
Engineering with Computers manuscript No.
(will be inserted by the editor)

Mesh Improvement Methodology for 3D Volumes with
non-Planar Surfaces

Alan Kelly · Lukasz Kaczmarczyk · Chris J. Pearce

Received: date / Accepted: date

Abstract A mesh improvement methodology is pre-

sented which aims to improve the quality of the worst

elements in 3D meshes with non-planar surfaces which

cannot be improved using traditional methods. A nu-

merical optimisation algorithm, which specifically tar-

gets the worst elements in the mesh, but is a smooth

function of nodal positions is introduced. A method of

moving nodes on curved surfaces whilst maintaining

the domain geometry and preserving mesh volume is

proposed. This is shown to be very effective at improv-

ing meshes for which traditional mesh improvers do not

perform well.

Keywords Mesh Optimisation · Volume Preserva-

tion · Log-Barrier · Patch-Improvement

1 Introduction

In the context of the Finite Element Method (FEM),

high quality meshes can be crucial to obtaining accu-

rate results. The quality of an element can be described

as a numerical measure which estimates the effect that

the shape of an element will have on the accuracy of

an analysis, [?]. It can be shown that poor quality ele-

ments can result in both discretisation errors and poor

conditioning of the stiffness matrix. In the extreme, a

single poor element can render a problem intractable.

Therefore, a high quality mesh is crucial to performing

an accurate analysis.

A. Kelly � · L. Kaczmarczyk · C.J. Pearce
School of Engineering
University of Glasgow,
Glasgow G12 8LT, UK
E-mail: a.kelly.2@research.gla.ac.uk

The field of mesh optimisation is complex and has

now become an area of research in its own right. Nu-

merical optimisation is the process of maximising or

minimising an objective function, subject to constraints

on the solution. When this is applied to a finite ele-

ment mesh it is referred to as mesh optimisation, where

the mesh quality is the objective function and the con-

straints include, for example, the domain geometry and

maximum element size. In order to make the process of

mesh optimisation more straightforward for the ana-

lyst, we aim to create a set of tools which makes it pos-

sible to improve complex meshes used in actual simula-

tions, in as simple a manner as possible. In doing this,

we are attempting to simplify a very complex process;

this paper will explain the problems encountered and

the solutions to these problems.

1.1 Motivation

The motivation for this project is the need for high qual-

ity meshes for problems with evolving geometries, such

as fracturing solids, moving fluids and biological mate-

rials. For complex three-dimensional geometries, auto-

matic mesh generators do not always create meshes of

sufficient quality to ensure a sufficient level of accuracy

in the solution. This is further complicated by the need

to have an adapting mesh that can resolve the evolv-

ing geometry. Issues with the solution of these problems

can be traced back to poor quality meshes and although

there are a number of tools already available for improv-

ing mesh quality, none of them have matched the needs

of the authors.

For the creation and evolution of a mesh, the po-

sitioning of the nodes is determined by physics of the

problem being analysed and therefore any alteration of

ar
X

iv
:1

30
7.

34
04

v1
 [

m
at

h.
O

C
]

 1
2

Ju
l 2

01
3

2 Alan Kelly et al.

their positioning must be compatible with the physics

of the problem, i.e. the geometry and the volume of

the domain must be preserved. Therefore a method of

improving mesh quality by moving surface nodes but

without changing the geometry or volume of the do-

main is necessary. Such a method has been developed

and is described in Section 3.3.

1.2 Implementation

This work was implemented using the Mesh Quality Im-

provement Toolkit (Mesquite) as a platform, [?]. The

architecture of this library makes it ideal to use as a

base for the development and testing of new algorithms.

In addition, BLAS and Lapack were used for numer-

ical operations. Both Mesquite’s native algorithms [?]

and Stellar [?], a mesh optimisation program, were used

to assess the results obtained. Stellar, whilst a very

powerful program, has restrictions that mean it has

limited application to the kind of problems that mo-

tivated this work. The main issues are that the user

has very limited control over the optimisation process

and that it was developed with the goal of achieving

the highest mesh quality possible, regardless of time

taken. The user has no control over termination crite-

ria, limited control over what improvement operations

are performed and it is not easily integrated into other

projects. Many mesh generation packages (e.g. Cubit

[?]) allow for data, boundary conditions for example,

to be added to the mesh as part of the generation pro-

cess. This data will be lost when a mesh is added to

Stellar due to the changes in mesh topology and the

addition/elimination of nodes, (operations the user has

very limited control over). Also, the user cannot fix ar-

bitrary nodes which is often essential in FEA. Although

Stellar can improve meshes effectively, the loss of con-

trol over the optimisation process renders it unsuitable

for use in many FE simulations. However, as an aca-

demic package, it is very powerful; it demonstrates the

quality which can be achieved through mesh improve-

ment operations and also demonstrates the effective-

ness of certain operations. For these reasons Stellar is

an ideal tool for comparison of results and for deciding

which operations are worth implementing.

1.3 Optimisation-Based Mesh Smoothing

Mesh smoothing is the process of improving mesh qual-

ity without changing the mesh topology [?]. Mesh topol-

ogy refers to the nodes of the mesh and the elements

which these nodes lie on. There are many existing mesh

smoothing algorithms, the most famous of which is Lapla-

cian smoothing. Laplacian smoothing involves moving

a vertex to the average of its connected neighbours and

is applied to each mesh vertex in sequence and is re-

peated several times. It has been shown to be some-

what effective with 2D triangular meshes, but is much

less effective in 3D [?]. Although Laplacian smoothing

is computationally cheap, there is no guarantee of mesh

improvement. It is even possible that inverted elements

will be created [?] when the domain is not convex [?].

Much more sophisticated mesh smoothing algorithms

have been developed which are based on numerical op-

timisation techniques. Techniques such as these are re-

ferred to as optimisation-based smoothers. These meth-

ods require a means of expressing the quality of an el-

ement numerically and of combining the qualities of

every element in the mesh into a single numerical mea-

sure. A numerical measure which effectively captures

mesh quality requirements is described in Section 2.1.

Mesh quality optimisation requires an objective func-

tion which combines the qualities of a group of elements

into a scalar value. For example, one could express the

quality of a mesh as the sum of the qualities of every ele-

ment. This objective function would then be minimised,

or maximised, depending on the choice of quality mea-

sure, to improve the quality of the mesh. However, as

previously stated, one poor element may render a prob-

lem unsolvable. A simple objective function such as the

one described above would be very good at improv-

ing average element quality but would not improve the

worst element, since one poor quality element would

not stand out. Such an objective function may even in-

vert some elements, as one negative number may not

sufficiently influence the objective function. Therefore,

it is desirable to use an objective function that targets

the quality of the worst element.

At first glance, an Infinity Norm seems like an ideal

objective function. This is where the quality of a group

of elements is expressed as the quality of the worst el-

ement. In this case, any attempt to optimise the mesh

will improve the worst element. However, nodes are

shared between elements. So if a node is moved to in-

crease the quality of one element, the quality of adjoin-

ing elements may be adversely affected. As the infinity

norm contains no information about the adjoining el-

ements’ quality, there is no way of knowing when the

element being improved is no longer the worst element

in the mesh. Therefore, such an objective function is de-

scribed as being non-smooth. A non-smooth optimisa-

tion algorithm was developed by [?], which enabled the

improvement of the worst element in a mesh. This algo-

rithm achieved very high quality results and is utilised

in Stellar [?]. This approach works by calculating the

Mesh Improvement Methodology for 3D Volumes with non-Planar Surfaces 3

search directions for the nodes of the worst element and

attempting to predict the distance each node may be

moved in this direction until the element is no longer

the worst. As element quality is a function of nodal posi-

tions, a first order Taylor Series expansion of the quality

of every affected element may be used to approximate

the point at which the element being improved is no

longer the worst.

A genuinely smooth objective function which pe-

nalises the worst element in a mesh to such an extent

that the improvement process focuses on this element

should, in theory, yield better results in a shorter anal-

ysis time since the objective function contains infor-

mation about the quality of all elements, so there is

no requirement to approximate the point at which the

quality of the worst element changes. An objective func-

tion which meets this smoothness criterion and which

also adequately penalises the worst element is described

in Section 2.2.1.

1.4 Meshes

Three different meshes are used throughout this paper

to demonstrate the effectiveness of the algorithms de-

scribed in the following sections (see Figure 1). Dragon

was generated by Isosurface Stuffing, [?]. Both Con-

crete Cylinder and Graphite Brick were gener-

ated using Cubit [?]. These meshes were chosen since

their complex geometries demonstrate clearly the need

for sophisticated mesh optimisation algorithms and the

effectiveness of the techniques described in this paper.

The crack surface in Concrete Cylinder was formed

by simulating a piece of steel which was encased in a

concrete cylinder being pulled until the specimen failed.

The crack surface in Graphite Brick was formed by

simulating an external force being placed on a sample

of graphite used in the construction of nuclear power

plants. The simulation process is explained in detail in

[?]. As both crack surfaces are generated by simulat-

ing physical phenomena, we don’t have any additional

information about their smoothness.

2 Mesh Improvement Methodology

The focus of this research is to produce practical tools

which can be used in a variety of problems. These tools

must be easy to use, powerful, efficient and easy to inte-

grate into existing codes. In the case of domains which

are constantly evolving, it is often necessary to perform

mesh improvement as a continuous process during an

analysis. Therefore, algorithms which can quickly im-

prove the worst elements of large meshes are required.

2.1 Quality Measure

Finding a suitable quality measure that provides an

accurate estimate of an element’s effects in terms of

discretisation/interpolation error and stiffness matrix

condition is challenging and is a very active area of re-

search in itself. There are many measures in existence

and these may be further studied in [?]. A tetrahedron

has many properties which determine its effect on the

accuracy of a FEM simulation, however the dihedral

angles formed between the faces of a tetrahedron have

been shown to be of greatest importance, [?]. These

angles range between 0◦ and 180◦. Large dihedral an-

gles have been shown to result in interpolation errors

and small dihedral angles affect the conditioning of the

stiffness matrix. At first glance, one would think that a

quality measure based on the dihedral angles of a tetra-

hedron would be the most suitable and such measures

do exist, for example the minimum sine measure which

expresses the quality of an entire mesh as the minimum

of the sines of all the dihedral angles in that mesh.

Thus, this measure is non-smooth meaning that it can-

not be used with most mesh optimisation algorithms.

Algorithms which can cope with a non-smooth measure

are very computationally expensive, thus making them

incompatible with the overall project goal of creating

practical tools which may be easily and inexpensively

integrated into existing projects. When the smoothing

process is a part of a monolithic FE simulation, that is

to say smoothing is a part of the overall algorithm, a

smooth objective function allows the use of a Newton

method which converges quadratically.

To achieve this, it was decided to use a measure
called the Volume-Length quality measure. Although

this measure does not directly measure poor dihedral

angles, it has been shown to be very effective at elimi-

nating such undesirable angles, thus improving stiffness

matrix conditioning and interpolation errors [?],[?]. As

the Volume-Length measure is a smooth function of

vertex positions and its gradient/Hessian are straight-

forward and computationally cheap to calculate, it is

ideal for our requirements. This measure is normalised

so that an equilateral element has quality 1 and a degen-

erate element (zero volume) has quality 0. This measure

does not directly correlate with a measure of the dihe-

dral angles; for example, an element with a very low

Volume-Length ratio could in fact have good dihedral

angles. However, in practice, it has been found that us-

ing this measure is very effective. Many other quality

measures were considered such as Mesquite’s Jacobian

based measures such as the Ideal Weight Mean Ratio

measure. This measure, in its standard form is very sim-

ilar to the Volume-Length ratio in that a degenerate el-

4 Alan Kelly et al.

(a) Dragon, 32959 Tetrahedra [?]

(b) Concrete Cylinder, 73684 Tetrahedra

(c) Graphite Brick, 100556 Tetrahedra

Fig. 1: Meshes used for Testing with Histograms of the range of dihedral angles (the height of blue columns have

been divided by 20 due to the many occurrences of these angles). Internal crack surfaces are shown in red. Orange

tetrahedra have angles under 20◦ or greater than 160◦, yellow tetrahedra have angles between 20◦ and 30◦ or 150◦

and 160◦ and green tetrahedra have angles between 30◦ and 40◦ or 140◦ and 150◦.

Mesh Improvement Methodology for 3D Volumes with non-Planar Surfaces 5

ement has quality 0, an equilateral has quality 1 and an

inverted element has negative quality. Tests indicate a

closer correlation between between the Volume-Length

ratio and an element’s dihedral angles then the Ideal

Weight Mean Ratio.

q = 6
√

2
V

l3rms

(1)

where V is the volume of a tetrahedral element, lrms is

the root mean square of the element’s edge lengths and

q is the element quality.

2.2 Worst Element Improvement Algorithms

2.2.1 The Log-Barrier Objective Function

This section describes an objective function which both

satisfies the smoothness criterion described in Section

1.3 and punishes the worst element in the mesh. This

is achieved by expressing the quality of every element

as a function of the worst element, equation (2), and

is referred to as a log-barrier function. Expressing the

quality of a group of elements in this manner ensures

that the optimisation process is always focused on the

worst element. The Log-Barrier function, its gradient

and Hessian are defined as:

I =
q2

2(1− γ)
− log(q − γ) (2)

where γ = b ∗ qmin

f = (
q

1− γ
− 1

q − γ
)∇q (3)

S = ∇q[1

1− γ
− 1

(q − γ)2
]∇qT +[

q

1− γ
− 1

q − γ
]∇2q (4)

where q is the element quality and γ is the barrier which

is a function of b and the worst element in the mesh,

qmin, ∇q the gradient and ∇2q the Hessian of the qual-

ity measure.

It has been found that choosing a barrier constant

term b in the range 0.75-0.95 is most effective. The

optimisation process starts with a lower value of b and

becomes more aggressive with b increasing. Smaller val-

ues of b tend to increase average element quality as the

worst elements are not punished as harshly, whereas

higher b tends to improve the quality of the worst ele-

ment.

Figure 2 shows the Log-Barrier function graphically.

It can be seen that the function rapidly increases as the

quality of the element reduces, thus achieving our aim

of punishing the worst element. Figure 2b demonstrates

that this effect is further magnified by squaring the Log-

Barrier function.

A Newton based solver is used to optimise the mesh,

which solves the following nonlinear system of equations

to determine nodal positions:

SδX = −f (5)

This process is repeated several times for the Log-

Barrier function as the parameters change as the worst

element changes. Unlike traditional mesh optimisation,

which is allowed to run until it is deemed to have con-

verged or some other termination criteria has been achie-

ved, Log-Barrier optimisation performs one pass over

each patch and then the worst element quality is re-

calculated and γ is updated to reflect this. This en-

sures that the optimisation process is always aggres-

sively tackling the worst element.

The Log-Barrier function also has several other very

useful features. It comes with an invertibility guarantee

- if the initial mesh is valid, that is to say a mesh with-

out any inverted or negative volume elements, is input,

no inverted elements will be created. If the initial mesh

is invalid, the Log-Barrier function can untangle it as

the quality is always chosen to be worse than the worst

element. The form of the Log-Barrier function adopted

here is different to the form described by [?]. The dif-

ferences between both methods should be investigated

to compare their respective merits.

2.3 Comparison of Measures

Mesh optimisation was performed on the three meshes

shown in Figure 1. The Log-Barrier function combined

with the Volume-Length quality measure was compared

with both Mesquite’s Ideal Weight Inverse Mean Ratio

quality measure combined with an Infinity Norm objec-

tive function (found to be the most effective objective

function in Mesquite at improving the worst element in

a mesh) and Stellar. Each smoothing algorithm was run

until convergence, with no restrictions on time, to mea-

sure the highest quality each smoother could achieve.

The results may be seen in Table 1. For all three meshes,

the Log-Barrier function achieved greater improvement

than either Mesquite’s native algorithms or Stellar’s

smoothing algorithms. It must be noted that, although

all topological transformation functionality was turned

off in Stellar, some changes were made to the mesh

connectivity in all three cases, including the deletion

of nodes. The authors believe that the combination of

6 Alan Kelly et al.

(a) (a) Log-Barrier (b) (b) Log-Barrier Squared

Fig. 2: Plot of the Log-Barrier function (equilateral element has quality 1 and a degenerate element (zero volume)

has quality 0) (γ=0.8)

Table 1: Highest Quality Achievable

Mesh Smoother Min/Max Dihedral Angle

Dragon Inverse-Mean 34.3◦-114.5◦

Log-Barrier 40.9◦-107.2◦

Stellar 40.3◦-118.9◦

Concrete Inverse-Mean 26.1◦ 138.77◦

Log-Barrier 30.94◦-129.82◦

Stellar 28.49◦-139.97◦

Graphite Inverse-Mean 20.536◦-148.12◦

Log-Barrier 26.103◦-138.77◦

Stellar 22.4◦-148.83◦

the Log-Barrier function with a suitable quality mea-

sure, such as the Volume-Length measure, is the most

effective method of optimising mesh. Three notes must

be made about these results at this point. First, for

all three smoothers, surface vertices were unrestrained,

meaning that geometry and volume were not preserved.

Second, only mesh smoothing algorithms are compared

here. Third, Stellar can achieve significantly better re-

sults when all of its functionality is enabled. However,

this often results in a mesh with significantly fewer ver-

tices than the original mesh. This last point demon-

strates the potential improvement that may be achie-

ved by performing topological changes during the mesh

optimisation process, although in practice it would be

necessary to restrict the reduction in the number of

vertices. Although not the subject of this paper, it is

intended to add topological changes to Mesquite at a

later date.

2.4 Patch Improvement

As we are focussed on improving the worst elements

in a mesh, it is inefficient to operate on all elements.

Therefore, a modified form of patch-based improvement

is used. Patch improvement involves breaking the mesh

up into smaller mesh patches and improving each patch

individually. Since we only wish to operate on the worst

elements, we select the patches containing these ele-

ments and improve them. A target quality is selected

and all elements with quality worse than this target

are used to generate the patches. This is similar to the

method employed by [?]. It has been found that the

most efficient approach is to adopt an iterative pro-

cess, looping over successive patches. Results presented

in Section 4 show just how effective this method is at

reducing the time taken to improve meshes.

3 Surface Mesh Optimisation

If the worst element of a mesh lies on a boundary, then

it becomes difficult to improve the mesh without chang-

ing the geometry of the domain. Several methods have

been developed to tackle this [?]. If the domain of the

boundary is a straight line or a planar surface there are

two possible options. Mesquite provides built in func-

tionality which ”snaps” nodes which have been moved

from either a planar surface or a straight line back onto

the correct domain. This method is effective for sur-

faces which may be mathematically defined, but is not

sufficient for more complex ones.

3.1 Surface Quadrics

Klingner [?] developed a method of using surface quad-

rics and implemented this into Stellar. This method as-

signs an error to a vertex which has been moved based

on how far it has moved from the planes created by the

Mesh Improvement Methodology for 3D Volumes with non-Planar Surfaces 7

original triangular faces that adjoined it [?]. This ap-

proach is summarised here. Let P be the set of planes

created by the surface triangular faces adjoining a ver-

tex, v. The quadric error for a point x relative to v is

defined as

Qv(x) = Σδi(x)2 (6)

where δi(x) is the perpendicular distance of x from the

i th plane. This means that if a vertex moves along a

surface, there is no quadric error. However, if a ver-

tex moves perpendicular to a surface, the quadric er-

ror increases rapidly. By limiting the quadric error, the

amount by which a vertex may move from a surface

is limited [?]. A penalty function is used to trade the

quality of an element off against its quadric error. Kling-

ner [?] has shown that it is possible to achieve high

quality improvement by making small changes to the

surface of a mesh.

Although using surface quadrics has been shown to

be effective, this method has the disadvantage that the

geometry of the domain is being changed and there

is no guarantee that the volume will remain constant.

Therefore, we wish to develop a method whereby sur-

face vertex movement does not change the geometry

of the domain, using only information which may be

derived from the discretised domain.

3.2 Optimising Mesh Surface Using Boundary

Representation

All modern CAD systems use a Boundary Representa-

tion or B-Rep solid model to store geometry. If this in-

formation is available, then Mesquite can optimise sur-

face meshes whilst restricting surface vertices to their

respective surfaces. Mesquite also contains a deform-

ing domain class whereby the initial mesh of the un-

deformed domain is used to guide the optimisation of

deformed mesh, [?]. However, there are many cases of

domain deformation whereby this information will not

be available, for example crack propagation and prob-

lems involving free fluid surfaces, e.g. dam break or mi-

crofluids with surface tension where the evolution of

geometry is unknown and governed by physical equa-

tions. No additional information about such surfaces is

available so any optimisation of the surface must be

based on information extracted from the discretised ge-

ometry.

3.3 Generating Surface Constraints from the

Discretised Domain

This section discusses the development and implemen-

tation of an algorithm which allows for the movement

of nodes on a non-planar surface. This algorithm does

not change the underlying mesh geometry as it is based

on our hypothesis that for a given shape, the volume to

surface area ratio is a constant.

V

A
= C0 (7)

where V is the domain volume, A is the surface area of

the domain and C is a constant.

From (7)∫
V

dV = C0

∫
A

dA (8)

Using the divergence theorem, the volume integral be-

comes a surface integral:∫
V

dV =
1

3

∫
V

div(X)dV =
1

3

∫
A

X · 1

‖N‖
NdA (9)

Where X is a Cartesian coordinate and N is the out-

ward pointing normal of the surface. Combining equa-

tions (8) and (9):

1

3

∫
A

X · 1

‖N‖
NdA = C0

∫
A

dA (10)

Rewriting the above gives:

1

3

∫
A

(X · 1

‖N‖
N− C1)dA = 0 where C1 = 3C0.

which yields a local variant as follows:

X · N

‖N‖
= C1 (11)

A first order Taylor Series yields:

Xi ·
Ni

‖Ni‖
+

Ni

‖Ni‖
· ∂Xi

∂Xi
δXi+1 +Xi ·

1

‖Ni‖
∂Ni

∂Xi
δXi+1−

(Xi ·Ni)
Ni

‖Ni‖3
∂Ni

∂Xi
δXi+1 = C1 (12)

Where δ represents an iterative change. Rearranging,

Ni

‖Ni‖
· δXi+1 + Xi ·

1

‖Ni‖
∂Ni

∂Xi
δXi+1−

(Xi ·Ni)
Ni

‖Ni‖3
∂Ni

∂Xi
δXi+1 = C1 −Xi ·

Ni

‖Ni‖
(13)

8 Alan Kelly et al.

The second and third terms of the left hand side cancel

out, leading to the following surface constraint equa-

tion:

Ni

‖Ni‖
· δXi+1 = C1 −Xi ·

Ni

‖Ni‖
(14)

Enforcing this equation in a weighted residual sense

leads to:

CδX = g (15)

where C is a constraint matrix and g is a residual vec-

tor. This constraint equation ensures that the volume

to surface area ratio is conserved.

Following [?], the non-linear system of equations in

(5) are modified to explictly account for the constraint

equation (15) as follows:

S′δX = −f ′ (16)

where

S′ = CTC + QTSQ (17)

f ′ = CTg + QT (f − SRg) (18)

R = CT (CCT)−1 (19)

Q = I−CT (CCT)−1C (20)

4 Results and Discussion

The three meshes presented in Figure 1 were optimised

using the techniques described in the previous sections.

The results are presented in Figure 3. The worst an-

gles in all three meshes have been eliminated leaving

meshes which would be much more suitable for FE sim-

ulations. Further investigations shows that the worst el-

ements are ones where all four nodes lie on the surface

in locations of high curvature. This means that these

nodes are defining the surface and any movement of

them will results in unacceptable changes to the mesh

geometry and changes to the volume. In situations such

as this, mesh smoothing is fundamentally limited as the

only way to eliminate these poor dihedral angles is to

change the mesh topology. This demonstrates that the

quality which may be achieved by smoothing alone is

limited by the initial mesh configuration. Efforts during

the mesh generation stage to ensure that all the nodes

of an individual element do not lie on the surface are

Table 2: Time Taken for Optimisation

Time (s)
Mesh All Patches Selective Patches

Dragon 61.9 13.1
Concrete Cylinder 265.9 57,4
Graphite Brick 337.9 71.4

Fig. 4: Effectiveness of surface mesh improvement: red

mesh is optimised and blue is original mesh

crucial. The histograms in Figure 1 show that selective

patch improvement has the potential to be very effec-

tive as relatively very few poor angles exist in all three

mesh and this is clearly visible in the timings in Table

2. As stated in Section 2.4, a major requirement of a

useful mesh optimisation toolkit is efficiency. As may

be seen in Table 2, selective patch improvement greatly

reduces the time taken to optimise a mesh. However,

this requires that only relatively few poor quality ele-

ments exist in the mesh. For meshes with many poor

quality elements, the advantages of selective patch im-

provement are not as great.

To demonstrate the effectiveness of the surface op-

timisation algorithm, the original mesh and optimised

mesh of Graphite Brick are overlain on each other

so that it is possible to see the movement of surface

nodes, Figure 4. Although large nodal displacements

are observed in some places, the overall crack shape is

preserved. As is often the case with complex meshes,

many of the worst elements have all four nodes on the

surface. This means that traditional optimisation-based

smoothers will not be able to improve it due to the in-

ability to move surface nodes. The results obtained from

using this complex mesh demonstrate how effective this

is. Along with the preservation of mesh geometry, the

volume is also completely preserved, meaning this tech-

nique may be applied to many complex simulations. For

the first time, complex mesh surfaces may now be op-

Mesh Improvement Methodology for 3D Volumes with non-Planar Surfaces 9

(a) Dragon, 32959 Tetrahedra [?]

(b) Concrete Cylinder, 73864 Tetrahedra

(c) Graphite Brick, 100556 Tetrahedra

Fig. 3: Results from combination of Log-Barrier, Patch-Based Improvement and Surface Optimisation techniques.

Mesh used for Testing (the height of blue columns in the histogram have been divided by 20 due to the many

occurrences of these angles). Orange tetrahedra have angles under 20◦ or greater than 160◦, yellow tetrahedra

have angles between 20◦ and 30◦ or 150◦ and 160◦ and green tetrahedra have angles between 30◦ and 40◦ or 140◦

and 150◦.

10 Alan Kelly et al.

timised whilst preserving both geometry and volume

using only the mesh to define the surface.

In this example, mesh optimisation was achieved

with a change in volume of 0.0071%, which is obvi-

ously negligible. It is also worth noting that the mesh

optimisation routines included in the release version of

Mesquite could not improve these meshes due to all the

nodes of the worst elements being on the mesh surface.

The quality improvement achieved using such complex

meshes demonstrates just how effective the combina-

tion of the algorithms presented in this paper are, with

the movement of surface nodes enabling the other algo-

rithms to improve the meshes.

This method is also effective when applied to planar

surfaces as can be seen in Concrete Cylinder and

Graphite Brick, both of which have such surfaces.

5 Conclusions and Future Work

We have developed and implemented a very effective

mesh optimisation methodology. The combination of a

log-barrier objective function, selective-patch based im-

provement and surface optimisation has enabled us to

optimise mesh in a robust, reliable and efficient man-

ner which previously would not have been possible, as

demonstrated by the improvement achieved in all three

test meshes. The optimisation of surface nodes is com-

pletely automated and integrated into Mesquite as are

the log-barrier objective function and worst patch se-

lector. The preservation of quality during large scale

deformation makes this work very useful in many dif-

ferent simulations. With all these features now added

to Mesquite, working robustly and efficiently, it is in-

tended to apply these to many complex FE simulations.

It is also intended to make all code available to inter-

ested parties. It is clear from the tests performed using

Stellar that the ability to modify the mesh topology can

greatly improve a mesh and it is intended to add limited

topological transformation functionality to Mesquite.

	1 Introduction
	2 Mesh Improvement Methodology
	3 Surface Mesh Optimisation
	4 Results and Discussion
	5 Conclusions and Future Work

