

 Karlsruhe Reports in Informatics 2011,38
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

 Embedding 'Break the Glass'
 into Business Process Models

 Silvia von Stackelberg, Klemens Böhm and Matthias Bracht

 2011

KIT – University of the State of Baden-Wuerttemberg and National

Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

Embedding ’Break the Glass’
into Business Process Models

Silvia von Stackelberg, Klemens Böhm and Matthias Bracht

Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany

Abstract. Break the Glass (BTG) is an important feature for autho-
rization infrastructures, as it provides flexible access control in unfore-
seen cases and emergencies. But current realizations have two drawbacks:
(1) they neglect the need to manage authorization steps and (2) they do
not take immediate process context into account. Our approach in turn
embedds BTG functionality into business processes (BPs): the steps to
decide for Breaking the Glass and the obligations compensating a BTG
access for data are parts of the BPs. To support process designers in
embedding BTG steps and obligations, we introduce an expressive anno-
tation language for specifying BTG tasks for BP models. In particular,
our language allows process designers to (1) take BP context into ac-
count, and (2) specify security constraints for responsible role holders
performing BTG tasks. Using our approach, one can efficiently specify
and use context-aware BTG functionality for BPs.

Keywords: Security in business processes; business process modelling; annota-
tion language; immediate business process context

1 Introduction

Problem statement. Security mechanisms are important for Business Process
Management (BPM). For instance, authorization constraints specify which roles
may perform a task or access certain data. However, such mechanisms sometimes
are too rigid, and more flexibility is needed. To illustrate, emergencies (e.g., in E-
health) and disaster management necessitate rights to access data in exceptional
situations. Thus, a trade-off between security on the one hand and flexibility on
the other hand needs to be facilitated.

A seemingly straight forward way to realize this is to furnish temporary roles
with predefined rights, so-called super users, which must be used in emergency
cases only. This however requires the management of emergency accounts, in-
cluding notifications to users and maintenance of authorizations after usage to
avoid misuse. Another approach to provide flexibility is to give existing roles the
necessary rights in particular situations. The so-called Break the Glass (BTG)
principle allows users to overcome access denials in exceptional cases [1]. The
designer specifies in advance who, in exceptional cases, will have access rights he
normally does not have. In line with [6], the prerequisites to ”break the glass”

from the application perspective are: (1) regular access is denied, (2) BTG ac-
cess is foreseen for the exceptional case, (3) a user explicitly asks for access,
(4) optionally, another user has to agree to this access. We call the sequence of
steps when users ask for exceptional access BTG steps in the following. Next,
obligations typically are part of BTG, i.e., operations that compensate1 for the
security violations. Obligations can be triggered immediately after breaking the
glass (synchronously) or later (asynchronously).

Example 1 (E-Employment). The aim of the Dutch ”Accreditation of Prior
Learning” (APL) [12] is to generate a certified personal competence profile, to be
used for job applications. In the regular case, the CV of a candidate participating
in APL needs the approval of an assessor before it may be sent to a company as
part of an application. But a job seeker might sometimes wish to apply without
such an approval. In this case, a candidate submits his unapproved CV, i.e.,
the candidate breaks the glass. This results in the obligation that the assessor
has to be informed. Later, when approval is issued, the approved CV is sent to
the company another time. Here, the point of time when sending the CV again
depends on the context of a business process (BP), i.e., when the approval takes
place.

We envision to integrate BTG functionality into BPMS. This is new and chal-
lenging, because existing approaches providing authorization infrastructures for
BTG (e.g., [1], [6], [11] and [7]), do not cover the following aspects: (1) Modelling
BTG steps and obligations as part of the BP and executing them. (2) Consid-
ering BP-specific features, BP context in particular.

Regarding (1), related work leaves the execution of BTG steps and obliga-
tions to the application and views them as black boxes. However, a BTG access
typically consists of several steps. The same holds for obligations. This asks for
mechanisms to embed BTG steps and obligations into the BP, since the mod-
elling of such steps and their execution is exactly the purpose of BPMSs.

The development of context-aware systems is a challenging research area.
Most approaches take environmental context into account. Immediate process
context in turn is information that characterizes the process itself. It refers to
the execution state of a process instance, such as the state of tasks, associated
entities, or objects to be accessed [18]. Regarding (2), combining immediate BP
context with BTG functionality has several advantages, as we will explain in
Section 2. But because existing work is generic, it does not take immediate BP
context for BTG realizations into account.

Goals and Challenges: Our overall goal is to integrate BTG functionality
into the BP and to have it executed by a BPMS. By doing so, we take BP context
into account. To accomplish this, we envision the following steps:

– G1: Facilitating the embedding of BTG steps and obligations into BPs. With-
out any support for the embedding, process designers have to model both

1 We use the term compensation to react for a BTG access. As a data access cannot
be undone, it is at least mitigated by compensating actions.

the process logic and the security constraints for BTG functionality by hand.
This requires profound security knowledge and thus is error prone; and it
is time-consuming. Thus, there should be support at the process-modelling
level. By using annotations for process models, designers can use the mod-
elling primitives they are used to specify restrictions for the process. For
example, [9], [17], and [21] specify security constraints for process models by
means of annotations. We develop an annotation language for BP models
representing BTG functionality.

– G2: Context-aware annotation language. As BP context is important for
BTG functionality, the annotation language has to provide support for the
coupling of BTG tasks with contextual information.

– G3: Design and realization of an infrastructure supporting context-aware
BTG. To perform BTG, we make use of a secure BPMS [13]. Supporting
BTG requires extensions for the transformation, for the management of BP
context, and for authorizations for BTG tasks: The transformation results in
an extended process model enriched with canned, generic process fragments
representing BTG steps and obligations as well as in BP security policies in
XACML [5] with embedded BTG authorization rules. The context manager
component has to capture and to provide missing BP-context information,
such as information on subjects, to the BP Engine. Further, authorization
components have to decide on access requests for BTG.

As these issues are broad, we address G1 and G2 in this report (and leave
the remaining issue to a future publication). It is challenging to already achieve
Goals G1 and G2, for the following reasons:

– As the embedding of BTG functionality into BP is new, the design of an
expressive annotation language asks for a systematic requirements analysis
to exactly identify the expressiveness needed for representing BTG tasks.

– This results in the specification of a comprehensive set of expressions to
represent BTG functionality (e.g., who is authorized for particular BTG
tasks, and when).

– Existing approaches do not feature the coupling of immediate BP context
with BTG functionality. To support this, we develop a representation of BP
context so that process designers can easily use it for the specification of
BTG functionality.

Contributions: Following the ”security by design” principle, we have de-
veloped new concepts to embed BTG functionality at the BP modelling layer.
”Embedding” means that potential BTG steps and obligations are integrated
into a BP, and BP context is taken into account.

In particular, we make the following contributions:

– Motivation. We list advantages of using immediate context information for
BTG functionality. As context can be any information, we provide expres-
sions for the specification of context relevant for an application.

– Specification of an annotation language allowing to represent BTG steps
and obligations. In particular, it allows to specify actors involved in BTG
steps and BP-context-specific constraints for BTG options. Process designers
can use these constructs instead of modelling BTG functionality explicitly.
Further, they can use annotations for BTG together with existing security-
annotations for BPMN [15], e.g., [9], [17], and [21]. We specify generic process
fragments the BPMS has to execute in order to fulfill the specifications
contained in annotations. These process fragments represent tasks of actors
involved in BTG steps and obligations.

– Evaluation of our approach. Our evaluation is twofold: We first analyze the
gain in time of embedding BTG functionality into BP applications in general,
as opposed to programming BTG steps and obligations by hand. We then
analyze the benefit of using an annotation language compared to the usage
of conventional BP modelling primitives.

By following our approach, one can smoothly embed BTG functionality into
BPMS.

Paper structure: We motivate context-aware BTG functionality in Section 2.
Section 3 lists requirements. Section 4 features an example. Section 5 describes
the annotation terms for BP models. Section 6 evaluates our approach, Section 7
discusses related work, and Section 8 concludes.

2 Motivation for contextual BTG Functionality

Immediate BP context relevant for BTG can be information on the core BP
aspects regarding the functional, behavioral, organizational, operational, and
data information that is sufficient for the execution of process instances. We
borrow these categories from [18]. – Coupling BTG functionality with BP context
has the following advantages:

(1) BTG steps may comprise BP-context-specific constraints: BTG steps
might be restricted by control-flow constraints on BP schemas. For example,
in the APL scenario, there might be several approval steps for a CV. A can-
didate might be allowed to send his CV as part of a BTG action only if the
assessor has already approved some part of it (e.g., education, job positions).
Such a constraint can be expressed by referring to the execution state of a BP
instance. However, existing BTG approaches do not allow to specify this.

(2) Specification of constraints for obligations: Constraints for the execution
of obligations can be specified in the same way as for BTG steps. In the APL
scenario, there might be one or several assessors involved in an approval. An
example of a constraint is to send an email only when several assessors have
been involved in the accreditation.

(3) Specification of BP context for obligation parameters: In general, obliga-
tions are parameterized. For example, an obligation might say that an individual
who accesses a data object in parallel to a BTG access on this data must be in-
formed about the respective BTG action. In our example, the system must pass
the email address of that individual to the application executing the obligation.

By using BP-context information on associated entities, e.g., the individuals who
currently access the same data, the system might determine the receivers of the
email automatically.

(4) Triggering asynchronous obligations: Synchronous obligations are trig-
gered immediately after the BTG action. Asynchronous obligations are triggered
at an absolute or a relative point in time. In the APL example, the execution
state of a BP determines when an obligation takes place (i.e., send the CV again
after the task ’approval’ is finished). Being able to refer to execution states of
tasks gives way to asynchronous obligations.

As these advantages are essential it is important to combine BTG function-
ality with BP context.

3 Requirements for Annotation Language

To analyze the expressiveness of a language allowing to specify BTG function-
ality, we have studied BTG use cases in two different real-world application sce-
narios, an E-employment and an E-health application. Following these analyses,
a BTG-annotation-language must support the following aspects:

R1: Security constraints for BTG users: BTG functionality has to be pro-
vided in a controlled way, i.e., it must be specified at design time who shall
obtain the BTG rights, namely to break the glass, to access data, and to repair
the glass. Thus, the BTG vocabulary must distinguish different types of users
involved in a BTG action. The vocabulary must allow to specify authorization
and authentication constraints for these users. The latter ones possibly differ
from the regular application case.

R2: BP-context-specific constraints: It must be possible to specify the start
time for BTG steps or obligations, i.e., when the tasks have to be performed, by
taking the BP context into account. Example 1 has motivated this. Further, it
should be possible to represent conditions for the execution of BTG steps and
obligations, i.e., whether tasks have to be performed. To illustrate, one might
specify that an obligation is needed only if an approval takes longer than 2
weeks (temporal condition), or if an external assessor has worked on the ap-
proval (causal condition). In particular, asynchronous obligations that rely on
BP-context-specific conditions must be possible. The specification of BP context
must be user-friendly [8]. This means that process designers should not have to
deal with the BP-engine-internal representation of BP context, but should be
able to specify BP context at the abstraction level of BP models.

R3: Parameters for obligations: It must be possible to specify BP-context-
specific parameters of obligations (e.g., associated entities), cf. Example 1.

R4: Data objects. As BTG concerns exceptional access to data, the BTG
vocabulary has to provide options for specifying data objects to be accessed. We
assume that process designers have specified access rules for data objects for the
regular case.

R1-R3 are issues that are currently open. Solutions exist for R4, but they
need to be integrated into the language envisioned.

4 E-health Scenario

Until now, we have illustrated the use of context-aware BTG functionality for the
E-employment domain. Our example has shown that exceptional access for data
is needed for particular situations. To illustrate that our concepts have indeed a
broad usage, we now switch to examples from another domain, namely E-health.
This domain has strict regulations for emergency handling. The healthcare sce-
nario will serve as our running example throughout this paper. To show the usage
of BTG, we describe the regular case as starting point, and use annotations for
BTG functionality later on.

Example 2 (E-health). Figure 1 shows a BP model of the visit of a patient to a
physician, which we deem self-explanatory. We assume that health-record data
is stored externally (see pool ”HRS” for health-record storage in Figure 1). Only
authorized and authenticated users should have access to this data.

Fig. 1. Process Model for E-health Scenario

We now illustrate security constraints for tasks for the regular case.

Example 3 (E-health (cont.)). There are two security annotations, of different
type, namely authorization and authentication, in our example process model in
Figure 1. To express such constraints, we use the language from [9]. Both anno-
tations refer to all activities of the lane ”Physician”. The term �Assignment:
type=”Role” � means that holders of role ”physician” are authorized to per-
form tasks of this lane. The authentication term �Authn: attributes=(position,
medical) (affiliation, eu-medic-approv) idp=”idp.med-approv.eu”� requires in-
dividuals to have the position ”medical” (e.g., must have passed an exam) and a
European approval to work as medical practitioner. The Identity Provider (IdP)
specified has to approve these attributes.

The activities ”Check health-record availability” and ”Update health record”
of the lane ”physician” ask for access to data. The first one requires a read access,
the second one needs a write access. Only authorized persons are able to access
this data, such as the family doctor of a patient. Data access policies (e.g., sticky
policies) specify this.

Example 4 (E-health (cont.)). In a life-threatening situation, other members
of the medical staff might need access to the data. This can be realized by
Breaking the Glass, i.e., physicians which are not authorized in the regular case
access the record in a controlled way. In a real-world scenario, ”Breaking the
glass” results in many obligations, such as auditing the data access and informing
the familiy doctor, among others. We discuss exemplarily one obligation in the
following:

O1: At the end of the treatment process, the physician has to write a report
and send it to the family doctor.
This obligation is asynchronous because it refers to a later point in time.

5 Design

In this section we describe how we embed options for breaking the glass into BP
models. We first describe the different BTG roles and motivate annotating pro-
cess models with BTG functionality. We then say how we represent BP context.
Finally, we describe the syntax and the semantics of the annotation language
and give a concrete example.

5.1 BTG roles

We introduce roles having BTG rights in the following. In line with [2], we
distinguish three types of users involved in a BTG option: the first type are
users who have the right to break the glass, i.e., users who activate a BTG case
(e.g., patients who decide). We call the corresponding role BTG Activator Role.
Second, the BTG Access Role are users who have the right to access a resource
if BTG has happened (physicians in our example). In practice, it is possible that
process participants have both rights. Third, the BTG Compensator Role are
users who are allowed to perform obligations in the BTG case.

5.2 Embedding BTG functionality into business processes

From the perspective of the components enforcing authorizations for data ac-
cess, the application has to perform several tasks for a BTG option and the
compensating obligations [6]: First, the authorization system must deny a reg-
ular request, but offer the possibility for a BTG access to the application. In
the next step, the holder of BTG Access Role must explicitly ask for access un-
der BTG conditions. Further, a holder of BTG Activator Role has to agree for
breaking the glass, enabling a holder of BTG Access Role to access the data.

A straightforward way to handle these steps would be to code them as an
external application. But this requires a coupling with the authorization infras-
tructure to manage the various roles. Breaking the glass usually leads to obli-
gations to be executed. These obligations can be complex applications. Further,
contextual constraints can relate to obligations, and other role holders might be
involved. But with this design alternative, developers have to constrain applica-
tion logic with BP context by hand.

Design Decision: Our idea is to integrate those steps into the application
process. Thus, the BP Engine controls their execution. A BPMS equipped with
an authorization infrastructure can enforce the authorizations.

A subsequent question now is how to embed BTG steps and obligations into
the BP application. We see several alternatives, with two extremes: to represent
them within the process model or to dynamically adapt process instances at
runtime if needed (ad-hoc adaptation).

With the first extreme, process designers embed any options for breaking the
glass in the BP model, using conventional modelling primitives. Process events
and gateways can represent these options for exception handling. This means
that a process instance can perform any BTG case or not. This is likely to
lead to very complex BP models, because a single BTG case already consists of
a sequence of tasks and might have many corresponding obligations. However,
BTG functionality is only needed in exceptional cases, and whether it is needed
is known only at runtime. This observation leads to the second extreme, namely
to enable ad-hoc changes at runtime, meaning that process instances deviate
from the specified process model. This can be interpreted as a case of exception
handling, and it affects only single process instances. Process designers have
to specify allowed deviations in advance. This approach requires a BP Engine
that is capable to deal with ad-hoc changes at runtime. Currently, there is only
little support in BP Engines for this (e.g., by the AristaFlow BPM Suite [3]).
If platform-independence is an issue, a solution currently cannot rely on these
features.

Design Decision: Our approach is a middle ground. We let process designers
specify BTG options in a BP model2 with specific annotation vocabulary. The
BPMS transforms these annotations by extending the BP schema with canned
process fragments and executes them as part of the BP. By means of annotation
terms, process designers specify who will have the various BTG rights for data
and the constraints for enabling BTG.

5.3 Formalizing BP Context

It is the task of the Engine to manage BP context. As BP context is important
for BTG, we need a way to represent it in the BP model. One way for process
designers is to specify constraints for BP context relevant for BTG by using

2 In line with our security-annotation language, we represent BTG options for BP
models in BPMN. But our approach is sufficiently general. It can be applied to
other representations for BP models as well.

the internal representation of the BP Engine. But this is error-prone and time-
consuming, since process designers typically are not familiar with the internal
representations.

Design Decision: We propose a vocabulary to represent BP context in BTG
annotations. We formalize BP context on the abstraction level of BP models by
introducing functions for tasks and data that return values representing the BP
context. These functions enable the specification of associated entities, tasks,
and data objects to be used for the representation of temporal and causal BP-
context constraints in the annotations. Our representation of BP context also
reflects that tasks can be executed many times. The BPMS transforms these
specifications into representations the BP Engine can handle. This addresses
R2.

We now define the syntax and semantics of BP contraints.

Definition 1 (Syntax BP Constraint) A BP-context constraint (BP-CC) has
the following syntax: 3

BP-CC := S-BP-CC | C-BP-CC
S-BP-CC := function(argument) | function(argument) f − op value

C-BP-CC := S-BP-CC c−op S-BP-CC | C-BP-CC c−op S-BP-CC | function(S-BP-CC)
f-op := > | < | <= | >= | == | ∈ | 6∈
c-op := ∧| ∨ | == | 6=
function := data-user | owner | start-time-access | end-time-access |
performer | data-access | start-time-exec | end-time-exec
argument := s-argument | c-argument
s-argument := data-object | activity
c-argument := s-argument, number

Simple BP-context constraints S-BP-CC are either expressions of a function

with an argument or a function with an argument, an operator f-op and
a value. Complex BP-context constraints C-BP-CC are combinations of sim-
ple BP-constraints by operators c-op, such as logical ones, or nested func-
tions. Simple arguments s-argument are data-object or activity. A complex
argument c-argument contains a simple argument and a number. The func-
tions data-user, owner, start-time-access, end-time-access operate on the
simple argument data-object, or on the complex argument (data-object,

number). The functions performer, data-access, start-time-exec, and
end-time-exec have the simple argument activity, or the complex argument
(activity, number).

Definition 2 (Semantics BP Constraint) The meaning of a BP-context con-
straint depends on the return value of function as follows:

– The functions performer(task), data-user(object), owner(object) re-
turn subjects related to a BP instance, namely the individual performing a

3 the notation ”|” is the logical ”XOR”

task instance, the individual accessing a data object, and the data owner
respectively.

– The functions start-time-exec(task) and end-time-exec(task) return
the start and end times of the execution of a task.

– The functions start-time-access(object) and end-time-access(object)

return the start time and end time of access to a data object.
– data-access(task) returns the set of data objects accessed by a task.
– The value number in a complex argument specifies the number of executions

or data accesses to be considered. The result of a function on a complex
argument is a set of values.

We account on loops in process execution. To illustrate, several subjects per-
form an activity, or many subjects access a data object over time. We represent
this by the value number of complex arguments. A specification ”number=1”
means that only the latest execution (or data access respectively) is of interest,
while ”number=inf” specifies that the entire execution history is considered.

This set of functions is sufficient for the applications we have studied. Us-
ing these functions, process designers can represent a comprehensive set of BP-
context-constraints within annotations for BTG steps and obligations. In partic-
ular, they can specify temporal and causal constraints regarding the start time
of BTG steps and obligations as well as constraints on their execution.

Example 5 (BP Context Constraints). To express that BTG is only allowed
for adults, we specify a causal constraint on the execution for BTG steps by
Exec=performer(activity-ID).age ≥ 18. We specify an asynchronous start
time for an obligation that depends on the execution time of an activity by Start

= end-time-exec(activity-ID). To express that an obligation has to be exe-
cuted if several performers are involved (see APL example in Section 2), we for-
mulate Exec = performer(activity-ID-1) 6= performer(activity-ID-2).

5.4 Specification of BTG steps for BP models

We now describe our annotation language for BTG steps. It features the speci-
fication of security aspects (exceptional access to data, authorizations for tasks,
authentications) and of BP-context constraints for BTG steps. Process design-
ers annotate tasks of a BP model with BTG options, because BTG data access
happens during the execution of tasks.

Definition 3 (Syntax of BTG Annotation Language) An annotation term
to describe BTG steps with security constraints has the following syntax:

�BTG: "object=list($objectname)"
"right=list($right-type)"
{optional-assignments} �
with
right-type := read | update

optional-assignments := BTGActivatorSpec ? BTGAccessorSpec ?

BTGStartCondition ? BTGExecCondition ? BTGObligations ? BTGInsertMode

BTGActivatorSpec := BTGActivatorRole {BTGActivatorAuthn}
BTGAccessorSpec := BTGAccessorRole {BTGAccessorAuthn}
BTGActivatorRole := "BTGActivator=$rolename" | "BTGActivator=$username"
BTGAccessorRole := "BTGAccessor=$rolename" | "BTGAccessor=$username"
BTGActivatorAuthn := "AuthnBTGActivator-attr = list(attribute, value)

{idp=$idp-address}"
BTGAccessorAuthn := "AuthnBTGAccessor-attr = list(attribute, value)

{idp=$idp-address}"
BTGStartCondition := "Start=$BP-CC"
BTGExecCondition := "Exec=$BP-CC"
BTGObligations := "Obligations=list($obligation-ID)"
BTGInsertMode := "Insert=seq | par"

A BTG annotation, starting with ”�BTG:”, contains a set of assignments
(any statements indicated by ”....=...” above) for a specified vocabulary, and
ends with ”�”. The assignments for object and right are obligatory. Further,
there are optional-assignments, as listed4.

To represent authorizations for BTG steps, we need two out of three BTG
roles, namely BTG Activator Role and BTG Access Role. This accounts for
R1. Process designers assign role holders or users which typically perform tasks
of the regular application case to BTG roles. This means that they have the
right to perform BTG tasks. This avoids the maintenance of particular BTG
roles, as discussed in the introduction. The specifications for BTG Activator
and BTG Accessor can have optional refinements by BTGActivatorAuthn or
BTGAccessorAuthn. The brackets ”{...}” denote this option. One can specify
BTGStartCondition by Start, and a BTGExecCondition by Exec. To represent
obligations, we proceed as follows: One BTG action can have many obligations,
and obligation specifications can be complex. Thus we specify the list of related
obligations in the BTG annotation and annotate each obligation separately for
the BP model. Insert can be specified by ”seq” or ”par”.

Definition 4 (Semantics of BTG Annotation Language) The parameter
right specifies the nature of the access to a data object for which the glass can
be broken. The right can be to read or to update a data object. BTGActivatorSpec
and BTGAccessorSpec determine the roles for BTG Accessor and BTG Activator

as well as the authentication requirements BTGActivator Authn and BTGAccessor

Authn for their holders. The parameters AuthnBTG Activator-attr (and re-
spectively Accessor-attr) specify attributes the system uses for the authenti-
cation of these two different role holders (or users). One can specify attribute-
value-pairs and optionally an IdP. BTGStartCondition specifies constraints on
the start of BTG steps and BTGExecCondition constraints on the execution.
Both can contain temporal or causal constraints. We assume that BTG steps
usually have to be executed immediately, but we provide some flexibility for pro-
cess designers by means of parameter Start. It states when the BTG steps have

4 the notation ”?” is the logical ”OR”, and the notation ”|” is the logical ”XOR”

to be executed, and which constraint must hold at this point in time. In contrast,
Exec specifies constraints that must hold for executing BTG steps in general. By
specifying Exec, BTG steps can only take place at some time during the process
execution if the constraints are fulfilled. Further, obligations specifies a list
of obligation-IDs which have to be executed when the glass has been broken. To
provide some flexibility to process designers, they can control the insert mode for
the fragment by specifying Insert. The value ”seq” means that the obligation
is inserted in sequence to the regular process, and ”par” means that the process
fragment runs in parallel. The default value is ”seq”.

If there is no specification for BTGAccessorRole, role holders of the BTG-
annotated activity get the access rights. If BTGAccessorRole is specified but
BTGActivatorRole is not, BTGAccessorRole is used for BTGActivatorRole in-
stead. The specification of AuthnBTGActivator-attr is in line with our anno-
tation term for authentications [9]. We now illustrate a BTG annotation in our
running example.

Example 6 (E-health (cont.). To enable BTG functionality for health records
of patients, we make use of the BTG-annotation term for activity ”Check health-
record availability”. Figure 2 graphs the annotation.

Fig. 2. Annotation of Activity ”Check health-record availability”

The meaning of the annotation is as follows: In the regular case, patients
do not have to perform tasks. To provide the ”break the glass” option, a pro-
cess designer assigns patients whose health record might be accessed to BTG
Activator. In this case, the patients have to agree to break the glass. As this
is a security-relevant task, the process designer asks for authentication for the
BTG Activator. In other words, the patient now has to authentify himself, and

this needs to be modelled. The authentication specification says that the IdP
must authenticate a patient by the AuthnBTGActivate-attributes social insur-
ance number and identity-card number. The objects to be accessed are health
records of the patients. We set ”read” access rights for the BTG case. The
BTGStartCondition (Start=...) specifies that the glass can only be broken if
the patient is the owner of the data object.

A BTG annotation means that the BPMS has to provide options for BTG
steps, as described in Section 5.2. To embed these steps into the BP, we rely
on the fundamental technique of process fragments, enabling to re-use parts
of process structures. Our understanding of a process fragment is similar to
[20]: We see process fragments as independent process structures, which are
”underspecified” at design time. Using our approach, executable BPs require
specifications for BP-context constraints as well as for security (data access,
authorizations and authentications for specific role holders of the application
process), which is different to [20]. Thus, underspecified means in our context
that process fragments are completely modelled (i.e., they contain connected
tasks), but do not contain these specifications. By doing so, process fragments
are generic and can be used in any BP model.

Figure 3 shows the process fragment for BTG steps. It represents the execu-
tion order for BTG tasks as well as conditions on BP-context constraints. The
annotated role assignments specify authorizations for BTG role holders. Holders
of role BTG Accessor can perform activity ”ask-for-BTG” and activity ”data ac-
cess”. Role holders of BTG Activator have to execute the activity ”agree-BTG”.
To ease presentation, we have omitted user interactions and interactions with
security components.

Fig. 3. Process Fragment for BTG steps

Regarding the transformation, the system substitutes in a first step each
BTG annotation with a BTG-process fragment. It specifies the extended BP
model by substituting, for example, the generic BTG roles by role information
contained in the annotations. In the last step, it generates the access-control
policy.

5.5 Specification of Obligations

We distinguish between obligation patterns and application-specific obligations.
Obligation patterns are sequences of tasks that are likely to be required in many
applications. Typical obligation patterns are: send email, send sms, or log data
access. Application-specific obligations have little potential for re-use, such as
the obligation that an assessor has to approve a CV again.

We propose to handle obligation patterns in the same way as BTG steps.
This means that we provide a vocabulary to describe obligation patterns and
represent them as language primitives.

An obligation annotation consists of a sequence of assignments to specify
the obligation. Process designers can either annotate an activity with both, the
option for BTG and the related obligations, or annotate other activities that the
BPMS executes later with obligations. The meaning is as follows. The execu-
tion time of an annotated activity determines the earliest execution time of an
obligation, that is after the execution of the annotated activity.

Definition 5 (Syntax Obligation) The syntax of obligation annotation terms
is as follows:

�Obligation:

"id=$obligation-ID"
"pattern=$obligationpattern"
{optional-assignments} �
with
optional-assignments := CompensatorSpec ? OParameter ? CompStartCondition ?
CompExecCondition

"OParameter=list(($parametername,$parametervalue))"
CompensatorSpec := CompensatorRole {CompAuthn}
CompensatorRole := "CompRole=$rolename" | "CompRole=$username"
CompAuthn := "AuthnComp-attr = list((attribute, value)) idp=$idp-address"
CompStartCondition := "Start=$BP-CC|$time"
CompExecCondition := "Exec=$BP-CC"

Assignments for the parameters id and pattern are obligatory. The specifi-
cations for CompensatorSpec, OParameter, CompStartCondition, and
CompExecCondition are optional5.

Definition 6 (Semantics of Obligation) The semantics of annotation terms
for obligations is as follows:

5 the notation ”?” is the logical ”OR”

The id of the obligation is the reference to the BTG annotation. The pattern

parameter specifies the obligation type. We currently support ”SendEmail” and
”AuditAccess”. The value of the optional OParameter gives parameters for the
execution of the obligation, in the form of (name, value) pairs. CompensatorSpec
specifies a Compensator Role, which can be role holders or users allowed to
perform the obligation. CompensatorSpec can optionally contain authentication
specifications CompAuthn. The optional parameter CompCondition specifies con-
straints on the start or the execution of an obligation. It can be a BP-context
constraint or an absolute or relative value for time.

Some explanations regarding the rationale behind the previous definitions are
in place. OParameter depends on the obligation type. We allow the parameters
from, to, subject, body, and attachment for an obligation type ”SendEmail”.
”AuditAccess” specifies an audit policy by the parameter auditpolicy, and the
start and end time of the auditing. The audit policy describes the objects to
be audited. We can determine the parameter values from the BP context. A
specification of CompRole is required if humans have to perform the obligation.
If no humans are involved, and the BPMS executes the obligation automatically
(e.g., it performs a logging), CompRole does not have to be specified. In line
with the authentication requirements for BTG Accessor and BTG Activator,
attribute-value pairs and an IdP can be specified (AuthnComp-attr) for these
users.

If the parameter CompStartCondition is not specified, this means that the
obligation has to be executed immediately after the task annotated by an obliga-
tion. Otherwise, the parameter CompStartCondition determines the start time
for executing an obligation. CompExecCondition gives BP context constraints
on the execution of the obligation. To illustrate, the specification ”Exec =

owner(object-ID).age < 18” says that the obligation has to be executed only
if the data owner is under age.

Example 7 (E-health (cont.)). In the example scenario, ”Breaking the glass”
results in one obligation. We now specify O1 in our annotation language. The
obligation says: ”At the end of the treatment process, the physician has to write
a report and send it to the family doctor.” Additionally, the recipients of the
report have to be specified. O1 in our obligation vocabulary is:

�Obligation: id=”O1”
pattern=”SendEmail”

OParameter=((from, ”$performer(update-health-record).email”),
(to, ”$familyDoctor.owner($patient-healthrecord).email”),
(subject,”Patient Report: owner($patient-healthrecord)”),

(body,”Find attached a report describing my treatment.”),
(attachment,”$owner($patient-healthrecord).ReportFile”))

”Start=end-time-exec(update-health-record”)” �

The constraint Start= end-time-exec(update-health-record) represents
an asynchronous BP-context condition on the obligation start time. Several pa-

rameters for the obligation call, such as ”from”, ”to”, are listed as parameter
name/value pairs.

Accordingly, we represent obligation patterns as process fragments. Figure 4
shows the process fragment, representing an obligation for sending an Email.

Fig. 4. Process Fragment for Sending Email

6 Evaluation

Our approach provides support for two levels: First, we provide an infrastructure
for BTG functionality from the application perspective by embedding BTG steps
and obligations into the BP model. The alternative would be to manage BTG
steps and obligations isolated from the BP application logic. Second, we provide
an annotation language for BTG functionality, enabling process designers to use
our annotation language instead of embedding process fragments for BTG steps
and obligations into the BP model by hand.

We now describe the initial evaluations of our approach. We analyze the
benefit of our approach in terms of reduced effort (i.e., time needed) for these
two levels of support. We first quantify the gain of a BPM-infrastructure for BTG
functionality. Second, we quantify the effort required for selecting and specifying
process fragments by hand, as opposed to using our annotation language.

6.1 Gain of embedding BTG into process models

With conventional approaches, programmers have to implement BTG steps and
obligations as BP-external application functionality and have to couple this func-
tionality with the process logic and the BP context. Regarding the functionality
of BTG steps as shown in Figure 3, programmers have to implement an applica-
tion that performs BTG steps, including user dialogues for role holders of BTG

Accessor and BTG Activator, and data access. Further, they must implement
authorization and authentication functionality for role holders of these tasks.

Setup. We have chosen an experienced programmer skilled with role-based
authorization concepts. We have trained him to BTG concepts in general and to
our approach. In particular, we have explained the three BTG roles we distin-
guish and the steps to perform a BTG action. For this interactive, oral training,
we have spent one hour altogether.

Results. The programmer has needed around two days to implement an ap-
plication for BTG steps with the corresponding user interfaces (see column in
the middle in Table 1). The effort for implementing obligations depends on their
complexity. Our implementer has needed one day to realize the obligation to
send an email (see the right column in Table 1).

Alternative Required Time BTG Steps Required Time Obligation

1 (programming) 2 days 1 day

2 (modelling fragments) 3 hours 2 hours
Table 1. Evaluation of Embedding BTG Functionality into BP

With our approach to embed BTG steps and obligations into BP models
in turn we shift the modelling and configuring of BTG steps and obligations
from the programmers to the process designers. The secure BPMS is responsible
for the execution of BTG steps and obligations and provides authorization and
authentication functionality, as well as the evaluation of BP-context-constraints.
To model and specify a process fragment for BTG steps, a process designer has
needed only around three hours (see Table 1). Thus, our approach reduces the
effort to implement BTG steps and obligations significantly.

6.2 Gain of transformed annotations

Process designers who want to embed BTG functionality into process models
have the following alternatives to do so: (1) Using our proposed annotation lan-
guage and the transformation mechanisms, (2) embedding canned sub-processes
by hand, (3) modelling BTG steps and obligations by hand. To evaluate the
advantages of specifying BTG steps and obligations declaratively, we have com-
pared the effort with the alternatives.

Setup. We have recruited an experienced process designer skilled in BPMN-
process-modelling, including the usage of respective tools, and with a basic un-
derstanding of role-based authorization concepts. The training has been the same
as for the programmer described above.

To rule out that the effort with our approach is lower because of learning
effects, we have organized the tasks as follows: The process designer has started
with the simplest alternative, namely to use annotations (Alternative 1). His

second task has been to embed canned process fragments (Alternative 2), and
the third task to model BTG steps by hand (Alternative 3).

Results. For Alternative 1, the process designer had to annotate the E-health
process (see Figure 1) with our BTG vocabulary. The task was to represent BTG
steps with the specification of an Accessor Role, an Activator Role, and with
authentication requirements for both role holders. To assist him for this task,
we have furnished him with a brief syntax and semantic description (one page,
containing syntax and semantics for annotations). To evaluate Alternative 2, the
process designer had to embed a process fragment from a file directory. Further,
he had to specify authorization and authentication constraints for role holders of
the process model by hand. For Alternative 3, the process designer had to model
and configure three activities and eight gateways representing BTG steps, as
shown in Figure 3. Further, we asked him to configure the process fragment by
binding activities to web services and specifying gateways and the data flow.

Alternative Required Time BTG Required Time Oblig.

1 (annotation and transformation) 2 minutes 3 minutes

2 (embedding process fragments by hand) 5 minutes 6 minutes

3 (modelling fragments by hand) 10 minutes 8 minutes

Table 2. Evaluation of Annotation Language

Table 2 summarizes the results. If a process designer uses our annotation
language and the transformation mechanisms, he needs around two minutes to
specify BTG steps (see the middle column). If process designers plug re-usable
process fragments into the process model manually (Alternative 2), the modelling
effort is increased. However, one also has to specify authorization constraints
for tasks as well as BP-context specific constraints for the process fragment by
hand. A process designer needs 5 minutes to do so. Regarding Alternative 3, the
modelling by hand, an experienced process designer needs around 10 minutes.
The results for the obligation to send an email are similar (see right column in
Table 2). This shows a significant gain with our annotation language.

7 Related Work

With respect to the integration of BTG into business processes, work from three
research threads is of particular relevance. First, there is a relationship to provid-
ing access control policies for BTG. Second, we describe security-related research
for BPs with respect to its context-awareness. Third, we analyze security anno-
tation languages for BPs according to express immediate BP context.

BTG access control policies: Several approaches realize BTG by implementing
access control policies ([1], [10], [6] and [11]). But they do not feature support

for BP context, due to their generic nature, and do not address the management
of BTG steps and obligations from the perspective of the application, as we do.
Our approach in turn does not focus on a BTG-enabled access-control-policy
language, but on an infrastructure for embedding BTG functionality. We manage
BTG authorization functionality to some degree by tasks being part of the BP.
To illustrate, the BPMS executes process branches with BTG options, instead of
offering BTG options by the authorization component, as in [6]. Our approach
makes access control rules for BTG easier.

Context-aware security support: Many approaches propose context-aware pro-
cess management. We classify related work in the following by (a) the under-
standing of context, (b) the purpose, and (c) the used context model.

Type of context. [18] gives a comprehensive classification of BP context. Ac-
cording to this classification, our work focuses on immediate context. We thereby
also consider security and privacy aspects (e.g., authorized role holders, owner
of data). The understanding of activity and object context in [16] is similar to
our understanding of immediate context. Most recent work on context-aware
BP (e.g., [11]) is confined to the context of the environment by taking proper-
ties such as the physical location of a user, the date, or the temperature, into
account. We do not address environmental context.

Purpose. There is a broad range regarding the purposes to support context-
aware concepts. We focus here on security aspects for BPs. [16] summarizes
well-known approaches on BP-context-aware access control methods. To bind
access rights to the execution time of tasks (strict least privilege), the approaches
use immediate BP context (e.g., [16]). Further, the realization of Binding and
Separation of Duties [4] requires immediate context information at runtime. [19]
proposes a context-dependent assignment of actors to roles. Our purpose differs
from the discussed approaches. We address context-aware embedding of BTG
functionality.

Context Model. Several context models have been proposed in the literature.
[8] describes context variables by a so-called context cube, representing the rel-
evant internal context dimensions. [19] specifies a context tree by representing
facets. [14] specifies contextual information by means of an ontology. We inter-
pret a process meta-model as context model. This allows to consider process
elements as well as their relations.

Security modelling languages: [9], [17], [21], among others, propose annotation
languages to represent security constraints in BP models, but lack in the follow-
ing two aspects: (1) None of them takes exceptional cases, in particular BTG,
into account; (2) None of them provides features to represent BP context as part
of the annotation language. Our language is the first to cover this.

To our knowledge, our approach is unique in that we embed BP-context-
constraints into the BTG-annotation-language, and use this contextual informa-
tion for the embedding of process fragments by taking authorization rules into
account.

8 Conclusions

The ”Break the Glass” concept facilitates controlled access to data in exceptional
situations. To our knowledge, this article has been first to provide BTG func-
tionality for business processes. As breaking the glass and compensating a BTG
action require several tasks, BTG steps and obligations should be embedded in
processes. We have shown that using BP context for BTG tasks is essential.

To disburden the process designer from modelling BTG steps and obligations
by hand, we have proposed a vocabulary for annotating the process model with
BTG functionality. In particular, we take BP context into account. This reduces
the design effort significantly.

Acknowledgements: This research has received funding from the Seventh Frame-
work Programme of the European Union (FP7/2007-2013) under grant agreement no

216287 (TAS3 - Trusted Architecture for Securely Shared Services)

References

1. Brucker, A.D., Petritsch, H.: Extending Access Control Models with Break-glass.
In: SACMAT. pp. 197–206 (2009)

2. Chadwick (Ed.), D.: Design of Identity Management, Authentication and Autho-
rization Infrastructure, TAS3 Deliverable 7.1, Version 3.0.1 (2010)

3. Dadam, P., Reichert, M., Rinderle-Ma, S., Lanz, A., Pryss, R., Predeschly, M.,
Kolb, J., Ly, L.T., Jurisch, M., Kreher, U., Goeser, K.: From ADEPT to AristaFlow
BPM Suite: A Research Vision has become Reality. In: ER-BPM. pp. 529–531.
Springer (2009)

4. Elisa Bertino and Lorenzo Martino and Federica Paci and Anna Squicciarini: Se-
curity for Web Services and Service-Oriented Architectures. Springer (2010)

5. Erik Rissanen (ed.): eXtensible Access Control Markup Language (XACML) Ver-
sion 3.0. Committee Specification 01 (August 2010), http://docs.oasis-open.

org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.pdf

6. Ferreira, A., Chadwick, D., Farinha, P., Correia, R., Zao, G., Chilro, R., Antunes,
L.: How to securely break into RBAC: The BTG-RBAC model. In: ACSAC. pp.
23 –31 (2009)

7. Hafner, M., Memon, M., Alam, M.: Modeling and Enforcing Advanced Access
Control Policies in Healthcare Systems with SECTET. In: Giese, H. (ed.) Models
in Software Engineering, pp. 132–144. LNCS, Springer (2008)

8. Hallerbach, A., Bauer, T., Reichert, M.: Context-based configuration of process
variants. In: TCoB. pp. 31–40 (2008)

9. J. Mülle, S. von Stackelberg, K. Böhm: Modelling and Transforming Security Con-
straints in Privacy-Aware Business Processes. In: SOCA. pp. 1–4 (2011)

10. Ja’far Alqatawna, Erik Rissanen, B.S.F.: Overriding of Access Control in XACML.
In: POLICY. pp. 87–95 (2007)

11. Marinovic, S., Craven, R., Ma, J., Dulay, N.: Rumpole: A Flexible Break-glass
Access Control Model. In: SACMAT. pp. 73–82 (2011)

12. Mülle (ed.), J.: Design of a semantic underpinned, secure and adaptable process
management platform (1). TAS3 Deliverable 3.1, 1st Iteration (June 2009)

13. Müller, J., Böhm, K.: The Architecture of a Secure Business-Process-Management
System in Service-Oriented Environments. In: ECOWS. pp. 49–56 (2011)

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.pdf

14. Najar, S., Saidani, O., Kirsch-Pinheiro, M., Souveyet, C., Nurcan, S.: Semantic
representation of context models: a framework for analyzing and understanding.
In: CIAO. pp. 6:1–6:10. ACM (2009)

15. Object Management Group: Business Process Model and Notation, V2.0. OMG
Available Specification (January 2011), http://www.omg.org/spec/BPMN/2.0/PDF

16. Park, S.H., Eom, J.H., Chung, T.M.: A Study on Access Control Model for Context-
Aware Workflow. In: INC, IMS and IDC. pp. 1526–1531 (2009)

17. Rodŕıguez, A., Fernández-Medina, E., Piattini, M.: A BPMN extension for the
modeling of security requirements in business processes. Trans. Inf. Syst. – IEICE
E90-D, 745–752 (March 2007)

18. Rosemann, M., Recker, J.C., Flender, C.: Contextualisation of business processes.
Int. Journ. of Business Process Integration and Management 3(1), 47–60 (2008)

19. Saidani, O., Nurcan, S.: Context-awareness for adequate business process mod-
elling. In: RCIS. pp. 177–186 (2009)

20. Schumm, D., Karastoyanova, D., Kopp, O., Leymann, F., Sonntag, M., Strauch,
S.: Process Fragment Libraries for Easier and Faster Development of Process-based
Applications. Journal of Systems Integration 2(1), 39–55 (2011)

21. Wolter, C., Schaad, A.: Modeling of Task-Based Authorization Constraints in
BPMN. In: BPM. pp. 64–79. Springer (2007)

http://www.omg.org/spec/BPMN/2.0/PDF

	2011,35_Titelbl.pdf
	Technical-Rep-Dec-2011-38
	Embedding 'Break the Glass' into Business Process Models

