. Carlsson. Filtering for the case constraint. Talk given at the advanced school on global

constraints, 2006.

. K. Cheng and R. Yap. An mdd-based generalized arc consistency algorithm for positive and

negative table constraints and some global constraints. Constraints, 15:265-304, 2010.

. Y. Deville and P. Van Hentenryck. Domain consistency with forbidden values. In D. Cohen,

editor, Principles and Practice of Constraint Programming - CP 2010 - 16th International
Conference, CP 2010, St. Andrews, Scotland, UK, September 6-10, 2010. Proceedings, vol-
ume 6308 of Lecture Notes in Computer Science, pages 191-205. Springer, 2010.

. P.J. Fleming and J. J. Wallace. How not to lie with statistics: the correct way to summarize

benchmark results. Commun. ACM, 29(3):218-221, Mar. 1986.

. L. P. Gent, C. Jefferson, and I. Miguel. Watched literals for constraint propagation in minion.

In Proceedings of CP2006, pages 182—197. Springer-Verlag, 2006.

. L P. Gent, C. Jefferson, 1. Miguel, and P. Nightingale. Data structures for generalised arc

consistency for extensional constraints. In Proceedings of the Twenty Second Conference on
Artificial Intelligence, pages 191-197. AAAI Press, 2007.

. G. Katsirelos and T. Walsh. A compression algorithm for large arity extensional constraints.

In Proceedings of the 13th international conference on Principles and practice of constraint
programming, pages 379-393. Springer-Verlag, 2007.

. C. Lecoutre. Instances of the Constraint Solver Competition. http://www.cril.fr/~lecoutre/.
10.
11.

C. Lecoutre. Constraint Networks: Techniques and Algorithms. ISTE/Wiley, 2009.

C. Lecoutre. Str2: optimized simple tabular reduction for table constraints. Constraints,
16:341-371, 2011.

C. Lecoutre and R. Szymanek. Generalized arc consistency for positive table constraints. In
Proceedings of CP 06, pages 284-298, 2006.

O. Lhomme. Arc-consistency filtering algorithms for logical combinations of constraints. In
CPAIOR, pages 209-224, 2004.

O. Lhomme and J.-C. Régin. A fast arc consistency algorithm for n-ary constraints. In
Proceedings of the Nationnal Conference on Artificial Intelligence, pages 405-410. AAAI
Press, 2005.

L. Perron and V. Furnon. or-tools. http:// code.google.com/p/or-tools.

J.-C. Régin. Improving the expressiveness of table constraints. In Proceedings of workshop
ModRef 11 at CP 11, 2011.

J.-C. Régin. Improving the expressiveness of table constraints. In In proceedings of Mod-
Ref’11 Workshop held with CP’11, 2011.

J. R. Ullmann. Partition search for non-binary constraint satisfaction. Inf. Sci.,
177(18):3639-3678, 2007.

P. Van Hentenryck, Y. Deville, and C.-M. Teng. A generic arc-consistency algorithm and its
specializations. Artif. Intell., 57(2-3):291-321, 1992.

P. Van Hentenryck and V. Ramachandran. Backtracking without Trailing in CLP(R;;,,). ACM
Transactions on Programming Languages and Systems, 17(4):635-671, July 1995.

R. Wallace. Factor analytic studies of csp heuristics. In P. van Beek, editor, Principles
and Practice of Constraint Programming - CP 2005, volume 3709, pages 712-726. Springer
Berlin / Heidelberg, 2005.

K. Xu, F. Boussemart, F. Hemery, and C. Lecoutre. Random constraint satisfaction: Easy
generation of hard (satisfiable) instances. Artif. Intell., 171(8-9):514-534, 2007.

16

