Skip to main content

Diamond-Kite Meshes: Adaptive Quadrilateral Meshing and Orthogonal Circle Packing

  • Conference paper
  • 2032 Accesses

Summary

We describe a family of quadrilateral meshes based on diamonds, rhombi with 60° and 120° angles, and kites with 60°, 90°, and 120° angles, that can be adapted to a local size function by local subdivision operations. The vertices of our meshes form the centers of the circles in a pair of dual circle packings in which each tangency between two circles is crossed orthogonally by a tangency between two dual circles.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreev, E.M.: Convex polyhedra in Lobačevskiĭ spaces. Mat. Sb (N.S.) 81(123), 445–478 (1970)

    MathSciNet  Google Scholar 

  2. Andreev, E.M.: Convex polyhedra of finite volume in Lobačevskiĭ space. Mat. Sb (N.S.) 83(125), 256–260 (1970)

    MathSciNet  Google Scholar 

  3. Benantar, M., Flaherty, J.E., Krishnamoorthy, M.S.: Coloring procedures for finite element computation on shared-memory parallel computers. In: Proc. Symp. on Adaptive, Multilevel, and Hierarchical Computation Strategies, ASME, AMD 157 (1992)

    Google Scholar 

  4. Bern, M., Eppstein, D.: Quadrilateral meshing by circle packing. In: Proc. 6th International Meshing Roundtable, pp. 7–20. Sandia National Laboratories (1997), arXiv:cs.CG/9908016, http://www.imr.sandia.gov/papers/abstracts/Be49.html

  5. Bern, M., Eppstein, D., Gilbert, J.: Provably good mesh generation. J. Computer & Systems Sciences 48(3), 384–409 (1994), doi:10.1016/S0022-0000(05)80059-5

    Article  MathSciNet  MATH  Google Scholar 

  6. Bern, M., Eppstein, D., Hutchings, B.: Algorithms for coloring quadtrees. Algorithmica 32(1), 87–94 (2002), arXiv:cs.CG/9907030, doi:10.1007/s00453-001-0054-2

    Google Scholar 

  7. Bern, M., Mitchell, S.A., Ruppert, J.: Linear-size nonobtuse triangulation of polygons. Discrete & Computational Geometry 14, 411–428 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Birkhoff, G.: Rings of sets. Duke Mathematical Journal 3(3), 443–454 (1937), doi:10.1215/S0012-7094-37-00334-X

    Article  MathSciNet  Google Scholar 

  9. Bowers, P.L., Stephenson, K.: Uniformizing dessins and Belyĭ maps via circle packing. Memoirs of the American Mathematical Society, vol. 805. American Mathematical Society (2004)

    Google Scholar 

  10. Brightwell, G.R., Scheinerman, E.R.: Representations of planar graphs. SIAM Journal on Discrete Mathematics 6(2), 214–229 (1993), doi:10.1137/0406017

    Article  MathSciNet  MATH  Google Scholar 

  11. Conway, J.H., Burgiel, H., Goodman-Strass, C.: Chapter 21: Naming Archimedean and Catalan polyhedra and tilings. In: The Symmetries of Things. A.K. Peters (2008)

    Google Scholar 

  12. Dyn, N., Levin, D., Liu, D.: Interpolatory convexity-preserving subdivision schemes for curves and surfaces. Computer-Aided Design 24(4), 211–216 (1992), doi:10.1016/0010-4485(92)90057-H

    Article  MATH  Google Scholar 

  13. Eppstein, D.: Planar Lombardi drawings for subcubic graphs. To appear in Proc. Int. Symp. Graph Drawing (GD 2012) (2012), arXiv:1206.6142

    Google Scholar 

  14. Eppstein, D.: Approximating the minimum weight Steiner triangulation. Discrete & Computational Geometry 11(2), 163–191 (1994), doi:10.1007/BF02574002

    Article  MathSciNet  MATH  Google Scholar 

  15. Eppstein, D.: Faster circle packing with application to nonobtuse triangulation. Internat. J. Comput. Geom. Appl. 7(5), 485–491 (1997), doi:10.1142/S0218195997000296

    Article  MathSciNet  MATH  Google Scholar 

  16. Eppstein, D.: The graphs of planar soap bubbles (submitted, 2012), arXiv:1207.3761

    Google Scholar 

  17. Eppstein, D., Miller, G.L., Teng, S.-H.: A deterministic linear time algorithm for geometric separators and its applications. Fundamenta Informaticae 22(4), 309–331 (1995), doi:10.3233/FI-1995-2241

    MathSciNet  MATH  Google Scholar 

  18. Frey, P.J., Maréchal, L.: Fast adaptive quadtree mesh generation. In: Proc. 7th International Meshing Roundtable, pp. 211–224. Sandia National Laboratories (1998), http://www.imr.sandia.gov/papers/abstracts/Fr104.html

  19. He, Z.-X.: Solving Beltrami equations by circle packing. Transactions of the American Mathematical Society 322(2), 657–670 (1990), doi:10.2307/2001719

    Article  MathSciNet  MATH  Google Scholar 

  20. Hurdal, M.K., Bowers, P.L., Stephenson, K., Sumners, D.W.L., Rehm, K., Schaper, K., Rottenberg, D.A.: Quasi-Conformally Flat Mapping the Human Cerebellum. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 279–286. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  21. Keszegh, B., Pach, J., Pálvölgyi, D.: Drawing Planar Graphs of Bounded Degree with Few Slopes. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 293–304. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  22. Kobbelt, L.: \(\sqrt3\)-subdivision. In: Proc. 27th Conf. Computer Graphics and Interactive Techniques (SIGGRAPH 2000), pp. 103–112 (2000), doi:10.1145/344779.344835

    Google Scholar 

  23. Koebe, P.: Kontaktprobleme der Konformen Abbildung. Ber. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Kl. 88, 141–164 (1936)

    Google Scholar 

  24. Li, X.-Y., Teng, S.-H., Üngör, A.: Biting spheres in 3D. In: Proc. 8th International Meshing Roundtable, pp. 85–95. Sandia National Laboratories (1999), http://www.imr.sandia.gov/papers/abstracts/Li133.html

  25. Li, X.-Y., Teng, S.-H., Üngör, A.: Biting: advancing front meets sphere packing. International Journal for Numerical Methods in Engineering 49(1-2), 61–81 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liang, X., Zhang, Y.: Hexagon-based all-quadrilateral mesh generation with guaranteed angle bounds. Computer Methods in Applied Mechanics and Engineering 200(23-24), 2005–2020 (2011), doi:10.1016/j.cma.2011.03.002

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, J., Li, S., Chen, Y.: A fast and practical method to pack spheres for mesh generation. Acta Mechanica Sinica 24(4), 439–447 (2008), doi:10.1007/s10409-008-0165-y

    Article  MathSciNet  Google Scholar 

  28. Lo, S.H., Wang, W.X.: Generation of tetrahedral mesh of variable element size by sphere packing over an unbounded 3D domain. Computer Methods in Applied Mechanics and Engineering 194(48-49), 5002–5018 (2005), doi:10.1016/j.cma.2004.11.022

    Article  MATH  Google Scholar 

  29. Malitz, S., Papakostas, A.: On the angular resolution of planar graphs. SIAM Journal on Discrete Mathematics 7(2), 172–183 (1994), doi:10.1137/S0895480193242931

    Article  MathSciNet  MATH  Google Scholar 

  30. Miller, G.L., Talmor, D., Teng, S.-H., Walkington, N.: A Delaunay based numerical method for three dimensions: generation, formulation, and partition. In: Proce. 27th ACM Symp. on Theory of Computing (STOC 1995), pp. 683–692 (1995), doi:10.1145/225058.225286

    Google Scholar 

  31. Miller, G.L., Talmor, D., Teng, S.-H., Walkington, N.: On the radius-edge condition in the control volume method. SIAM Journal on Numerical Analysis 36(6), 1690–1708 (1999), doi:10.1137/S0036142996311854

    Article  MathSciNet  MATH  Google Scholar 

  32. Miller, G.L., Teng, S.-H., Thurston, W.P., Vavasis, S.A.: Separators for sphere-packings and nearest neighbor graphs. Journal of the ACM 44(1), 1–29 (1997), doi:10.1145/256292.256294

    Article  MathSciNet  MATH  Google Scholar 

  33. Miller, G.L., Teng, S.-H., Thurston, W.P., Vavasis, S.A.: Geometric separators for finite-element meshes. SIAM Journal on Scientific Computing 19(2), 364–386 (1998), doi:10.1137/S1064827594262613

    Article  MathSciNet  MATH  Google Scholar 

  34. Rodin, B., Sullivan, D.: The convergence of circle packings to the Riemann mapping. Journal of Differential Geometry 26(2), 349–360 (1987), http://projecteuclid.org/getRecord?id=euclid.jdg/1214441375

    MathSciNet  MATH  Google Scholar 

  35. Ruppert, J.: A Delaunay refinement algorithm for quality 2-dimensional mesh generation. Journal of Algorithms 18(3), 548–585 (1995), doi:10.1006/jagm.1995.1021

    Article  MathSciNet  MATH  Google Scholar 

  36. Shimada, K., Gossard, D.C.: Bubble mesh: automated triangular meshing of non-manifold geometry by sphere packing. In: Proc. 3rd ACM Symp. Solid Modeling and Applications (SMA 1995), pp. 409–419 (1995), doi:10.1145/218013.218095

    Google Scholar 

  37. Stephenson, K.: The approximation of conformal structures via circle packing. In: Computational Methods and Function Theory 1997, Nicosia. Approx. Decompos., vol. 11, pp. 551–582. World Scientific Publishing (1999)

    Google Scholar 

  38. Sußner, G., Greiner, G.: Hexagonal Delaunay triangulation. In: Proc. 18th International Meshing Roundtable, pp. 519–538. Springer (2009), doi:10.1007/978-3-642-04319-2_30

    Google Scholar 

  39. Szalay, A.S., Kunszt, P.Z., Thakar, A., Gray, J., Slutz, D., Brunner, R.J.: Designing and mining multi-terabyte astronomy archives: the Sloan Digital Sky Survey. In: Proc. ACM International Conf. on Management of Data (SIGMOD 2000), pp. 451–462 (2000), doi:10.1145/342009.335439

    Google Scholar 

  40. Thurston, W.P.: The Geometry and Topology of Three-Manifolds. Mathematical Sciences Research Inst. (2002), http://library.msri.org/books/gt3m/ ; See especially Section 13.6, Andreev’s theorem and generalizations

  41. Wang, W.X., Ming, C.Y., Lo, S.H.: Generation of triangular mesh with specified size by circle packing. Advances in Engineering Software 38(2), 133–142 (2007), doi:10.1016/j.advengsoft.2006.04.006

    Article  Google Scholar 

  42. Yerry, M.A., Shephard, M.S.: A modified quadtree approach to finite element mesh generation. IEEE Computer Graphics and Applications 3(1), 39–46 (1983), doi:10.1109/MCG.1983.262997

    Article  Google Scholar 

  43. Zorin, D.: Subdivision zoo. Subdivision for Modeling and Animation. SIGGRAPH Course Notes, 65–102 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Eppstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eppstein, D. (2013). Diamond-Kite Meshes: Adaptive Quadrilateral Meshing and Orthogonal Circle Packing. In: Jiao, X., Weill, JC. (eds) Proceedings of the 21st International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33573-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33573-0_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33572-3

  • Online ISBN: 978-3-642-33573-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics