Skip to main content

A Boolean Model for Enumerating Minimal Siphons and Traps in Petri Nets

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7514))

Abstract

Petri nets are a simple formalism for modeling concurrent computation. Recently, they have emerged as a promising tool for modeling and analyzing biochemical interaction networks, bridging the gap between purely qualitative and quantitative models. Biological networks can indeed be large and complex, which makes their study difficult and computationally challenging. In this paper, we focus on two structural properties of Petri nets, siphons and traps, that bring us information about the persistence of some molecular species. We present two methods for enumerating all minimal siphons and traps of a Petri net by iterating the resolution of Boolean satisfiability problems executed with either a SAT solver or a CLP(B) program. We compare the performances of these methods with respect to a state-of-the-art algorithm from the Petri net community. On a benchmark with 80 Petri nets from the Petriweb database and 403 Petri nets from curated biological models of the Biomodels database, we show that miniSAT and CLP(B) solvers are overall both faster by two orders of magnitude with respect to the dedicated algorithm. Furthermore, we analyse why these programs perform so well on even very large biological models and show the existence of hard instances in Petri nets with unbounded degrees.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birtwistle, M.R., Hatakeyama, M., Yumoto, N., Ogunnaike, B.A., Hoek, J.B., Kholodenko, B.N.: Ligand-dependent responses of the ErbB signaling network: experimental and modeling analysis. Molecular Systems Biology 3(144) (September 2007)

    Google Scholar 

  2. Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Modeling and querying biochemical interaction networks. Theoretical Computer Science 325(1), 25–44 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chu, F., Xie, X.-L.: Deadlock analysis of petri nets using siphons and mathematical programming. IEEE Transactions on Robotics and Automation 13(6), 793–804 (1997)

    Article  Google Scholar 

  4. Cordone, R., Ferrarini, L., Piroddi, L.: Characterization of minimal and basis siphons with predicate logic and binary programming. In: Proceedings of IEEE International Symposium on Computer-Aided Control System Design, pp. 193–198 (2002)

    Google Scholar 

  5. Cordone, R., Ferrarini, L., Piroddi, L.: Some results on the computation of minimal siphons in petri nets. In: Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii, USA (December 2003)

    Google Scholar 

  6. Cordone, R., Ferrarini, L., Piroddi, L.: Enumeration algorithms for minimal siphons in petri nets based on place constraints. IEEE Transactions on Systems, Man and Cybernetics. Part A, Systems and Humans 35(6), 844–854 (2005)

    Article  Google Scholar 

  7. Crawford, J.M., Auton, L.D.: Experimental results on the crossover point in satisfiability problems. In: Proceedings of the 11th National Conference on Artificial Intelligence, pp. 21–27. AAAI Press (1993)

    Google Scholar 

  8. Diaz, D., Codognet, P.: Design and implementation of the GNU Prolog system. Journal of Functional and Logic Programming 6 (October 2001)

    Google Scholar 

  9. Fages, F., Soliman, S., Coolen, R.: CLPGUI: a generic graphical user interface for constraint logic programming. Journal of Constraints, Special Issue on User-Interaction in Constraint Satisfaction 9(4), 241–262 (2004)

    Google Scholar 

  10. Goud, R., van Hee, K.M., Post, R.D.J., van der Werf, J.M.E.M.: Petriweb: A Repository for Petri Nets. In: Donatelli, S., Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024, pp. 411–420. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Heiner, M., Gilbert, D., Donaldson, R.: Petri Nets for Systems and Synthetic Biology. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 215–264. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Helfert, S., Estevez, A., Bakker, B., Michels, P., Clayton, C.: Roles of triosephosphate isomerase and aerobic metabolism in trypanosoma brucei. Biochem. J. 357, 117–125 (2001)

    Article  Google Scholar 

  13. Kinuyama, M., Murata, T.: Generating siphons and traps by petri net representation of logic equations. In: Proceedings of 2nd Conference of the Net Theory SIG-IECE, pp. 93–100 (1986)

    Google Scholar 

  14. Kohn, K.W.: Molecular interaction map of the mammalian cell cycle control and DNA repair systems. Molecular Biology of the Cell 10(8), 2703–2734 (1999)

    Article  Google Scholar 

  15. Lautenbach, K.: Linear algebraic calculation of deadlocks and traps. In: Voss, G., Rozenberg (eds.) Concurrency and Nets Advances in Petri Nets, pp. 315–336. Springer, New York (1987)

    Chapter  Google Scholar 

  16. le Novère, N., Bornstein, B., Broicher, A., Courtot, M., Donizelli, M., Dharuri, H., Li, L., Sauro, H., Schilstra, M., Shapiro, B., Snoep, J.L., Hucka, M.: BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acid Research 1(34), D689–D691 (2006)

    Google Scholar 

  17. Minoux, M., Barkaoui, K.: Deadlocks and traps in petri nets as horn-satisfiability solutions and some related polynomially solvable problems. Discrete Applied Mathematics 29, 195–210 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mitchell, D., Selman, B., Levesque, H.: Hard and easy distributions of SAT problems. In: Proceedings of the 10th National Conference on Artificial Intelligence, pp. 459–465. AAAI Press (1992)

    Google Scholar 

  19. Murata, T.: Petri nets: properties, analysis and applications. Proceedings of the IEEE 77(4), 541–579 (1989)

    Article  Google Scholar 

  20. Nabli, F.: Finding minimal siphons as a CSP. In: CP 2011: The Seventeenth International Conference on Principles and Practice of Constraint Programming, Doctoral Program, pp. 67–72 (September 2011)

    Google Scholar 

  21. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice Hall, New Jersey (1981)

    Google Scholar 

  22. Reddy, V.N., Mavrovouniotis, M.L., Liebman, M.N.: Petri net representations in metabolic pathways. In: Hunter, L., Searls, D.B., Shavlik, J.W. (eds.) Proceedings of the 1st International Conference on Intelligent Systems for Molecular Biology (ISMB), pp. 328–336. AAAI Press (1993)

    Google Scholar 

  23. Schoeberl, B., Eichler-Jonsson, C., Gilles, E., Muller, G.: Computational modeling of the dynamics of the map kinase cascade activated by surface and internalized egf receptors. Nature Biotechnology 20(4), 370–375 (2002)

    Article  Google Scholar 

  24. Soliman, S.: Finding minimal P/T-invariants as a CSP. In: Proceedings of the Fourth Workshop on Constraint Based Methods for Bioinformatics, WCB 2008, associated to CPAIOR 2008 (May 2008)

    Google Scholar 

  25. Stryer, L.: Biochemistry. Freeman, New York (1995)

    Google Scholar 

  26. Tanimoto, S., Yamauchi, M., Watanabe, T.: Finding minimal siphons in general petri nets. IEICE Trans. on Fundamentals in Electronics, Communications and Computer Science, 1817–1824 (1996)

    Google Scholar 

  27. Yamauchi, M., Watanabe, T.: Time complexity analysis of the minimal siphon extraction problem of petri nets. IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences, 2558–2565 (1999)

    Google Scholar 

  28. Zevedei-Oancea, I., Schuster, S.: Topological analysis of metabolic networks based on petri net theory. Silico Biology 3(29) (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nabli, F., Fages, F., Martinez, T., Soliman, S. (2012). A Boolean Model for Enumerating Minimal Siphons and Traps in Petri Nets. In: Milano, M. (eds) Principles and Practice of Constraint Programming. CP 2012. Lecture Notes in Computer Science, vol 7514. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33558-7_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33558-7_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33557-0

  • Online ISBN: 978-3-642-33558-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics