Skip to main content

Syntactically Characterizing Local-to-Global Consistency in ORD-Horn

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7514))

Abstract

Establishing local consistency is one of the most frequently used algorithmic techniques in constraint satisfaction in general and in spatial and temporal reasoning in particular. A collection of constraints is globally consistent if it is completely explicit, that is, every partial solution may be extended to a full solution by greedily assigning values to variables one at a time. We will say that a structure B has local-to-global consistency if establishing local-consistency yields a globally consistent instance of \(\textbf{CSP}(\mathbf{B})\).

This paper studies local-to-global consistency for ORD-Horn languages, that is, structures definable over the ordered rationals (ℚ; < ) within the formalism of ORD-Horn clauses. This formalism has attracted a lot of attention and is of crucial importance to spatial and temporal reasoning. We provide a syntactic characterization (in terms of first-order definability) of all ORD-Horn languages enjoying local-to-global consistency.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fisher, M., Gabbay, D., Vila, L. (eds.): Handbook of Temporal Reasoning in Artificial Intelligence. Elsevier (2005)

    Google Scholar 

  2. Renz, J., Nebel, B.: Qualitative spatial reasoning using constraint calculi. In: Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.) Handbook of Spatial Logics, pp. 161–215. Springer, Berlin (2007)

    Chapter  Google Scholar 

  3. Duentsch, I.: Relation algebras and their application in temporal and spatial reasoning. Artificial Intelligence Review 23, 315–357 (2005)

    Article  MATH  Google Scholar 

  4. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the ACM 26(11), 832–843 (1983)

    Article  MATH  Google Scholar 

  5. Mackworth, A.K.: Consistency in networks of relations. AI 8, 99–118 (1977)

    MATH  Google Scholar 

  6. Freuder, E.: A sufficient condition for backtrack-free search. Journal of the ACM 29(1), 24–32 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dechter, R.: From local to global consistency. Artificial Intelligence 55(1), 87–108 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feder, T., Vardi, M.: The computational structure of monotone monadic SNP and constraint satisfaction: A study through Datalog and group theory. SIAM Journal on Computing 28, 57–104 (1999)

    Article  MathSciNet  Google Scholar 

  9. Nebel, B., Bürckert, H.J.: Reasoning about temporal relations: A maximal tractable subclass of Allen’s interval algebra. Journal of the ACM 42(1), 43–66 (1995)

    Article  MATH  Google Scholar 

  10. Bodirsky, M., Chen, H.: Qualitative temporal and spatial reasoning revisited. In: CSL 2007, pp. 194–207 (2007)

    Google Scholar 

  11. Bodirsky, M., Dalmau, V.: Datalog and Constraint Satisfaction with Infinite Templates. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 646–659. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Jeavons, P., Cohen, D., Gyssens, M.: Closure properties of constraints. Journal of the ACM 44(4), 527–548 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bodirsky, M., Chen, H.: Oligomorphic clones. Algebra Universalis 57(1), 109–125 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Vilain, M., Kautz, H., van Beek, P.: Constraint propagation algorithms for temporal reasoning: A revised report. Reading in Qualitative Reasoning about Physical Systems, 373–381 (1989)

    Google Scholar 

  15. Koubarakis, M.: From local to global consistency in temporal constraint networks. Theor. Comput. Sci. 173(1), 89–112 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. van Beek, P., Cohen, R.: Exact and approximate reasoning about temporal relations. Computational Intelligence 6, 132–144 (1990)

    Article  Google Scholar 

  17. Bessi, C., Isli, A.: Global consistency in interval algebra networks: Tractable subclasses. In: Proc. ECAI 1996, pp. 3–7. Wiley (1996)

    Google Scholar 

  18. Börner, F., Bulatov, A., Jeavons, P., Krokhin, A.: Quantified Constraints: Algorithms and Complexity. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 58–70. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Bodirsky, M., Kára, J.: The complexity of temporal constraint satisfaction problems. Journal of the ACM 57(2) (2009); An extended abstract appeared in the proceedings of STOC 2008

    Google Scholar 

  20. Bodirsky, M., Chen, H.: Quantified equality constraints. SIAM J. Comput. 39(8), 3682–3699 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Charatonik, W., Wrona, M.: Quantified Positive Temporal Constraints. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 94–108. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Charatonik, W., Wrona, M.: Tractable Quantified Constraint Satisfaction Problems over Positive Temporal Templates. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 543–557. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. Hodges, W.: A shorter model theory. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  24. Bodirsky, M., Nešetřil, J.: Constraint satisfaction with countable homogeneous templates. Journal of Logic and Computation 16(3), 359–373 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bodirsky, M., Kára, J.: A fast algorithm and Datalog inexpressibility for temporal reasoning. ACM Transactions on Computational Logic 11(3) (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wrona, M. (2012). Syntactically Characterizing Local-to-Global Consistency in ORD-Horn. In: Milano, M. (eds) Principles and Practice of Constraint Programming. CP 2012. Lecture Notes in Computer Science, vol 7514. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33558-7_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33558-7_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33557-0

  • Online ISBN: 978-3-642-33558-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics