Skip to main content

Max-Sur-CSP on Two Elements

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7514))

Abstract

Max-Sur-CSP is the following optimisation problem: given a set of constraints, find a surjective mapping of the variables to domain values that satisfies as many of the constraints as possible. Many natural problems, e.g. Minimum k-Cut (which has many different applications in a variety of fields) and Minimum Distance (which is an important problem in coding theory), can be expressed as Max-Sur-CSPs. We study Max-Sur-CSP on the two-element domain and determine the computational complexity for all constraint languages (families of allowed constraints). Our results show that the problem is solvable in polynomial time if the constraint language belongs to one of three classes, and NP-hard otherwise. An important part of our proof is a polynomial-time algorithm for enumerating all near-optimal solutions to a generalised minimum cut problem. This algorithm may be of independent interest.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bach, W., Zhou, H.: Approximation for maximum surjective constraint satisfaction problems. arXiv:1110.2953v1 [cs.CC] (2011)

    Google Scholar 

  2. Bodirsky, M., Kára, J., Martin, B.: The complexity of surjective homomorphism problems – a survey. Discrete Applied Mathematics 160(12), 1680–1690 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bulatov, A.A.: A dichotomy theorem for constraint satisfaction problems on a 3-element set. J. ACM 53, 66–120 (2006)

    Article  MathSciNet  Google Scholar 

  4. Bulatov, A.A., Dalmau, V., Grohe, M., Marx, D.: Enumerating homomorphisms. J. Comput. Syst. Sci. 78(2), 638–650 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cohen, D.A.: Tractable decision for a constraint language implies tractable search. Constraints 9, 219–229 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cohen, D., Cooper, M., Jeavons, P., Krokhin, A.: Supermodular functions and the complexity of max CSP. Discrete Applied Mathematics 149(1-3), 53–72 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cohen, D.A., Cooper, M.C., Jeavons, P.G., Krokhin, A.A.: The complexity of soft constraint satisfaction. Artif. Intell. 170, 983–1016 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Creignou, N.: A dichotomy theorem for maximum generalized satisfiability problems. J. Comput. Syst. Sci. 51, 511–522 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Creignou, N., Hébrard, J.J.: On generating all solutions of generalized satisfiability problems. Informatique Théorique et Applications 31(6), 499–511 (1997)

    MATH  Google Scholar 

  10. Creignou, N., Hermann, M.: Complexity of generalized satisfiability counting problems. Information and Computation 125(1), 1–12 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Creignou, N., Khanna, S., Sudan, M.: Complexity classifications of boolean constraint satisfaction problems. Society for Industrial and Applied Mathematics, Philadelphia (2001)

    Book  MATH  Google Scholar 

  12. Dechter, R., Itai, A.: Finding all solutions if you can find one. In: AAAI 1992 Workshop on Tractable Reasoning, pp. 35–39 (1992)

    Google Scholar 

  13. Golovach, P.A., Paulusma, D., Song, J.: Computing Vertex-Surjective Homomorphisms to Partially Reflexive Trees. In: Kulikov, A., Vereshchagin, N. (eds.) CSR 2011. LNCS, vol. 6651, pp. 261–274. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Horn, A.: On sentences which are true of direct unions of algebras. The Journal of Symbolic Logic 16(1), 14–21 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jonsson, P., Klasson, M., Krokhin, A.: The approximability of three-valued max CSP. SIAM J. Comput. 35, 1329–1349 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jonsson, P., Kuivinen, F., Thapper, J.: Min CSP on Four Elements: Moving beyond Submodularity. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 438–453. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Karger, D.R.: Global min-cuts in RNC, and other ramifications of a simple min-out algorithm. In: Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1993, pp. 21–30. Society for Industrial and Applied Mathematics, Philadelphia (1993)

    Google Scholar 

  18. Khanna, S., Sudan, M., Trevisan, L., Williamson, D.P.: The approximability of constraint satisfaction problems. SIAM J. Comput. 30, 1863–1920 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kolmogorov, V., Živný, S.: The complexity of conservative valued CSPs. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, pp. 750–759. SIAM (2012)

    Google Scholar 

  20. Martin, B., Paulusma, D.: The Computational Complexity of Disconnected Cut and 2K2-Partition. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 561–575. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  21. Nagamochi, H., Nishimura, K., Ibaraki, T.: Computing all small cuts in an undirected network. SIAM J. Discret. Math. 10, 469–481 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Golovach, P.A., Lidický, B., Martin, B., Paulusma, D.: Finding vertex-surjective graph homomorphisms. arXiv:1204.2124v1 [cs.DM] (2012)

    Google Scholar 

  23. Raghavendra, P.: Optimal algorithms and inapproximability results for every CSP? In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, STOC 2008, pp. 245–254. ACM, New York (2008)

    Google Scholar 

  24. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, STOC 1978, pp. 216–226. ACM, New York (1978)

    Chapter  Google Scholar 

  25. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM Journal on Computing 8(3), 410–421 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  26. Vardy, A.: Algorithmic complexity in coding theory and the minimum distance problem. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, STOC 1997, pp. 92–109. ACM, New York (1997)

    Chapter  Google Scholar 

  27. Vazirani, V., Yannakakis, M.: Suboptimal Cuts: Their Enumeration, Weight and Number. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 366–377. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Uppman, H. (2012). Max-Sur-CSP on Two Elements. In: Milano, M. (eds) Principles and Practice of Constraint Programming. CP 2012. Lecture Notes in Computer Science, vol 7514. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33558-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33558-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33557-0

  • Online ISBN: 978-3-642-33558-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics