Skip to main content

Analysis of White Blood Cell Differential Counts Using Dual-Tree Complex Wavelet Transform and Support Vector Machine Classifier

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7594))

Abstract

A widely used pathological screening test for blood smears is the complete blood count which classifies and counts peripheral particles into their various types. We particularly interested in the classification and counting of the five main types of white blood cells (leukocytes) in a clinical setting where the quality of microscopic imagery may be poor. A critical first step in the medical analysis of cytological images of thin blood smears is the segmentation of individual cells. The quality of the segmentation has a great influence on the cell type identification, but for poor quality, noisy, and/or low resolution images, segmentation is correspondingly less reliable. In this paper, we compensate for less accurate segmentation by extracting features based on wavelets using the Dual-Tree Complex Wavelet Transform (DT-CWT) which is based on multi-resolution characteristics of the image. These features then form the basis of classification of white blood cells into their five primary types with a Support Vector Machine (SVM) that performs classification by constructing hyper-planes in a high multi-dimensional space that separates cases of different classes. This approach was validated with experiments conducted on poor quality, normal blood smear images.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben-Hur, A., Weston, J.: A user’s guide to support vector machines. In: Carugo, O., Eisenhaber, F. (eds.) Data Mining Techniques for the Life Sciences. Methods in Molecular Biology, vol. 609, pp. 223–239. Humana Press (2010)

    Google Scholar 

  2. Bentley, S., Lewis, S.: The use of an image analyzing computer for the quantification of red cell morphological characteristics. British Journal of Hematology 29, 81–88 (1975)

    Article  Google Scholar 

  3. Chan, H., Li-Jun, J., Jiang, B.: Wavelet transform and morphology image segmentation algorism for blood cell. In: 4th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 542–545 (May 2009)

    Google Scholar 

  4. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley Interscience (November 2001)

    Google Scholar 

  5. Habibzadeh, M., Krzyżak, A., Fevens, T.: Application of pattern recognition techniques for the analysis of thin blood smear images. Journal of Medical Informatics & Technologies 18, 29–40 (2011)

    Google Scholar 

  6. Habibzadeh, M., Krzyżak, A., Fevens, T.: Comparative Analysis of White Blood Cell Differential Counts using CNN and SVM with K-PCA Classifiers (2012) (manuscript)

    Google Scholar 

  7. Habibzadeh, M., Krzyżak, A., Fevens, T., Sadr, A.: Counting of RBCs and WBCs in noisy normal blood smear microscopic images. In: SPIE Medical Imaging, vol. 7963, pp. 79633I–1 – 79633I–11 (February 2011)

    Google Scholar 

  8. Kingsbury, N.: Design of q-shift complex wavelets for image processing using frequency domain energy minimization. In: International Conference on Image Processing (ICIP), vol. 1, pp. I – 1013–16 (2003)

    Google Scholar 

  9. Lauer, F., Suen, C.Y., Bloch, G.: A trainable feature extractor for handwritten digit recognition. Journal of Pattern Recognition 40(6), 1816–1824 (2007)

    Article  MATH  Google Scholar 

  10. Montseny, E., Sobrevilla, P., Romani, S.: A fuzzy approach to white blood cells segmentation in color bone marrow images. In: IEEE International Conference on Fuzzy Systems, vol. 1, pp. 173–178 (2004)

    Google Scholar 

  11. Ramoser, H., Laurain, V., Bischof, H., Ecker, R.: Leukocyte segmentation and classification in blood-smear images. In: 27th IEEE Annual Conference Engineering in Medicine and Biology, Shanghai, China, pp. 3371–3374 (September 2005)

    Google Scholar 

  12. Rowan, R., England, J.M.: Automated examination of the peripheral blood smear. In: Automation and Quality Assurance in Hematology. ch. 5, pp. 129–177. Blackwell Scientific, Oxford (1986)

    Google Scholar 

  13. Sabino, D.M.U., Costa, L.F., Rizzatti, E.G., Zago, M.A.: Toward leukocyte recognition using morphometry, texture and color. In: IEEE International Symposium on Biomedical Imaging: Nano to Macro, vol. 1, pp. 121–124 (April 2004)

    Google Scholar 

  14. Selesnick, I.W., Baraniuk, R.G., Kingsbury, N.C.: The dual-tree complex wavelet transform. IEEE Signal Processing Magazine 22(6), 123–151 (2005)

    Article  Google Scholar 

  15. Theera-Umpon, N., Dhompongsa, S.: Morphological Granulometric Features of Nucleus in Automatic Bone Marrow White Blood Cell Classification. IEEE Transactions on Information Technology in Biomedicine 11(3), 353–359 (2007)

    Article  Google Scholar 

  16. Ushizima, D.M., Lorena, A.C., de Carvalho, A.C.P.L.F.: Support Vector Machines Applied to White Blood Cell Recognition. In: International Conference on Hybrid Intelligent Systems, Los Alamitos, CA, USA, pp. 379–384 (2005)

    Google Scholar 

  17. Yampri, P., Pintavirooj, C., Daochai, S., Teartulakarn, S.: White Blood Cell Classification based on the Combination of Eigen Cell and Parametric Feature Detection. In: 1st IEEE Conference on Industrial Electronics and Applications, pp. 1–4 (May 2006)

    Google Scholar 

  18. Dambreville, S., Rathi, Y., Tannenbaum, A.: Statistical shape analysis using kernel PCA. In: SPIE Electronic Imaging (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Habibzadeh, M., Krzyżak, A., Fevens, T. (2012). Analysis of White Blood Cell Differential Counts Using Dual-Tree Complex Wavelet Transform and Support Vector Machine Classifier. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds) Computer Vision and Graphics. ICCVG 2012. Lecture Notes in Computer Science, vol 7594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33564-8_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33564-8_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33563-1

  • Online ISBN: 978-3-642-33564-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics