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Abstract. In this paper, we present an approach for tackling the prob-
lem of automatically detecting and tracking a varying number of people
in complex scenes. We follow a robust and fast framework to handle
unreliable detections from each camera by extensively making use of
multi-camera systems to handle occlusions and ambiguities. Instead of
using the detections of each frame directly for tracking, we associate and
combine the detections to form so called tracklets. From the triangula-
tion relationship between two views, the 3D trajectory is estimated and
back-projected to provide valuable cues for particle filter tracking. Most
importantly, a novel motion model considering different velocity cues is
proposed for particle filter tracking. Experiments are done on the chal-
lenging dataset PETS’09 to show the benefits of our approach and the
integrated multi-camera extensions.

1 Introduction

Multi-object tracking is important for various applications in computer vision,
such as visual surveillance, traffic control, sports analysis, or activity recogni-
tion. Since cameras are getting cheaper and tracking definitely benefits from
organized multiple cameras with different views, it is sensible to track multiple
objects based on calibrated multi-camera systems. In general, tracking multiple
objects in real-time in an accurate way is very challenging due to background
clutter, occlusion between objects and background, and the appearance similar-
ity between objects to be tracked. The difficulties additionally arise from the
aspect of how to reliably fuse the information from individual cameras and how
to perform robust global tracking in an efficient manner.

With the improvement of detection algorithms [1,2] both in accuracy and
computational feasibility, tracking-by-detection is one of the most popular con-
cepts for tracking [3,4]. Targets to be tracked can be initialized by continuously
applying detectors to single image frames. Typically, the output of a detector
is a set of image regions with confidence scores. Incorporating temporal context
here is necessary due to the high amount of false positives and missing detec-
tions as shown in the left part of Fig. 1. Recent tracking approaches [3,4,5,6] try
to associate the detections and track objects from uncalibrated single cameras.
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Fig. 1. Overview of our framework. Left images show outputs of a person detector [1]
from two views of the PETS’09 database highlighting the necessity of tracking and 3D
reasoning.

Additionally, multi-camera systems are also used for efficient tracking. Corre-
spondences of observations of walking humans across multiple cameras can be
established by geometric constraints like a planar homography [7]. The work of
[8] reconstructs the top-view of the ground plane and map the vertical axes of a
person in each view to the top-view to intersect at a single point that is assumed
to be the location of the person on the ground. Many other papers also make
full use of the ground plane assumption [9,10].

We intend to utilize two or more calibrated cameras and fuse the information
in a joint tracking-by-detection framework without using homography restric-
tions or top-view images. As we will see later, this yields more precise results.
In details, detections in single camera images with lower confidence scores which
are considered to belong to the same objects are rejected first. Afterwards, de-
tections are associated to form more reliable tracklets. Once tracklets are found,
they are used to update the motion model as well as the target model for parti-
cle filter tracking. Secondly, global tracking based on estimating the 3D position
is realized, where we focus primarily on occlusion reasoning from a geometri-
cal point of view. Thirdly, particle filters are initialized with tracklets and the
motion is estimated in subsequent frames.

The paper is structured as follows. The details of our algorithm are pre-
sented in Section 2. Experiments on PETS’09 1 are evaluated qualitatively and
compared to other state-of-the-art algorithms in Section 3. Finally, Section 4
concludes the paper with a summary and an outlook.

2 Tracking-by-Detection with Multi-Camera Systems

A block diagram of our tracking approach is shown in Fig. 1. The algorithm
mainly consists of three parts: data association, particle filters for tracking, and
3D trajectory estimation. First of all, we use data association techniques to

1 http://www.cvg.rdg.ac.uk/PETS2009/
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combine detections after k consecutive frames to form tracklets. Each tracklet is
then associated with a particle filter. The key idea is that the particle filter addi-
tionally uses the estimated 3D trajectory to fuse the information from multiple
cameras. Furthermore, back-projecting this 3D trajectory into every view allows
for recovering from missed detections. To eliminate duplicate tracking results,
we use several similarity measurements based on appearance features as well as
geometry reasoning.

2.1 Data Association

Initializing a particle filter tracker for each detection directly in each frame
may lead to unreliable tracking results. Therefore, we use an intuitive match-
ing criteria to find corresponding detections in k subsequent frames. If such a
correspondence is found, the detections in all k frames define a tracklet and are
taken into account for particle filter tracking. This reduces the number of false
positive detections to a large extent. The correspondences are found by greedy
association, which showed results comparable to the assignment problem solved
by the Hungarian algorithm [3]. We basically follow the work of [3], but modify
it in two important aspects: first, we associate the detections in single cameras
to get more reliable tracklets. Furthermore, a calibrated multi-camera system is
used to estimate the 3D trajectory and use the projections in each camera to
provide valuable cues especially in the case of occlusions and ambiguities.

To find the best associated detections in time t in camera i, we consider the
Manhattan distance and the overlap ratio between each current detection d with
the previous detection from a tracklet T using a gating function:

g(d, T ) =

{
1 if o(d, T ) ≥ σ and M(d, T ) ≤ ξ(T )

0 otherwise
. (1)

The value g(d, T ) = 1 indicates that this detection belongs to the tracklet con-
sidered. In equation (1), the overlap ratio o(d, T ) between the two regions is
defined as follows:

o(d, T ) = 2 · d ∩ T
|d| ∪ |T |

, (2)

where we interpret d and T as sets of image pixels. The parameter σ is set
experimentally. The Manhattan distance M(d, T ) is thresholded depending on
the size of the tracklet:

ξ(T ) = α · [height(T ) + width(T )] , (3)

where the parameter α < 1 is manually chosen.
If a detection passes the gating function, it will be associated to the corre-

sponding tracklet. Furthermore, the input to the thresholding operation is a set
of ranked detections of which the detections with higher scores that satisfy the
conditions stated above will be selected primarily.



2.2 Data Fusion from Multiple Views

Fusing information from multiple views is done by reconstructing the 3D posi-
tion of the centroid of the object. With the knowledge of epipolar geometry, it is
known that a corresponding pair of points in two cameras is limited to epipolar
lines [11]. The correspondence of detections is obtained by the combination of
Euclidean distances between their centers to respective epipolar lines and ap-
pearance similarity between them. Afterwards, we estimate the 3D position of
the object center from two views using triangulation [11].

3D Trajectory After obtaining all possible 3D points from all the cameras, 3D
points which are near to each other are considered to belong to the same object,
which are merged by simple averaging of their 3D vectors. The 3D trajectory of
an object is formed based on associating the 3D points frame by frame.

Occlusion Reasoning The most challenging part of multi-object tracking is
how to tackle tracking under occlusion. When there exists inter-object occlusion
or the object is occluded by background objects, the target in some views will be
partially (or totally) invisible. This might lead to the failure of both detection
and tracking. Therefore, many works consider occlusion reasoning to improve
the results [3]. The inter-object occlusion reasoning is done by considering the
intermediate detection confidence as a part of the observation model of particle
filters. In [12], occlusion is taken into account by calculating the visible parts of
the object and trajectory estimation is achieved by energy function minimization.

However, we want to take advantage of multiple views and intend to perform
inter-object occlusion reasoning from a geometrical point of view. We assume
two kinds of occlusion: first situation, if an object was trackable previously and
there is another one or more trackable objects nearby, then we regard this object
as occluded by another object, no matter how much proportion of the object is
invisible; second situation, if one detection in a view has more than one corre-
sponding detections in other views for several frames, then it is supposed that
there is occlusion between these detections. After obtaining tracklets and the
3D trajectories of the objects, they are used to update the target model and the
motion model of the particle filter, which is explained in the next section.

2.3 Kernel based Particle Filter

In case of clutter environments, the assumption of Gaussian distributed object
states does not hold. In contrast, particle filters are able to model flexible and
multi-modal distributions, and are due to this reason better suited for tracking
than Kalman filters [13]. Particle filters use a set of weighted samples, referred
to as particles, to model the posterior distribution [13]:

χt = {x[1]
t ,x

[2]
t , ...,x

[M ]
t } , (4)

where M is the number of particles which is constant in our case and x
[m]
t (with

1 ≤ m ≤M) is a hypothesis of the 2D state (x, y, hx, hy) (object center and half
of the width and height of the object) at time t.



Initialization and Termination Initialization of trackers is done using two
different sources: the newly assigned tracklets and the projections of 3D trajec-
tories of the object which are within detections. We also check whether these
cues have not been associated with any existing tracker. Initially, particles are
distributed uniformly over the initial region with the same weight 1/M .

The appearance model of a target or a candidate is a kernel-based RGB
histogram [14]. The kernel assigns higher weights to the samples close to the
target region centroid to reduce the effect of peripheral samples, which might be
affected by occlusions from the background. After initialization, particles will be
propagated to the new hypothesis states according to the motion model.

Propagation In some papers like [3], people are assumed to walk with con-
stant velocity and the motion model is empirically configured in advance. This
assumption is not valid, when people stop walking during a period of time or
increase speed. Furthermore, this leads to particles, which may converge to to-
tally wrong positions or scale because of ambiguities in the scene. Therefore, we
decide to utilize a robust motion model to guide the particles.

The motion model is composed of three different velocities:

v = β · vT + η · vO + γ · vS with β + η + γ = 1 (5)

where vT is the velocity of the associated tracklet at the current time step t, vO

is the velocity of the tracker at previous time step t−1, and vS is the velocity of
the back projection from the corresponding 3D trajectory at current time step t.
In normal situations β, η, and γ are set equally. During occlusion, the detections
associated with a tracker in a single view are considered to be unreliable. Thus, β
is set to be lower, while γ is given higher weight to incorporate useful information
from other cameras. Besides that, v should not be greater than a maximum
velocity. For people who are walking, this maximum velocity could be defined
by twice of the normal speed of a person. Otherwise, v equals to the previous
velocity to reduce abrupt movement. One advantage of utilization of this motion
model is that the particles can still propagate correctly even during occlusion by
fusing useful cues from other cameras.

Observation Given the propagated particles, the weights of individual parti-
cles are obtained by the Bhattacharyya coefficient [14] between the candidate
and the target. Most importantly, the target model is updated by the associated
detection which is totally visible and satisfies object appearance consistency. Ap-
pearance consistency is based on the reasonable assumption that the appearance
of a person in two consecutive frames does not change significantly.

The final state is estimated by the combination of the mean and the maximum
of the modeled posterior distribution:

xt =
1

2

(
N∑

m=1

w
[m]
t · x[m]

t + arg max
m=1...N

x
[m]
t

)
, (6)



where xt is the final state at time t and w
[m]
t is the corresponding weight of the

particle x
[m]
t .

3 Experiments

Datasets There are not many publicly suitable datasets for multi-person track-
ing in multi-camera systems. Since PETS09/S2.L1 contains different types of hu-
man movements, different types of occlusion, cameras located in different angles
with different illumination and different resolutions, we choose this challenging
dataset for testing our algorithm.

In all our experiments, we do not train the detector specifically for this
dataset and do not perform background extraction. We use the detector of [1]
and the corresponding source code and learned models. Furthermore, no special
information of this dataset is used, which allows for applying our algorithm to
other scenarios and datasets. The ground truth of the first view was provided
by Anton Andriyenko2.

Experimental Setup We use the CLEAR MOT metrics [15] and the evalu-
ation program of [6] to analyze the tracking performance. We compare our algo-
rithm with the state-of-the-art results on PETS’09 S2.L1 in Table 1, where the
performance of other methods are provided in [3]. MOTP considers the precision
of estimated positions and MOTA takes misses, false positives, and mismatches
into account [15]. The parameter k in this dataset is set to 3 and we use 1000
units in the world coordinate system [6] as a threshold to recognize 3D points
belonging to the same object. Furthermore, 8 bins per color channel are used to
compute the RGB histograms and σ is set to 0.4. M = 100 particles are used in
one tracker.

Evaluation Fig. 2 shows six sample images from the dataset. Different colors
identify the different objects with corresponding 2D trajectories. From the im-
ages, we can see that most of the people can be tracked correctly even during
occlusion. There are sometimes double or more assigned trackers to the same
object, partially arised from initialization of trackers by back projected points
of 3D positions that within detections or from missing detections that may sep-
arate long tracklets into several shorter tracklets. The precision of multi-camera
system calibration has heavy effect on the final results, since the 3D positions of
the objects has large impact especially during occlusion.

Evaluation results are shown in Table 1. We can see that our approach out-
performs other methods with respect to the MOTP value. This is mainly due
to the utilization of cues from multiple cameras, which is especially useful be-
cause of missing detections in the first view. Compared to other state-of-the-art
methods, the MOTA value of our approach is lower. This is mainly caused by
reassignment of the same objects or the model update of the particle filters when
groups of people split and merge again. We plan to overcome these issues by not

2 http://www.gris.informatik.tu-darmstadt.de/~aandriye/data.html
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Fig. 2. Tracking results: top and bottom row show results in view 1 and 5, respectively.

Table 1. Results of our approach on PETS’09/S2.L1 compared to state-of-the-art.

Algorithm MOTP MOTA

Our approach 78.8% 60.8%
Breitenstein et al. [3] 56.3% 79.7%
Yang et al. [16] 53.8% 75.9%
Berclaz et al. [9] 60.0% 66.0%
Andriyenko et al. [6] 76.1% 81.4%

only considering the centroid of tracked objects but also the complete 3D shape
to allow for a more exact data association.

Runtime Performance The entire system is implemented in C++, except
that the detection is the MATLAB source code of [1], without taking advantage
of GPU processing. For tracking without considering the time used for detection,
the average runtime is 2.6 seconds for each time step processing images from 7
cameras. Time measurements were done on a standard PC with Intel Core i5
2.8GHz processor.

4 Conclusion

In this paper, we proposed a tracking-by-detection framework for multi-camera
systems. We showed that estimating the 3D position of the tracked objects can
help to solve for ambiguities and provides more robustness to occlusions. Our
framework is based on an efficient detection algorithm, several intuitive rejec-
tion rules, and the combination of several appearance as well as geometry cues.
Specifically speaking, the performance during occlusion is improved by integrat-



ing cues from multiple cameras. This is reflected in the novel motion model in-
corporated in particle filters, where the importance from 3D trajectory is higher
during occlusion.

For future research, we plan to integrate more complex motion models and
uncertainties derived from 3D position estimation. Additionally, a more accurate
target model is also worth to be considered for future investigation. Furthermore,
we will record our own large-scale dataset within a challenging outdoor environ-
ment to allow for a more realistic evaluation.

Acknowledgements: We would like to thank our colleagues for their comments
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