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Abstract. Many Constraint Programming models use integer cost variables ag-
gregated in an objective criterion. In this context, some constraints involving ex-
clusively cost variables are often imposed. Such constraints are complementary
to the objective function. They characterize the solutions which are acceptable in
practice. This paper deals with the case where the set of costs is a sequence, in
which high values should be concentrated in a few number of areas. Representing
such a property through a search heuristic may be complex and overall not precise
enough. To solve this issue, we introduce a new constraint, FOCUS(X, yc , len ,
k), where X is a sequence of n integer variables, yc an integer variable, and
len and k are two integers. To satisfy FOCUS, the minimum number of distinct
sub-sequences of consecutive variables in X , of length at most len and that in-
volve exclusively values strictly greater than k, should be less than or equal to yc .
We present two examples of problems involving FOCUS. We propose a complete
filtering algorithm in O(n) time complexity.

1 Introduction

Encoding optimization problems using Constraint Programming (CP) often requires to
define cost variables, which are aggregated in an objective criterion. To be comparable,
those variables have generally a totally ordered domain. They can be represented by
integer variables. In this context, some constraints on cost variables are complementary
to the objective function. They characterize the solutions which are acceptable in prac-
tice. For instance, to obtain balanced solutions several approaches have been proposed:
Balancing constraints based on statistics [6, 11], as well as classical or dedicated cardi-
nality constraints when the set of costs is a sequence [9, 8]. Some applications of these
techniques are presented in [12, 7]. Representing such constraints, as well as solving
efficiently the related problems, form an important issue because real-life problems are
rarely “pure”. In this context, CP is a well-suited technique. CP is generally robust to
the addition of constraints, providing that they come up with filtering algorithms which
impact significantly the search process.

Conversely to balancing constraints, in some problems involving a sequence of cost
variables, the user wishes to minimize the number of sub-sequences of consecutive
variables where high cost values occur.

Example 1. We consider a problem where some activities have to be scheduled. Each
activity consumes an amount of resource. The total amount of consumption at a given
time is limited by the capacity of the machine that produces the resource. If the time



window where activities have to be scheduled is fixed, in some cases not all the activities
can be scheduled, because there is not enough quantity of resource to perform all the
activities on time. Assume that, in this case, we rent a second machine to solve the
problem. In practice, it is often less costly to rent such a machine within a package, that
is, during consecutive periods of time. If you rent the machine during three consecutive
days, the price will be lower than the price of three rentals of one day in three different
weeks. Moreover, such packages are generally limited, e.g., the maximum duration of
one rental is one week. If you exceed one week then you need to sign two separate
contracts. Thus, to satisfy the end-user, a solution should both limit and concentrate the
exceeds of resource consumption, given a maximum rental duration. ~

In Example 1, a solution minimizing the exceeds with many short and disjoint rental
periods will be more expensive for the end-user than a non-minimum solution where
rentals are focused on a small number of periods. Such a constraint cannot be easily
simulated with a search strategy, a fortiori when the duration of packages is limited.
Furthermore, to solve instances, search heuristics are generally guided by the under-
lying problem (in Example 1, the cumulative problem). Our contribution is a generic,
simple and effective way to solve this issue. It comes in two parts.

1. A new constraint, FOCUS(X, yc , len, k), where X is a sequence of integer vari-
ables, yc an integer variable, and len and k two integer values. yc limits the number
of distinct sub-sequences in X , each of length at most len , involving exclusively
values strictly greater than k. More precisely, the minimum possible number of
such sub-sequences should be less than or equal to yc , while any variable in X
taking a value v > k belongs to exactly one sub-sequence.

2. A O(n) Generalized Arc-Consistency (GAC) filtering algorithm for FOCUS.

Section 2 defines the FOCUS constraint. Section 3 presents two examples of use.
In section 4, we present the O(n) complete filtering algorithm for FOCUS. Section 5
introduces some variations of FOCUS, namely the case where len is a variable and the
case where the constraint on the variable yc is more restrictive. We discuss the related
work and propose an automaton-based reformulation of FOCUS. Our experiments, in
Section 7, show the importance of providing FOCUS with a complete filtering algorithm.

2 The FOCUS constraint

Given a sequence of integer variablesX = 〈x0, x1, . . . , xn−1〉 of length |X| = n, an in-
stantiation ofX is a valid assignment, i.e., a sequence of values I[X] = 〈v0, v1, . . . vn−1〉
such that ∀j ∈ {0, 1, . . . , n− 1}, vj belongs to D(xj), the domain of xj .

Definition 1 (FOCUS). Given X = 〈x0, x1, . . . , xn−1〉, let yc be an integer variable
such that 0 ≤ yc ≤ |X|, len be an integer such that 1 ≤ len ≤ |X|, and k ≥ 0 be
an integer. Given an instantiation I[X] = 〈v0, v1, . . . vn−1〉, and a value vc assigned
to yc , FOCUS(I[X], vc, len, k) is satisfied if and only if there exists a set S of disjoint
sequences of consecutive variables in X such that three conditions are all satisfied:

1. Number of sequences: |S| ≤ vc



2. One to one mapping of all values strictly greater than k:
∀j ∈ {0, 1, . . . , n− 1}, vj > k ⇔ ∃si ∈ S such that xj ∈ si

3. Length of a sequence in S: ∀si ∈ S, 1 ≤ |si| ≤ len .

If len = |X|, yc limits the number of disjoint maximum length sequences where all
the variables are assigned with a value strictly greater than k. Otherwise, len limits the
length of the sequences counted by yc . Example 2 illustrates the two cases.

Example 2. Let I[X] = 〈1, 3, 1, 0, 1, 0〉. FOCUS(I[X], 〈2〉, 6, 0) is satisfied since we
can have 2 disjoint sequences of length ≤ 6 of consecutive variables with a value > 0,
i.e., 〈x0, x1, x2〉, and 〈x4〉. FOCUS(I[X], 〈2〉, 2, 0) is violated since it is not possible to
include all the strictly positive variables in X with only 2 sequences of length ≤ 2. ~

3 Examples of Use

Constraints and Music An important field in musical problems is automatic com-
position and harmonization. In many cases, the end-user wishes to obtain the maxi-
mum length sequences of measures where her rules are minimally violated. We con-
sider the example of the sorting chords problem [5, 13]. The goal is to sort n distinct
chords. A chord is a set of at most p notes played simultaneously. p can vary from
one chord to another. The sort should reduce as much as possible the number of notes
changing between two consecutive chords. The musician may be particularly inter-
ested by large sub-sequences of consecutive chords where there is at most nchange
different notes between two consecutive chords, and thus she aims at concentrating
high changes in a few number of areas. We represent the sequence by n variables
Chords = 〈ch0, ch1, . . . , chn−1〉, such as each variable can be instantiated with any of
the chords. The constraint ALLDIFF(Chords) [10] imposes that all chi’s are pairwise
distinct. nchange is at least 1. Therefore, we define the cost between two consecu-
tive chords in the sequence as the number of changed notes less one. It is possible
to compute that cost for each pair of chords (the number of costs is n × (n − 1)/2),
and link this value with the chords through a ternary table constraint. We call such
a constraint COSTCi(chi, chi+1, costi), where costi ∈ X is the integer variable rep-
resenting the cost of the pair (chi, chi+1). Its domain is the set of distinct cost val-
ues considered when COSTCi(chi, chi+1, costi) is generated. FOCUS is imposed on
X = 〈cost0, cost1, . . . , costn−2〉, in order to concentrate high costs (for instance costs
> 2, that is nchange = 3) in a few number of areas. If their length is not constrained
len = |X|, otherwise the end-user can fix a smaller value. The constraint model is:
ALLDIFF(Chords) ∧ ∀i ∈ {0, 1, . . . , n− 2} COSTCi(chi, chi+1, costi)
∧ FOCUS(X, yc , len, 2) ∧ sum =

∑
i∈{0,1,...,n−2} costi

Two objectives can be defined: minimize(sum) and minimize(yc).

Over-Loaded Cumulative Scheduling In Example 1 of the Introduction, the core of
the problem can be represented using the SOFTCUMULATIVE constraint [2]. The time
window starts at time 0 and ends at a given strictly positive integer, the horizon (e.g.,
160 points in times which are, for instance, the total amount of hours of 4 weeks of



work). Activities ak ∈ A are represented by three variables: starting time, duration,
resource consumption. Using SOFTCUMULATIVE, some intervals of time Ii ∈ I (e.g.,
one day of 8 hours), one to one mapped with cost variables costi ∈ X , are given by
the user. A cost measures how much the capacity capa is exceeded within the interval
Ii. The maximum value in the domain of each variable costi expresses the maximum
allowed excess. In [2], several definitions of costs are proposed. We can for instance
define costi as the exceed of the maximum over-loaded hour in the interval Ii.

The constraint related to the additional machine is FOCUS(X, yc , len, 0), where
X = 〈cost0, cost1, . . . , cost|I|−1〉. len is the maximum duration of one rental, e.g.,
5 days, that is, len = 40 (if the time unit is one hour). The constraint model is:
SOFTCUMULATIVE(A,X, I, horizon) ∧ FOCUS(X, yc , len, 0)
∧ sum =

∑
i∈{0,1,...,n−2} costi

Two objectives can be defined: minimize(sum) and minimize(yc).

4 Linear Filtering Algorithm

4.1 Characterization of Sequences

Notation 1 (Status of a variable) Let X = 〈x0, x1, . . . , xn−1〉 be a sequence of inte-
ger variables and k an integer. According to k, a variable xi ∈ X is: Penalizing (Pk) if
and only if the minimum value in its domain min(xi) is such that min(xi) > k. Neutral
(Nk) if and only if the maximum value in its domain max(xi) is such that max (xi) ≤ k.
Undetermined (Uk) if min(xi) ≤ k and max(xi) > k.

Definition 2 (Maximum σ-sequence). Let X = 〈x0, x1, . . . , xn−1〉 be a sequence of
integer variables, k an integer, and σ ⊆ {Pk,Nk,Uk}. A σ-sequence 〈xi, xi+1, . . . , xj〉
of X is a sequence of consecutive variables in X such that all variables have a status
in σ and for all status s ∈ σ there exists at least one variable in the sequence having
the status s. It is maximum if and only if the two following conditions are satisfied:

1. If i > 0 then the status of xi−1 is not in σ.
2. If j < n− 1 then the status of xj+1 is not in σ.

Fig. 1. X = 〈x0, x1 . . . , x5〉 is a maximum-length {N0,P0,U0}-sequence, which contains one
maximum-length {N0,P0}-sequence 〈x0, x1, . . . , x4〉, two maximum-length {P0}-sequences
〈x0, x1, x2〉 and 〈x4〉, one maximum length {P0,U0}-sequence 〈x4, x5〉, one maximum-length
{N0}-sequence 〈x3〉 and one maximum-length {U0}-sequence 〈x5〉.

Figure 1 illustrates Definition 2. The picture shows the domains in a sequence of
n = 6 variables, with k = 0. Grey squares are values strictly greater than k, while the
white ones correspond to values less than or equal to k.



Definition 3 (Focus cardinality of a σ-sequence). Given a sequence of variables X
and len and k two integer values, the focus cardinality card(X, len, k) is the minimum
value vc such that FOCUS(X, vc, len, k) has a solution.

We can evaluate the focus cardinality according to the different classes of sequences.

Property 1. Given a {Pk}-sequence Y , card(Y, len, k) = d |Y |len e.

Proof. b |Y |len c is the minimum number of distinct sequences of consecutive variables of
length len within Y , and the remainder r of |Y |len is such that 0 ≤ r < len . ut

Notation 2 Given a {Nk,Pk}-sequenceX , Pk(X) denotes the set of disjoint maximum
{Pk}-sequences extracted from X .

Fig. 2. A {N0,P0}-sequence X = 〈x0, x1, . . . , x5〉. card(X, 1, 0) =
∑

Y ∈P0(X)d
|Y |
1
e = 3 +

1 = 4. card(X, 2, 0) =
∑

Y ∈P0(X)d
|Y |
2
e = 2+1 = 3. card(X, 4, 0) =

∑
Y ∈P0(X)d

|Y |
4
e = 2.

Property 2. Given a {Nk,Pk}-sequence X , card(X, len, k) =∑
Y ∈Pk(X) card(Y, len, k).

Proof. By definition of a {Nk,Pk}-sequence, variables outside these sequences take a
value less than or equal to k. From Property 1, the property holds. ut

Figure 2 illustrates Property 2. When X is a {Nk,Pk}-sequence, for instance an
instantiation I[X], and yc is fixed to a value vc, we can encode a checker for FOCUS,
based on the computation of the focus cardinality of X .1

The correctness of Algorithm 1 is proved by Properties 1 and 2. Its time complexity
is obviously O(n). The computation for of a {Nk,Pk,Uk }-sequence requires to prove
some properties. In Figure 1, we have len = 1. Depending whether x5 is assigned to 0
or to 1, the value of yc satisfying FOCUS(X, yc , len, 0) is either 4 or 5.

4.2 Feasibilty and Filtering Algorithm

Definition 4. Given xi ∈ X , i ∈ {0, 1, . . . , n− 1}, and v ∈ D(xi),

1 For a end-user, we can provide a set of sub-sequences corresponding to the focus cardinality:
the algorithm is similar to Algorithm 1 (we store the sequences instead of counting them).



Algorithm 1: ISSATISFIED({Nk ,Pk}-sequence X = 〈x0, x1, . . . , xn−1〉, vc, len , k): boolean

1 Integer nb := 0;
2 Integer size := 0;
3 Boolean prevpk := false;
4 for Integer i := 0; i < n; i := i+ 1 do
5 if min(xi) > k then
6 size := size + 1;
7 prevpk := true;
8 else
9 if prevpk then nb := nb + d size

len
e;

10 size := 0;
11 prevpk := false;

12 if prevpk then nb := nb + d size
len
e;

13 return nb ≤ vc; // focus cardinality of X

– p(xi, v) is the focus cardinality card(〈x0, x1, . . . xi〉, len, k) of the prefix sequence
〈x0, x1, . . . xi〉 when xi = v.

– s(xi, v) is the focus cardinality card(〈xi, xi+1, . . . xn−1〉, len, k) of the suffix se-
quence 〈xi, xi+1, . . . xn−1〉 when xi = v.

The remaining of this section is organized as follows. First, we show how we can
check the feasibility of FOCUS and enforce a complete filtering of domains of variables
in X and D(yc), provided we have the data of Definition 4. Then, we explain how such
a data and the filtering algorithm can be obtained in O(n).

Given xi ∈ X , the two quantities of Definition 4 can have, each, at most two distinct
values: one for the values in D(xi) strictly greater than k, one for the values in D(xi)
less than or equal to k. This property holds by the definition of the constraint FOCUS it-
self (Definition 1): From the point of view of FOCUS, value k+1 or value k+1000 for
xi are equivalent. We use a new notation, which groups values of Definition 4.

Notation 3 Given xi ∈ X ,

– p(xi, v>) is the value of p(xi, v) for all v ∈ D(xi) such that v > k, equal to n+ 1
if there is no value v > k in D(xi).

– p(xi, v≤) is the value of p(xi, v) for all v ∈ D(xi) such that v ≤ k, equal to n+ 1
if there is no value v ≤ k in D(xi).

Similarly, we use the notations s(xi, v>) and s(xi, v≤) for suffix sequences.

Given such quantities for the last variable (or the first if we consider suffixes), we
obtain a feasibility check for FOCUS. Their computation is explained in next section.

Algorithm 2: ISSATISFIED(X = 〈x0, x1, . . . , xn−1〉, yc , len , k): boolean

1 return min(p(xn−1, v>), p(xn−1, v≤)) ≤ max(yc) ;

We use the following notation: minCard(X) = min(p(xn−1, v>), p(xn−1, v≤)).
With that data, we can update min(yc) to min(minCard(X),min(yc)). Then from



Definition 1, all the values in D(yc) have a valid support on FOCUS (by definition any
value of yc greater than minCard(X) satisfies the constraint). By applying O(n) times
Algorithm 2, in order to study each variable xi in X successively restricted to the range
of values ≤ k as well as the range of values > k, we perform a complete filtering.

Lemma 1. . Given a Uk variable xi, let X>
i = {x>0 , x>1 , . . . , x>n−1} be the set of

variables derived from X such that ∀j ∈ {0, 1, . . . , i− 1, i+ 1, . . . , n− 1}, D(x>j ) =

D(xj) and D(x>i ) = D(xi)∩ [k+1,max(xi)]. If minCard(X>
i )>max(yc) then the

range [k + 1,max(xi)] can be removed from D(xi).

Lemma 2. Given a Uk variable xi, let X>
i = {x>0 , x>1 , . . . , x>n−1} be the set of vari-

ables derived fromX such that ∀j ∈ {0, 1, . . . , i−1, i+1, . . . , n−1},D(x≤j ) = D(xj)

and D(x≤i ) = D(xi) ∩ [min(xi), k]. If minCard(X≤i ) > max(yc) then the range
[min(xi), k] can be removed from D(xi).

Proof (Lemmas 1 and 2). Direct consequence of Definitions 1 and 3. ut

Given O(Φ) the time complexity of an algorithm computing minCard(X), we can
perform the complete filtering of variables in X ∪ {yc} in O(n × Φ), where n = |X|.
We now show how to decrease the whole time complexity to O(n), both for computing
minCard(X) and shrink the domains of all the variables in X . Given xi ∈ X , the first
idea is to compute p(xi, v>) from p(xi−1, v>) and p(xi−1, v≤). To do so, we have to
estimate the minimum length of a {Pk}-sequence containing xi, within an instantiation
of 〈x0, x1, . . . , xi〉 of focus cardinality p(xi, v>). We call this quantity plen(xi). Next
lemmas provide the values of p(xi, v>), p(xi−1, v≤) and plen(xi), from xi−1.

Lemma 3 (case of x0).

– If xi is a {Pk}-variable, p(x0, v≤) = n+ 1, p(x0, v>) = 1 and plen(x0) = 1.
– If xi is a {Nk}-variable, p(x0, v≤) = 0, p(x0, v>) = n+ 1 and plen(x0) = 0.
– If xi is a {Uk}-variable, p(x0, v≤) = 0, p(x0, v>) = 1 and plen(x0) = 1.

Proof. If x0 takes a value v > k then by Definition 4 p(x0, v>) = 1 and plen(x0) = 1.
Otherwise, there is no {Pk}-sequence containing x0 and plen(x0) = 0: We use the
convention p(x0, v>) = n+ 1 (an absurd value: the max. number of sequences in X is
n). If x0 belongs to a {Pk}-sequence then p(x0, v≤) = n+ 1. ut

Lemma 4 (computation of p(xi, v≤), 0 < i < n). If xi is a {Pk}-variable then
p(xi, v≤) = n+ 1. Otherwise, p(xi, v≤) = min(p(xi−1, v>), p(xi−1, v≤)).

Proof. If xi belongs to a {Pk}-sequence then xi does not take a value v ≤ k, thus
p(x0, v≤) = n + 1. If there exists some values less than or equal to k in D(xi),
assigning one such value to xi leads to a number of {Pk}-sequences within the pre-
fix sequence 〈x0, x1, . . . , xi〉 which does not increase compared with the sequence
〈x0, x1, . . . , xi−1〉. Thus, p(xi, v≤) = min(p(xi−1, v>), p(xi−1, v≤)). ut

Lemma 5 (computation of p(xi, v>) and plen(xi), 0 < i < n). We have:

– If xi is a {Nk}-variable then p(xi, v>) = n+ 1 and plen(xi) = 0.



– Otherwise,
• If plen(xi−1) = len ∨ plen(xi−1) = 0 then
p(xi, v>) = min(p(xi−1, v>) + 1, p(xi−1, v≤) + 1) and plen(xi) = 1.

• Otherwise p(xi, v>) = min(p(xi−1, v>), p(xi−1, v≤) + 1) and:
∗ If p(xi−1, v>) ≤ p(xi−1, v≤) then plen(xi) = plen(xi−1) + 1.
∗ Else plen(xi) = 1.

Proof. If xi is a {Nk}-variable then it cannot take a value > k. By convention
p(xi, v>) = n + 1 and plen(xi) = 0. Otherwise, recall that from Definition 3,
the focus cardinality is the minimum possible number of {Pk}-sequences. If 0 <
plen(xi−1) < len the last {Pk}-sequence can be extended by variable xi within an
assignment having the same focus cardinality than the one of 〈x0, x1, . . . , xi−1〉, thus
min(p(xi−1, v>), p(xi−1, v≤) + 1) and plen(xi) is updated so as to remain the mini-
mum length of a {Pk}-sequence containing xi in an instantiation of 〈x0, x1, . . . , xi〉 of
focus cardinality p(xi, v>). Otherwise, the focus cardinality will be increased by one if
xi takes a value v > k. We have p(xi, v>) = min(p(xi−1, v>) + 1, p(xi−1, v≤) + 1).
Since we have to count a new {Pk}-sequence starting at xi, plen(xi) = 1. ut

GivenX = 〈x0, x1, . . . , xn−1〉, Algorithm 3 uses the Lemmas to computes inO(n)
the quantities. It returns a matrix cards of size n× 3, such that at each index i:

cards[i][0] = p(xi, v≤); cards[i][1] = p(xi, v>); cards[i][2] = plen(xi)

We can then compute for each xi s(xi, v>), s(xi−1, v≤) and slen(xi) (the equiv-
alent of plen(xi) for suffixes), by using Lemmas 3, 4 and 5 with X sorted in the re-
verse order: 〈xn−1, xn−2, . . . , x0〉. To estimate for each variable minCard(X≤i ) and
minCard(X>

i ), we have to aggregate the quantities on prefixes and suffixes.

Property 3. minCard(X≤i ) = p(xi, v≤) + s(xi, v≤) and minCard(X>
i ) is equal to:

– p(xi, v>) + s(xi, v>)− 1 if and only if plen(xi) + slen(xi) −1 ≤ len .
– p(xi, v>) + s(xi, v>) otherwise.

Proof. Any pair of instantiations of focus cardinality respectively equal to p(xi, v≤)
and s(xi, v≤) correspond to disjoint {Pk}-sequences (which do not contain xi). Thus
the quantities are independent and can be summed. With respect tominCard(X>

i ), the
last current {Pk}-sequence taken into account in p(xi, v>) and s(xi, v>) contains xi.
Thus, their union (of length plen(xi) + slen(xi) −1) forms a unique {Pk}-sequence,
from which the maximum-length sub-sequence containing xi should not be counted
twice when it is not strictly larger than len . ut

Changing one value in an instantiation modifies its focus cardinality of at most one.

Property 4. Let I[X] = 〈v0, v1, . . . , vn−1〉 be an instantiation of focus cardinality
vc and xi ∈ X , and I ′[X] = 〈v′0, v′1, . . . , v′n−1〉 be the instantiation such that ∀j ∈
{0, 1, . . . , n − 1}, j 6= i, vj = v′j and: (1) If vi > k then v′i ≤ k. (2) If vi ≤ k then
v′i > k. The focus cardinality v′c of I ′[X] is such that |vc − v′c| ≤ 1.



Algorithm 3: MINCARDS(X = 〈x0, x1, . . . , xn−1〉, len, k): Integer matrix

1 cards := new Integer[|X|][3] ;
2 if min(x0) ≤ k ∧max(x0) > k then
3 cards[0][0] := 0;
4 cards[0][1] := 1;
5 cards[0][2] := 1;
6 else
7 if min(x0) > k then
8 cards[0][0] := n+ 1;
9 cards[0][1] := 1;

10 cards[0][2] := 1;
11 else
12 cards[0][0] := 0;
13 cards[0][1] := n+ 1;
14 cards[0][2] := 0;

15 for Integer i := 1; i < n; i := i+ 1 do
16 if max(xi) > k then
17 if min(xi) > k then cards[i][0] := n+ 1;
18 else cards[i][0] := min(cards[i− 1][0], cards[i− 1][1]);
19 if cards[i− 1][2] = 0 ∨ cards[i− 1][2] = len then
20 cards[i][1] := min(cards[i− 1][0] + 1, cards[i− 1][1] + 1);
21 cards[i][2] := 1;
22 else
23 cards[i][1] := min(cards[i− 1][0] + 1, cards[i− 1][1]);
24 if cards[i− 1][1]<cards[i− 1][0]+1 then cards[i][2] := cards[i−1][2]+1;
25 else cards[i][2] := 1;

26 else
27 cards[i][0] := min(cards[i− 1][0], cards[i− 1][1]);
28 cards[i][1] := n+ 1;
29 cards[i][2] := 0;

30 return cards;

Proof. Assume first that vi > k. xi belongs to a {Pk}-sequence p. Let s be the length
of this {Pk}-sequence within I[X]. We can split p into p1 = 〈xk, xk+1, . . . , xi−1〉,
p2 = 〈xi〉, p3 = 〈xi+1, xi+1, . . . , xl〉 (p1 and/or p3 can be empty). Let q1, q3 and r1, r3
be positive or null integers such that r1 < len, r3 < len and s = q1×len+r1+1+q3×
len + r3. By construction, the maximum contribution of the variables in p to the focus
cardinality of I ′[X] (that is, with xi ≤ k), is equal to q1+1 + q3+1=q1+ q3+2. With
respect to I[X], the contribution is then equal to q1 + q3 + d r1+r3+1

len e. The minimum
value of d r1+r3+1

len e is 1. In this case the property holds. The minimum contribution of
the variables in p to the focus cardinality of I ′[X] is equal to q1 + q3. In this case, with
respect to I[X] the maximum value of d r1+r3+1

len e is d 1
len e = 1, the property holds.

The last intermediary case is when the contribution of the variables in p to the focus
cardinality of I ′[X] is equal to q1 + q3 + 1. The minimum value of d r1+r3+1

len e is 1 and
its maximum is 2, the property holds. The reasoning for vi ≤ k is symmetrical. ut

From Property 4, we know that domains of variables in X can be pruned only once
yc is fixed since the variation coming from a single variable in X is at most one.



Algorithm 4 shrinks D(yc) and all the variables in X in O(n). It first calls Algo-
rithm 3 to obtain minCard(X) from min(p(xn−1, v>) and p(xn−1, v≤)) and even-
tually shrinks D(yc). Then, it computes the data for suffixes, and uses Property 3 to
reduce domains of variables in X according to max(yc). Since removed values of vari-
ables in X cannot lead to a focus cardinality strictly less than max(yc), it enforces
GAC. Algorithm 4 does not directly modify domains: X and yc are locally copied, and
the filtered copies are returned. The reason is that we will use this algorithm in an ex-
tension of FOCUS in Section 5. To improve the readability, we assume that the solver
raises an exception FAILEXCEPTION if a domain of one copy becomes empty.

Algorithm 4: FILTER(X = 〈x0, x1, . . . , xn−1〉, yc , len, k): Set of variables

1 cards := MINCARDS(X, len, k) ;
2 Integer lb := min(cards[n− 1][0], cards[n− 1][1]);
3 if min(yc) < lb then D(yc) :=D(yc) \ [min(yc), lb[;
4 if min(yc) = max(yc) then
5 sdrac := MINCARDS(〈xn−1, xn−2, . . . , x0〉, len, k) ;
6 for Integer i := 0; i < n; i := i+ 1 do
7 if cards[i][0] + sdrac[n− 1− i][0] > max(yc) then
8 D(xi) :=D(xi)\ [min(xi), k];
9 Integer regret := 0;

10 if cards[i][2] + sdrac[n− 1− i][2]− 1 ≤ len then regret := 1;
11 if cards[i][1] + sdrac[n− 1− i][1]− regret > max(yc) then
12 D(xi) :=D(xi)\ ]k,max(xi)];

13 return X ∪ {yc};

Example 3. Consider FOCUS(X = 〈x0, x1, . . . , x4〉, yc , len, 0) and D(yc) = {1, 2}.
(1) Assume len = 2 and D(x0)=D(x2)=D(x3)={1, 2}, D(x1) = {0} and D(x4)
={0, 1, 2}. Line 3 of Algorithm 4 removes [1, 2[ from D(yc). Since the length of
the {Pk}-sequence 〈x2, x3〉 is equal to len , cards[4][1]=3 and cards[4][2]=1. sdrac
[5−1−4][1]=1 and sdrac[5−1−4][2]=1. regret=1 and thus 3+1−regret=3>max(yc),
]0, 2] is removed from D(x4) (line 12). (2) Assume now len=3 and D(x0)=D(x2)
=D(x4)={1, 2}, D(x1)={0} and D(x3)={0, 1, 2}. Line 3 of Algorithm 4 removes
[1, 2[ from D(yc). Since value 0 for x3 leads to a focus cardinality of 3 (cards[3][0] =2
and sdrac[5−1−3][0]=1), strictlty greater than max(yc), 〈x2, x3, x4〉 must be a {Pk}-
sequence (of length 3 ≤ len). Algorithm 4 removes value 0 from D(x3) (line 8). ~

5 Constraints Derived from FOCUS

5.1 Using a Variable for len

Assume that, in Example 1 of the Introduction, several companies offer leases with dif-
ferent maximum duration. We aim at computing the best possible configuration for each
different offer, based on each maximum duration. To deal with this case, we can extend
FOCUS so as to define len as a variable, with a discrete domain since the maximum
durations of rentals are proper to each company. Another use of this extension is the



Algorithm 5: FILTERVARLEN(X = 〈x0, x1, . . . , xn−1〉, yc , len, k): Set of variables

1 IntegerVariable[][] vars := new IntegerVariable[|D(len)|][];
2 Integer j := 0;
3 foreach vl ∈ D(len) do
4 try vars[j] := FILTER(X, yc , vl, k); // the last variable is yc
5 catch FAILEXCEPTION: D(len) := D(len) \ {vl}; // in this case vars[j] = null
6 j := j + 1;
7 Integer minc := max(yc) + 1;
8 j := 0;
9 foreach vl ∈ D(len) do

10 if vars[j] 6= null then minc := min(minc,min(vars[j][n]));
11 j := j + 1;
12 D(yc) :=D(yc) \ [min(yc),minc[;
13 for Integer i := 0; i < n; i := i+ 1 do
14 Integer mini := max(xi) + 1;
15 Integer maxi := min(xi)− 1;
16 j := 0;
17 foreach vl ∈ D(len) do
18 if vars[j] 6= null then
19 mini := min(mini,min(vars[j][i]));
20 maxi := max(maxi,max(vars[j][i]));
21 j := j + 1;
22 D(xi) :=D(xi) \ ([min(xi),mini[ ∪ ]maxi,max(xi)]) ;
23 return X ∪ {yc} ∪ {len};

case where the end-user wishes to compare for the same company several maximum
package duration, enumerate several solutions, etc.

The filtering algorithm of this extension of FOCUS uses following principle: For
each value vl in D(len), we call FILTER(X, yc , vl, k) (Algorithm 4). If an exception
FAILEXCEPTION is raised, vl is removed from D(len). Otherwise, we store the result
of the filtering. At the end of the process, value v ∈ D(xi), xi ∈ X , is removed from its
domain if and only if it was removed by all the calls to FILTER(X, yc , vl, k) that did not
raised an exception. Algorithm 5 implements this principle. Since it calls Algorithm 4
for each value in D(len), it enforces GAC. Its time complexity is O(n× |D(len)|).

5.2 Harder constraint on yc

In Definition 1, the number of sequences in S could be constrained by an equality:
|S| = vc. When the maximum value for the variable yc is taken, the number of counted
disjoint sequences of length at most len is maximized. This maximum is equal to the
number of {Pk, Uk}-sequences (we consider sequences of length one). The filtering is
obvious. If, in addition, we modify the condition 3 of Definition 1 to make it stronger,
for instance 3 ≤ |si| ≤ len , it remains possible to compute recursively the maximum
possible number of disjoint sequences by traversing X , similarly to the Lemmas used
for the focus cardinality. Conversely, the aggregation of prefix and suffix data to obtain
an algorithm in O(n) is different. We did not investigate this point because we are not
convinced of the practical significance of this variation of FOCUS.



6 Discussion: Related Work and Decomposition

Although it seems to be similar to a specialization of GROUP,2 the FOCUS constraint
cannot be represented using GROUP because of len: Using FOCUS, the variable in
the sequence which directly precedes (or succeeds) a counted group of values strictly
greater than the parameter k can also take itself a value strictly greater than k, which
violates the notion of group.

To remain comparable with a filtering algorithm having a time complexity linear in
the number of variables, the automaton-based reformulation of FOCUS should directly
manipulate an automaton with counters, which are used to estimate the focus cardinal-
ity. We selected the paradigm presented in [1]. Under some conditions, this framework
leads to a reformulation where a complete filtering is achieved, despite the counters.3

This paradigm is based on automata derived from constraint checkers. We propose an
automaton A representing FOCUS deduced from Algorithm 1, depicted by Figure 3.

Fig. 3. Automaton with two counters c and fc, representing FOCUS. The two states are terminal.
xi denotes a variable in X and we consider the variable yc and the value len of FOCUS.

As it is shown by figure 3, the automaton has two terminal states and maintains two
counters c and fc, which represent respectively the size of the current traversed {Pk}-
sequence and the focus cardinality. Therefore, when i = n − 1, fc is compared to the
value of yc . The principle is the same than in Algorithm 1: Each time a {Pk}-sequence
ends, its contribution is added to the counter representing the focus cardinality. The
automaton has two states and two counters. The constraint networkN (hypergraph) en-
coding the automaton [1] is not Berge-Acyclic [4]. Propagating directly the constraints
in N does not necessarily entail a complete filtering. However, within the automaton
A, the choice of the next transition only depends on the value of xi ∈ X . Therefore,
in N , no signature constraints share a variable. From [1, p. 348-349], by enforcing
pairwise consistency on the O(n) pairs of transition constraints sharing more than one

2 http://www.emn.fr/z-info/sdemasse/gccat/Cgroup.html
3 Conversely to the COSTREGULAR constraint [3], for instance.



variable, we obtain a complete filtering. Three variables are shared: one representing
the possible next states, and the variables for the two counters. In the worst case, pair-
wise consistency considers all the tuples for the shared variables. Counter variables (fc
and c) have initially a domain of order O(n) while the third domain is in O(1), which
leads to a time complexity in O(n3) for filtering FOCUS. When len and max(len) are
small, this decomposition could be used. Thus, it is a contribution. The behavior with
generic search strategies could be different for the decomposition and for the linear al-
gorithm. However, using the decomposition requires to enforce pairwise consistency,
which is not simpler and less generic than a dedicated filtering algorithm, because of
events propagation. The decomposition is dependent on the priority rules of the solver.

7 Experiments

Since our filtering algorithm is complete, in O(n), and without heavy data structures,
performing benchmarks of the constraint isolated from a problem is not relevant. This
section analyzes the impact of FOCUS on the solutions of the sorting chords problem
described in Section 3. We selected this example rather than, for instance, the cumu-
lative problem of Section 3, because all the other constraints (ALLDIFF as well as the
ternary table constraints) can be provided with a complete filtering algorithm. With re-
spect to the variable sum , we define it as the objective to minimize. Thus, instead of
an equality we enforce the constraint sum ≤

∑
cost i, which is also tractable. We use

the solver Choco (http://www.emn.fr/z-info/choco-solver/) with the default variable and
value search strategies (DomOverWDeg and MinValue), on a Mac OSX 2.2 GHz Intel
Core i7 with 8GB of RAM memory. We are interested in two aspects:

1. Our constraint is used for refining an objective criterion and, from Property 4, we
know that domains of variables in X can be pruned only once yc is fixed. An
important question is the following: Is our filtering algorithm significantly useful
during the search, compared with a simple checker?

2. Are the instances harder and/or the value of the objective variable sum widely
increased when we restrict the set of solutions by imposing FOCUS?

7.1 Pruning Efficacy

In a first experiment, we run sets of 100 random instances of the sorting chords problem,
in order to compare the complete filtering of FOCUS with a simple checker. For each set,
the maximum value of yc is either 1 or 2, in order to consider instances where FOCUS as
a important influence. We compare the pruning efficacy of FOCUS with a light version
of FOCUS, where the propagation is reduced to the checker.

Table 1 summarizes the results on 8 and 9 chords (respectively 17 and 19 variables
in the problem). The instances are all satisfiable and optima were always proved. With
larger instances (≥ 10 chords), optimum cannot be proved in a reasonable number
of backtracks using the checker. In the table, yc = max(yc), and len and k are the
parameters of FOCUS. nmax is the maximum possible number of changing notes be-
tween any two chords. Average values are given as integers. Table 1 clearly shows that,



even with a GAC filtering algorithm for ALLDIFF and for the ternary table constraints
COSTC(chi, chi+1, costi), we can only solve small instances without propagating FO-
CUS, some of them requiring more than one million backtracks. Conversely, the number
of backtracks for proving optimality is small and stable when Algorithm 4 is used for
propagating FOCUS. Using the filtering algorithm of FOCUS is mandatory.

Instances FOCUS(X, yc , len, k) CHECKER(X, yc , len, k)
nb. yc -len #optimum average average max. average average average max. average
of -k with #backtracks #fails #backtracks time (ms) #backtracks #fails #backtracks time (ms)

chords -nmax sum > 0 (of 100) (of 100) (of 100) (of 100) (of 100) (of 100) (of 100) (of 100)
8 1-4-0-3 66 61 46 462 11 1518 951 15300 17
8 1-4-1-3 66 45 33 342 1 91 59 1724 2
8 2-4-0-3 66 47 34 247 1 58 42 455 1
8 2-4-1-3 66 45 33 301 1 44 32 349 1
8 1-6-0-4 84 198 141 2205 12 15952 10040 86778 213
8 1-6-1-4 84 114 79 767 3 1819 1117 45171 24
8 2-6-0-4 84 127 88 620 3 2069 1361 64509 28
8 2-6-1-4 84 118 81 724 3 250 168 7027 4
8 1-8-0-5 98 261 184 1533 6 39307 25787 167575 566
8 1-8-1-5 98 148 103 662 3 11821 7642 94738 168
8 2-8-0-5 98 164 113 803 4 21739 14400 173063 317
8 1-8-0-5 98 183 127 882 4 10779 6939 92560 153
8 1-8-0-6 99 290 203 1187 18 46564 30488 130058 690
8 1-8-1-6 99 238 166 1167 11 29256 19150 134882 438
8 2-8-0-6 99 221 152 1458 6 29455 19607 123857 445
8 2-8-1-6 99 209 144 1118 9 21332 14095 117768 329
9 1-9-0-4 88 415 299 4003 18 214341 133051 1095734 3244
9 1-9-1-4 88 268 185 2184 6 12731 7988 751414 203
9 2-9-0-4 88 270 188 2714 6 22107 14065 374121 337
9 2-9-1-4 88 266 182 3499 6 1364 941 92773 23
9 1-9-0-5 97 574 407 2437 26 360324 230167 1355934 6584
9 1-9-1-5 97 404 273 1677 11 62956 40277 881441 1150
9 2-9-0-5 97 451 309 3327 12 228072 147007 1124630 4263
9 2-9-1-5 97 386 260 1698 10 58421 37589 989900 1079

Table 1. Comparison of Algorithm 4 with a checker, on the sorting chords problem. Each row
represents 100 randomly generated instances. yc is max(yc). nmax indicates the maximum pos-
sible common notes between two chords. Optimum solutions were found for all the considered
instances. “#backtracks” means the number of backtracks, “#fails” the number of fails, “#opti-
mum with sum > 0” is the number of solutions with a non null objective value.

7.2 Impact on the Objective Value

In a second experiment, we run sets of 100 random instances of the sorting chords
problem, in order to compare problems involving FOCUS with the same problems where
FOCUS is removed from the model. The goal of this experiment is to determine, with
respect to the sorting chords problem, whether the optimum objective value increases
widely or not when FOCUS is imposed, as well as the time and backtracks required
to obtain such an optimum value. Table 2 summarizes the results with a number of
chords varying from 6 to 20 (13 to 51 variables in the problem). The instances are all
satisfiable and optima were always found and proved. In each set, we count the number
of instances with distinct objective values. For sake of space, we present the results for
k = 0 and len = 4. Similar results were found for closed values of k and len . Despite
the instances with FOCUS are more constrained with respect to the variables involved
in the objective, Table 2 does not reveals any significant difference, both with respect
to the number of backtracks (and solving time) and the optimum objective value. We
finally have differences in objective values at most equal to 2.

To complete our evaluation, we search for the first solution of larger problems, in
order to compare the scale of size that can be reached with and without using FOCUS.



Instances with FOCUS without FOCUS
nb. yc #optimum #optimum max. average max. average max. average max. average
of -len with equal with / value #backtracks #backtracks time value #backtracks #backtracks time

chords -k sum > 0 without of (of 100) (of 100) (ms) of (of 100) (of 100) (ms)
-nmax FOCUS sum (of 100) sum (of 100)

6 2-4-0-4 88 99 7 23 76 3 7 22 76 1
8 2-4-0-4 84 95 8 131 618 4 7 115 449 3
10 2-4-0-4 78 98 6 457 4579 11 6 360 3376 9
12 2-4-0-4 69 98 5 952 12277 28 5 1010 10812 27
16 2-4-0-4 43 100 4 4778 132019 153 4 6069 95531 189
20 2-4-0-4 7 100 3 15650 1316296 747 3 15970 1095399 679
6 2-4-0-6 97 96 13 37 113 1 13 37 121 1
8 2-4-0-6 99 93 11 218 1305 5 11 198 860 4
10 2-4-0-6 97 77 10 1247 5775 32 9 1159 10921 26
12 2-4-0-6 96 75 12 5092 34098 155 11 4844 54155 145
16 2-4-0-6 88 84 9 45935 724815 2002 9 73251 2517570 3407
20 2-4-0-6 79 91 8 264881 4157997 14236 6 174956 2918335 8284

Table 2. Comparison of instances of the sorting chords problem with and without FOCUS. The
column “#optimum equal with and without FOCUS” indicates the number of instances for which,
with and without FOCUS, the optimum objective value is equal. “max. value of sum” indicates
the maximum objective value among the 100 instances.
The value heuristic assigns first the smaller value, which is semantically suited to the
goal of the problem although we do not search for optimum solutions.

Instances with FOCUS without FOCUS
nb. yc average min(sum) average max. average min(sum) average max. average
of -len gap / max(sum) #backtracks #backtracks time / max(sum) #backtracks #backtracks time

chords -k in (of 100) (of 100) (of 100) (ms) (of 100) (of 100) (of 100) (ms)
-nmax sum (of 100) (of 100)

50 4-6-2-4 14 45/73 0 16 84 55/94 0 0 80
100 8-6-2-4 27 100/145 1 57 1168 119/175 0 0 1413
50 5-6-1-4 30 19/69 212 12698 101 55/94 0 0 85
100 10-6-1-4 63 40/113 93 3829 1002 119/175 0 0 1407

Table 3. Comparison of the results for providing a first solution on large instances of the sorting
chords problem, with and without FOCUS. The “average gap in sum” is the average of the differ-
ence, for each of the 100 instances, between the objective value without FOCUS and the objective
value with FOCUS. This latter one (with FOCUS) is smaller or equal for all the instances.

Results are compared in Table 3. They show that, with FOCUS, the number of back-
tracks grows for some instances when the parameters of FOCUS are shrunk (one of the
instance with 50 chords required 12698 backtracks). However, the objective value of
the first solution is systematically significantly better when FOCUS is set in the model.
One explanation of these results is the following: Focusing the costs on a small number
of areas within the sequence semantically tends to limit the value of their total sum.

8 Conclusion

We presented FOCUS, a new constraint for concentrating high costs within a sequence
of variables. In the context of scheduling, many use cases for the constraint make sense.
We proposed a O(n) complete filtering algorithm, where n is the number of variables.
We proposed an automaton-based decomposition and we discussed extensions of our
constraint. Our experiments investigated the importance of propagating FOCUS and the
impact of FOCUS on the solutions of problems. Our results demonstrated that the com-
plete filtering algorithm of FOCUS is mandatory for solving instances.
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