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Abstract. This paper presents a method for extrinsic camera calibra-
tion (estimation of camera rotation and translation matrices) from a
sequence of images. It is assumed camera intrinsic matrix and distortion
coefficients are known and fixed during the entire sequence. Performance
of the presented method is evaluated on a number of multi-view stereo
test datasets. Presented algorithm can be used as a first stage in a dense
stereo reconstruction system.

1 Introduction

Motivation for development of the method described in this paper was our prior
research on human face reconstruction from a sequence of images from a monoc-
ular camera. Classical multi-view stereo reconstruction algorithms (as surveyed
in [10]) assume fully calibrated setup, where both intrinsic and extrinsic camera
parameters are known for each frame. Such algorithms cannot be used when an
object moves or rotates freely in front of the camera or if a camera is moved to
different positions (in uncontrolled manner) and a number of images of the static
object is taken. Even if camera intrinsic parameters are known and fixed during
the entire sequence, extrinsic parameters (rotation matrix and translation vector
relating camera reference frame with the world reference frame) are not known.
So before a multi-view stereo reconstruction algorithm can be used, a prior step
to estimate camera pose for each image in the sequence is required.

Our approach is based on ideas used in modern structure from motion prod-
ucts such as Bundler [8] or Microsoft PhotoSynth. These solutions work by find-
ing geometric relationship (encoded by a fundamental matrix) between 2 images
of the scene taken from different viewpoints. This is usually done by running a
robust parameter estimation method (e.g. RANSAC) combined with 7-point or
8-point fundamental matrix estimation algorithm using putative pairs of corre-
sponding features from 2 images.

In contrast to aforementioned solutions, we assume fixed and known camera
intrinsic parameters. Making such assumptions is beneficial for 2 reasons. First,
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less pairs of corresponding points are required to recover 2-view scene geometry.
Second, fundamental matrix estimation algorithms do not work for planar sur-
faces (so called planar degeneracy) [2]. When intrinsic matrix is known essential
matrix can be estimated instead of fundamental matrix. So assuming known in-
trinsic parameters is advantageous when processing sequences of images of low
texture (e.g. depicting a rotating human face) or planar objects.

Unfortunately known algorithms for essential matrix estimation from 5 pairs
of corresponding points are very complex and implementations is not freely avail-
able. E.g. Nister 5-point algorithm [5] requires SVD, partial Gauss-Jordan elim-
ination with pivoting of a system of of polynomial equations of the third degree
and finally finding roots of a 10th degree polynomial. Such complexity can po-
tentially lead to significant numerical errors and make such methods inapplicable
in practice.

The aim of this paper is twofold: first to present a solution for estimation of
extrinsic parameters from a sequence of images taken by a calibrated camera,
and second, to asses the accuracy of the presented method on various datasets.

2 Extrinsic camera calibration method details

An input to our extrinsic camera calibration method is a sequence of images
from a monocular camera, such as depicted on Fig. 3. It is assumed camera
intrinsic matrix K and distortion coefficients are known and fixed for the entire
sequence. The following steps are done to recover camera extrinsic parameters
for each image in the input sequence:

1. Initial processing: geometric distortions removal and (when required) object
segmentation from the background. In scenarios where camera is moving
(such as a sequence depicted on Fig. 3(b)) segmentation is not necessary.
When camera is fixed and an object is moving (e.g. placed on a rotating
turnstile, such as Fig. 3(a)), the object should be segmented from the back-
ground. Further processing is done on undistorted and segmented images.

2. Detection of SIFT features on all images in the sequence.
3. Estimation of the relative pose between 2 initial images in the sequence:

(a) Finding pairs of putative matches between SIFT features on both images.
(b) Computation of essential matrix E12 relating two images using RANSAC

[1] with Nister [5] solution to 5-point relative pose problem. The relative
pose (translation vector T2 and rotation matrix R2) is recovered from
E12 as described in [5].

(c) Construction of a sparse 3D model (as a point cloud {Xi}) by metric
triangulation of pairs of consistent features from two images.

(d) 3D points and camera pose refinement using bundle adjustment method
[9] to minimize reprojection error.

4. Iterative estimation of an absolute pose of each subsequent image In with
respect to 3D model built so far:
(a) Finding putative matches between features on the image In and 3D

points already in the model.



(b) Computation of an absolute pose (translation vector Tk and rotation
matrix Rk) of the image Ik with respect to the 3D model. This is done
using RANSAC [1] with Finsterwalder 3-point perspective pose estima-
tion algorithm [3].

(c) Guided matching of features from currently processed image Ik and im-
ages processed in the previous steps. New 3D points are generated and
added to 3D model (and support of existing 3D points is extended) by
metric triangulation of matching features.

(d) 3D points and camera pose refinement using bundle adjustment method
[9] to minimize reprojection error.

(e) Removal of 3D points with the worst support

Additional notes on algorithm steps:

(a) (b)

Fig. 1. Pairs of matches between 2 images (a) putative matches (b) matches
consistent with epipolar geometry encoded by estimated essential matrix E

Step 2 SIFT features [7] are a common choice in modern structure from motion
solutions. This is dictated by their invariance to scaling, rotation and, to some
extent, lighting variance and small affine image transformations. These prop-
erties are important when finding corresponding features on images taken from
different viewpoints. At this step SIFT features are found and feature descriptors
(represented as vectors from R128) are computed for each image in the sequence.
Threshold of SIFT feature detector is dynamically tuned to ensure there’s a suffi-
cient number of keypoints found on each image. In our implementation if there’s
less than 500 keypoints found the detector is re-run with decreased threshold.

As camera intrinsic matrix K is known and fixed during entire sequence,
coordinates of detected features are normalized, that is multiplied by K−1. This
is equivalent to assuming that camera intrinsic matrix is identity. All further
processing is done using normalized coordinates and assuming camera intrinsic
matrix is identity.

Step 3a For each keypoint from the first image the closest (in the feature de-
scriptor space) keypoint from the second image is found. Only pairs fulfilling
nearest neighbour ratio criterion (that is ratio of a distance to the corresponding



keypoint to the distance to the second-closest keypoint on the other image is
below given threshold Θ = 1.25) are kept as putative matches. See Fig. 1(a).

Step 3b RANSAC [1] robust parameter estimation is used with our implementa-
tion of Nister 5-point algorithm [5] to estimate relative pose between 2 cameras.
In each RANSAC iteration 5 pairs (the minimum number of correspondences
needed to estimate relative pose between 2 cameras) of potentially matching
keypoints are sampled at random from a set of putative correspondences and an
essential matrix E is estimated using the chosen sample. The estimation that
produces the biggest number of inliers (that is putative matches consistent with
epipolar geometry induced by an estimated essential matrix E) is kept. Results
of this step are: essential matrix E12 describing stereo geometry between first 2
images, rotation matrix R2 and translation vector T2 describing the relative pose
of the second image with respect to the first image and RANSAC consensus set
consisting of pairs of matching features consistent with epipolar geometry (see
Fig. 1(b))

Step 3c 3D model is constructed by metric triangulation of pairs of compatible
features from two images. Two criteria are taken into account: visual compatibil-
ity (Euclidean distance between descriptors of corresponding features is below a
threshold) and geometric compatibility (reprojection error is below a threshold).
First all points from RANSAC consensus set are used to construct 3D points
by metric triangulation. Then additional matches between 2 images are sought
with a guided matching.

Step 3d Bundle adjustment method [9] minimizes total reprojection error by
joint optimization of camera poses and 3D points position using Levenberg-
Marquardt nonlinear optimization algorithm. 3 It is assumed world coordinate
frame aligns with the first camera coordinate frame, so first camera pose is fixed
(R1 = I, T1 = 0) and only second camera pose and 3D points coordinates are
optimized by minimizing:

min
R2,T2,{Xi}

2∑
i=1

N∑
j=1

∥∥Ri (Xj − Ti)− xij
∥∥ (1)

where xij are coordinates of the feature from i-th image used to construct 3D
point Xj and Ri (Xj − Ti) is a projection of a 3D point Xj onto i-th image.

Step 4c For each keypoint k from a currently processed image In a number (20
in our implementation) of closest (in feature descriptor space) keypoints from
already processed, nearby images is sought. Features visually and geometrically
compatible with k are retained. If k has compatible features from at least 2 other
images a new 3D point is constructed by metric triangulation and compatible
keypoints form its support.

3 sba sparse bundle adjustment library [6] available at http://www.ics.forth.gr/

~lourakis/sba/ is used in our implementation

http://www.ics.forth.gr/~lourakis/sba/
http://www.ics.forth.gr/~lourakis/sba/


Step 4e Support of all 3D points is verified and features which are not geomet-
rically compatible (e.g. due to cameras pose or 3D points position refinement)
are removed. Then 3D points not having a support from at least 3 images are
removed.

Final results are depicted on Fig. 2, where black crosses represent recovered
camera poses for Dino input sequence (Fig. 3(a)).

Fig. 2. Estimated camera poses (black crosses) and a sparse object model (dots)
recovered from a Dino dataset (Fig. 3(a)

3 Experiments

An accuracy of the proposed method was evaluated quantitatively using five
multi-view stereo datasets with given camera intrinsic and extrinsic parameters.
The following multi-view stereo datasets were used:

– Dataset [10] 4 (Fig. 3(a)) containing sequences of images (640x480 pixels) of
a plaster dinosaur sampled every 7.5 degree on a ring around it. This seems a
very demanding dataset for automatic recovery of camera pose as an object
is almost textureless and relatively few distinctive keypoints can be found
on each image.

– Dataset [11] 5 (Fig. 3(b), 3(c), 3(d), 3(e)) containing sequences of high reso-
lution (3072x2048 pixels) images of architectural objects. Number of images
in each sequence vary from 8 to 19.

Error measures Rotation error Rerr is measured as the rotation angle needed
to align ground truth rotation matrix Ri and estimated rotation matrix R̂i for
i-th image in the sequence.

Rerr = cos−1
Tr (∆Ri)− 1

2
,

4 Available at http://vision.middlebury.edu/mview/data/
5 Available at http://cvlab.epfl.ch/~Strecha/multiview/denseMVS.html

http://vision.middlebury.edu/mview/data/
http://cvlab.epfl.ch/~Strecha/multiview/denseMVS.html


(a) Dino

(b) Fountain-P11

(c) Castle-P19

(d) Entry-P10

(e) Herz-Jesu-P8

Fig. 3. Exemplary images from datasets used in experiments.



(a) Dino dataset (Fig 3(a))

(b) Fountain-P11 dataset (Fig 3(b))

(c) Castle-P19 dataset (Fig 3(c))

(d) Entry-P10 dataset (Fig 3(d))

(e) Herz-Jesu-P8 dataset (Fig 3(e))

Fig. 4. Performance of extrinsic camera calibration method on test datasets.
Left column: rotation error Rerr and translation error (angular component) Terr,
right column: relative camera center error Cerr



where ∆Ri = R−1i R̂i is the rotation matrix that aligns estimated rotation R̂i

with the ground truth rotation Ri and Tr(∆Ri) is a trace of ∆Ri.
It is not possible to directly compare a ground truth translation vector Ti

and estimated translation vector T̂i, as estimation of camera extrinsic parameters
given known intrinsic parameters is possible only up to a scale factor. Angular
component of translation error, that is an angle between true translation vector
Ti and estimated translation vector T̂i, is examined using the formula:

Terr = cos−1

(
T̂i · Ti
|T̂i||Ti|

)
In order to verify accuracy of translation vector estimation the following

procedure is deployed. First the scale s between two point clouds consisting of
ground truth and estimated camera centres is calculated using the formula taken
from [4]:

s =

√√√√√∑n
i=1 ‖Ti − T ′‖

2∑n
i=1

∥∥∥T̂i − T̂ ′∥∥∥2 ,

where T ′ = 1
n

∑n
i=1 Ti is a centroid of a point cloud consisting of ground truth

camera centres and T̂ ′ = 1
n

∑n
i=1 T̂i is a centroid of estimated camera centres

cloud. Then estimated translation vectors are brought to the same scale with
the ground truth by multiplying by s. Unfortunately ground truth coordinate
system scale is different in different datasets and often not given in physical
units. To allow a meaningful interpretation an estimated error is renormalized
using a distance between first a second ground truth camera centres as a unit.
This gives the final formula for relative camera centre error:

Cerr =
1

α

(
s ∗ T̂i − Ti

)
,

where α = T0− T1 is a difference between first and second ground truth camera
centres.

Results Error metrics of our extrinsic camera calibration method on test datasets
are depicted on Fig. 3. Results for outdoor sequences (Fountain-P11, Castle-
P19, Entry-P10, Herz-Jesu-P8) are comparable. Rotational error Rerr is small
and varies between 0 and 0.1 degree. Angular component of translational error
Terr is also small and varies between 0 and 0.1 degree with the exception of
Entry-P10 dataset, where it peaks above 0.5 for second image in the sequence.
This is likely caused by an incorrect estimation of the relative pose of the second
camera with respect to the first camera. Images in Entry-P10 dataset contain
many repetitive structures (windows) and some incorrect matches must have
been established between keypoints from first two images.

Relative camera center error Cerr shows two different characteristics. For
Dino, Fountain-P11, Herz-Jesu-P8 datasets it increases for further images in the
sequence, whereas for Castle-P19 and Entry-P10 no trend can be noticed and the



error doesn’t grow. Castle-P19 and Entry-P10 datasets contain a lot of highly
distinctive keypoints (e.g. window corners) which are matched across multiple
distant images. In each case relative camera centre error Cerr is below 0.06 which
means that if distance between first and second camera is 1m then each camera
is positioned with 6 cm accuracy. In all test datasets distance between cameras
associated with the first and last image in the sequence is about 10 times bigger
than the distance between 2 first cameras. So distant cameras, 10 m apart, are
localized with 6 cm accuracy.

Algorithm also performs quite well for the most demanding dataset: Dino.
Even for distant frames (where object was rotated over 100 degrees from its
initial position) rotation error Rerr is below 0.4 degree.

4 Conclusions and Future Work

Conducted experiments proved that the presented method can be used to recover
camera extrinsic parameters from a sequence of images quite accurately. On
all but one datasets relative camera center error Cerr was below 0.06 which
means that if distance between first and second camera is 1m all other cameras
are located within 6 cm accuracy. For some sequences results are significantly
better, e.g. for Fountain-P11 and Herz-Jesu-P8 Cerr is below 0.015 which means
cameras are located with 1.5 cm accuracy (assuming 1 m distance between first
and second camera).

The algorithm performed very well on an objects with relatively little texture
(Dino sequence). Errors in subsequent images were increasing (as there were very
few keypoints visible from a wide angle) but even when an object rotated almost
120 degrees rotation matrix estimation error Rerr was below 0.4 degree.

In the future it is planned to use the presented method as a first stage in
a dense stereo reconstruction system. After camera pose is estimated for each
image in the sequence multi-view stereo reconstruction method will be used to
generate a dense point cloud representing an object.
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