
A Novel Context Ontology to Facilitate Interoperation of
Semantic Services in Environments with Wearable

Devices

Gregorio Rubio , Estefania Serral, Pedro Castillejo , Jose Fernan Martinez

Abstract. The LifeWear-Mobilized Lifestyle with Wearables (Lifewear)
project attempts to create Ambient Intelligence (Ami) ecosystems by
composing personalized services based on the user information, environmental
conditions and reasoning outputs. Two of the most important benefits over
traditional environments are 1) take advantage of wearable devices to get user
information in a non-intrusive way and 2) integrate this information with other
intelligent services and environmental sensors. This paper proposes a new
ontology composed by the integration of users and services information, for
semantically representing this information. Using an Enterprise Service Bus,
this ontology is integrated in a semantic middleware to provide context-aware
personalized and semantically annotated services, with discovery, composition
and orchestration tasks. We show how these services support a real scenario
proposed in the Lifewear project.

1 Introduction

Wearable devices are becoming more advanced, accurate and capable of sensing. To
take full advantage of them is necessary to combine their information with the
obtained from the context and the own user. The amount and heterogeneity of the
information that comes into play means that architectures and data models must be
equipped with the features necessary to develop applications increasingly customized
to the user and facilitate interoperation and information sharing.

The main concern has been to developed ontologies, middlewares and architectures
to resolve problems related with ubiquitous computing, but, basically thinking in
services provided to the web. With the advance of technology, new services based on
the user information, environmental conditions and reasoning outputs are emerging in
the context of Ambient Intelligence (Ami) ecosystems. Adding to these data a user

profile a new ontology is developed including the entire information model. The
integration of this ontology is simple: it is integrated as a new service in the
Enterprise Service Bus (ESB). In this way, the ontology service can be used by other
services or applications executing in the system.

The aim of this paper is to describe an ontology that allows integrating information
about user context and semantic services. Using a test scenario, we show how this
ontology considerably helps to provide context-aware personalized and semantically
annotated services, with discovery, composition and orchestration tasks.

2 Related Work

To understand the scope of this paper in this section briefly present some of the
research papers and projects related to sensor and context-aware of user ontologies
and service-oriented middleware.

There are ontologies related to sensors used in different environments, like
sensorML [1] or O&M Observation and Management [2-3] and even in [4] is
presented a semantic sensor network ontology, like an approach to describe sensor
assets and other ontologies summarized in [5]. Also, have been described ontology for
context-aware environments in pervasive computing [6], modeling the context of a
user. In [7] it is provided a means of acquiring, maintaining, and reasoning data about
context, and different approach to service-oriented middleware to provide services
based in sensor measures to other services and applications or built it [8]. Related to
sensors, u-services like proposed in ITEA2 DiYSE project1 [9], where a new
middleware to provide u-services is presented.

This paper presents an integrated ontology, about users, with wearable devices, and
services provided by a semantic middleware from the measurements provided by
sensors, placed in a wearable device or context-aware, mixed with a dynamic user
profile, all integrated in a very flexible architecture, in which the ontology is treated,
like a service, being integrated trough an enterprise service bus.

3 Ontology proposal

Different context models have been proposed until now to capture context in
Pervasive Computing. Some of the most important examples are: object oriented
models [10]; key-value models [11]; graphical models [12-14]; etc. However, several
studies [6] [15-16] state that the use of ontologies to model context is one of the best
choices. They state that this model guarantees a high degree of semantic richness,
exhibits prominent advantages for reasoning and reusing context, and facilitates the
integration of different systems.

An ontology is a formal and semantic representation of a set of concepts and the
relationships between those concepts within a domain. Some relevant examples of
ontology-based approaches are SOUPA [17], COMANTO [18], and SOCAM [19]. A

1 http://diyse.org: 8080

http://diyse.org

complete background of most of the ontologies proposed in Pervasive Computing can
be found in [16]. None of the studied context ontologies cover adequately all the
context information identified in the previous subsection; however, the SOUPA
ontology is of special interest for this work. SOUPA is a proposal for a Standard
Ontology for Ubiquitous and Pervasive Applications that defines core concepts by
adopting the following different consensus ontologies: FOAF, which captures
personal information and social connections to other people; DAML-Time the Entry
Sub-ontology of Time, which represent Time and facilitate the reasoning about the
temporal orders of different events; OpenCyc Spatial Ontologies RCC, which allow
space to be specified using geo-spatial coordinates or symbolic representation; Rei
Policy Ontology, which specifies high-level rules for granting and revoking the access
rights to and from different services.

For facilitating information sharing, we define a context ontology that adequately
covers the context information needed for Lifewear systems by adopting as far as
possible, suitable concepts of the SOUPA ontology. To build the context ontology of
Lifewear, we follow a top-down approach, starting from the most coarse-grained
concepts and dividing them up into finer-grained concepts. The coarse-grained
concepts that we identify are: Environment, System, Person, Policy, Time, and Event.
Dividing them into finer-grained concepts, we obtain the classes of the class diagram
shown in Fig. 2.

To describe the environment where the user is, we reuse the OpenCyc Spatial and
RCC ontologies that propose classes SpatialThing that is related to
LocationCoordinates class. We have extended these ontologies with the Location
class to describe the different areas that compose an environment by using a symbolic
representation more intuitive for users (i.e., Kitchen, Corridor, etc.). Location has two
subclasses; indoor location and outdor location; and can be related by the following
relationships:

Subsumes: indicates that a location contains other locations (e.g., the location
First Floor subsumes the locations Kitchen, Hall and Living Room).
Adjacency: indicates that two locations are physically together (e.g., the Parent
Bedroom and the Children Bedroom are adjacent).
Mobility: indicates that two locations are adjacent and there is a way for
people to go from one location to the other (e.g., the Hall and the Living Room
are adjacent and the Hall has a door to go to the Living Room).

In addition, we propose the term EnvironmentProperty to describe the properties
(e.g., lighting intensity, presence detection, noise level, etc.) of a certain location.

To describe the system, we propose the terms Service, ServiceCategory, Operation,
Argument, and Process. The central term is Service, which represents the services
(e.g., Lighting, Multimedia Player, Alarm, etc.) that the system provides. Services can
be classified into categories and are described by means of the following information:

• Profile: the public description of the service. It states the service identification
(a unique identifier for the service), the service functionality (the service
operation and their input and output arguments), the security profile
(description of the security features under which the service will be provided)
and grounding (protocol used between the service and application that use it).

Process: the logic of the service. The process class is refined into atomic and
aggregated/complex processes. An atomic process takes directly the
information generated by sensors and, with the appropriated treatment
provides the functionality. In contrary, aggregated process providing new
functionality that is not directly obtained from sensors by composing several
atomic processes. The aggregated process can be built using a sequence,
where the atomic process are executed in a sequential order; or any order,
where the order of the atomic process is irrelevant to the aggregated process.
Context: the context conditions in which the service is provided. For instance,
if the service is static, its functionality is always provided in the same location,
or is mobile, like in the case of wearable devices where the location of the
service can change.

Prarfileinfonnalicn about rnjury Pretention Service
•I

' i oW 'Hu te Prei'Moti"
'idSeiyice'.lPILSS'

"iwr>Hn."niJLik;-,V:ar:!lr'"

- ranpkiduor • AMU.llBHll-tnleP.1
MMtf-

"irJiajllfeftUtta' Irieosi len^erHluiEin.
"iriWJll&jUlutlurL' Iritjyei heart rule".
"uuttaitlibmilKaj' "tevti iqxesviitig

irJWtv.H5k lyw.irnjdiurn.Miah"
)-

"HlmCrsujuLy uuky lifcKear".
•Jtild: 'iL'Le&Lir.'rf rtegnf/
).

"graundVisn
^i^0jl^ta5^oc•".',cmpt/,.
"QU[r̂ MH5ag.c":"control. integer.
".cnoToinT ".tycY^ r j!^ftcycr[tim r

!

Context information ahotf tn jiry Prcwrtim Service

l.;tuileir.{
sstraiii SJS !

lQafcarV:'indwf

'lonc*ric:":-40.33EES3-.
'kuitusltrs.ffiSGir

"conlc£Cntjri!y":"no critic.
,,5rrurlS|rare,,:'SSr

PinrwtFi information about Injury PrcwrtJmSwvirp

'oufaeOr.
'en^ry.

VQrtrflMtjiarr5trijcC:::auy".
"cmration'-trartaaicFtariirtf'.
rcjHratton".'tenicHjarirtReaditf

, !
ncjfflarjME':[

^J!C1[a^Kll̂ lRFaetVallJH,.
TarccanditJgrD"' TerriKratureOI

hcanRalcOr

rirunuttrJ
njrfteacf.intcg3'.

"oum.uK'.nrffigcr
)

}.
(? I : - O I : T C n.;.iry.ol;.ii'i:-.
'ptCCSDtlilillOi'.lMic",
•irjsAN3M5

"irjirs' '''"S"t'
'otitpnls'lrrKW

)
S

Fig. 1. Annotated service

To describe the users of the system, we reuse the FOAF SOUPA ontology, which
propose the term Person. This term is described by a set of properties that include
profile information (e.g., name, gender, birth date, etc.), contact information (e.g.,
email mailing address, phone numbers, etc.), and social and professional
relationships (e.g., people that a person knows, relatives, etc.). To properly describe
the users, we add the UserProperty class, to represent the properties of users, such as
user preferences (e.g., preferred music, preferred language, etc.), skills (abilities and
disabilities that a person has and may affect to his/her interaction with the system,
e.g., computer knowledge, deafness, diseases, etc.) and medical parameters
(parameters that determine the user health). With regard to the location in which a
person is, we define the currentLocation relationship, which relates each person to the

http://lyw.irnjdiurn.Miah

location where it is in the current moment. Also, the user is related to the activity that
is currently doing and his/her agenda, which describes the user appointments.

A person is also associated to policies. A policy represents a set of operations
and/or services (which group a set of operations) that are permitted for a person. The
policy also describes the context information that a person can see and/or modify.

Fig. 2. Class diagram

To describe temporal aspects, we reuse the DAML-Time ontology and the Entry
Sub-ontology of Time that SOUPA provides. These ontologies provide us with the
term TemporalEntity, which is refined into Timelnstant and Timelnterval. The
Timelnstant term is defined by using the at property that stores the value of time;
while the Timelnterval term is defined by using the from and to properties that relate
the time interval to the two corresponding time instants. In addition, these SOUPA
ontologies provide useful temporal relationships to compare and order to different
temporal entities, for instance: after, before, sameTimeAs, startsLaterThan,
startsSoonerThan, startsSameTimeAs, endsLaterThan, endsSoonerThan,
endsSameTimeAs. For avoiding overloading the model, we do not show these
relationships in Figure 2. To these classes, we added the TemporalProperty class as
another refinement of the TemporalEntity class. It represents temporal properties that
are not identified as a time instant or a time interval, such as the day of the week, if it
is holidays or working days, etc.

To describe the events that happen in the system, we reused the Event class
proposed by the SOUPA ontology. In SOUP A, an event is a temporal and spacial
thing. Thus, SOUPA provides the SpatialTemporalThing class, which is the
intersection between TemporalEntity and SpatialThing. In addition, the
SpatialTemporalEvent class is defined as the intersection of the Event and
SpatialTemporalThing classes. The events in our systems can be a change detected by
sensors, or can be an operation executed by a person or automated by the system.
Thus, in order to better represent the events of our systems, we refine the
SpatialTemporalEvent class in the DetectedChange class and the ExecutedOperation
class. The DetectedChange represents a change that has been detected by the devices
of the system (e.g., the temperature has increased, presence has been detected, the
time goes by, etc.). This class is related with the environment or temporal property
whose value has changed (e.g., the temperature of the kitchen). The
ExecutedOperation class represents an event produced by the execution of an
operation (e.g., switching on the light or playing a song). This class is related with the
executed operation (e.g., the switch on operation of the lighting service or the play
operation of the multimedia player service) and the arguments used for executing the
operation. This class is refined in the OperationExecutedByPerson and
AutomaticOperation classes. The OperationExecutedByPerson represents the
execution of an operation by a person. This class is related with the person that has
executed it by using the executedBy relationship. The AutomaticOperation represents
the execution of an operation by the system.

To implement the ontology, we use the Web Ontology Language (OWL). OWL is
an ontology markup language that greatly facilitates knowledge automated reasoning
and is a W3C standard. Using OWL, the classes of the ontology are defined by OWL
classes, and the context specific of the system is defined by OWL individuals, which
are instances of these classes. In OWL, the properties of each class are represented by
attributes whose data type is simple. These properties are DatatypeProperties. The
relationships with other classes are represented by attributes whose data type is a
class. These properties are ObjectProperties. For instance, a user named Bob is
specified as an individual of the Person class whose ID datatypeProperty is Bob. Its
preferred temperature is specified as an individual of the Preference class and added
to the userPreferences objectProperty (which contains the list of user preferences) of
the Bob individual.

4 Test Scenario

To demonstrate the use of the ontology, we designed a test scenario (Fig. 3). In this
scenario, a user has a mobile phone with an android application that recommends
him/her a sport routine and a diet according to his/her current condition. Regarding
the user preferences, the app will prepare a specific daily training plan for losing
weight and improving physical condition. The user can see these recommendations in
an android device. The connectivity is by means of Bluetooth. Daily, the application
should check the historical data of the user profile and adjust the weight loss plan, so

the application could advice the client about its achievements and failures and
encourage him to follow the plan of action.

At the end of each practice session, the user could view a list of recommendations
that will be of interest to recover the biological deficiencies, mineral salts, liquid
vitamins and diet-specific menu or could view a calorie intake recommendation.
Moreover, the application can analyze the experience of the user and decide whether
the practice has been beneficial or detrimental to him/her. In this scenario, the
ontology is the key to providing the integration of all needed information and make
the services aware of user context.

An OWL context model based on the ontology presented in the previous section is
created to manage and integrate all the needed information. In this model, the user
information (such as age, tall, diet preferences, favorite sports, diseases, sex, food and
environmental allergies) as well as the semantic information about the needed
services (profile, context and process) is manually introduced by using Protege [19].

Fig. 3. Test scenario

When the user executes the application in the smartphone android, it uses the
services semantically annotated provided by the semantic middleware to recollect
data from all sensors and update the context model according to the sensed context.

The simple services provided by sensors are related with the dynamic measures
such as heart rate, breathing rate, body temperature, location, indoor temperature in
several places, indoor humidity, outdoor lightness or outdoor temperature.

In general, the service profile is static, while its context and process are dynamic.
So, the service features can be known to create new composed services by using an
orchestrator (dedicated mote). The composed services use and process the context
information of the context model to provide the required application functionality.

Thus, the simple services semantically annotated in the context model, are used for
the application for updating the sensed information in the context model. Processing
this information, the following composed service is provided:

• Muscular Injury Prevention Service:
a. Context information (provided by simple services) used: indoor

temperature, body temperature, heart rate.
b. Response: Injury levels, including low, medium and high,

depending on the value of the context information parameters.
Using this composed service a new composed service can be also created:

• Alarm Muscular Injury Prevention Service: will be activated when the
Injury level in the Response of Muscular injury prevention service is
high (the gap between indoor temperature and body temperature is
excessive, or indoor temperature, or skin temperature or heart rate has
exceeded a threshold).

All the composed services are, also, continually updating the corresponding
context information in the context model.

So, the ontology-based context model becomes the central point of the system
integrating all the knowledge of the application (user context and required services)
and allowing services to improve their functionality and provide composed services
by taking into account this knowledge.

4.1 Test Scenario Deployment

The following steps have been performed in strict order to integrate the ontology in
theESB:

• Create the corresponding individuals using Protege 4.1 [20].
• Validate the ontology in standalone and using Protege 4.1 and the Pellet

reasoner [21].
• Build an Application programming interface API for managing the ontology

at runtime: we used Jena [22] to open the OWL model and manage its
individuals, TDB [23] for making the context model persistent and Pellet for
providing reasoner. For developing this API we have applied the
recommended best practices proposed in [24-25].

• Create a bundle to run the API in the ESB; in this way, services can easily
access to the ontology and all the components are integrated.

5 Conclusions and Future Work

In this paper we have proposed an ontology that integrates all the information about
user context and services running in a system and becomes a key point to improve the
application features. The easiness of the ontology integration is also an important
benefit of our proposal. As can be seen in the previous section, the ontology is
integrated as a new service in the ESB. In this way, the ontology service can be used
by other services that are running in the system.

Furthermore, we have developed a test scenario to demonstrate that the user, from
him/her point of view, using only wearable devices, improve the experience of use of
the application. What the user doesn't know is that this fact is possible because in the
system exist the ontology showed in this paper.

Both the capabilities of the sensors as wearable devices constantly evolving, so,
alike, ontology needs too constantly evolving to maintain the capability to represent
the abstract content related whit sensors and users profile.

Keeping in mind that it will appear new manufacturers and new users with new
profiles, the key point of future work will be to provide to the ontology capabilities of
evolution and versioning [26]. To achieve this target it could be used methodologies
like DOGMA-MESS [27-28], in a native way or adapting to the global system, like in
DiYSE project, to gradually enrich the ontology.

It is also necessary to develop a powerful engine inference, providing the ontology
to dynamically create new services based in the orchestration of the existing services.

Another future task is to test the global application in new scenarios, basically of
ubiquitous computing, such us e-health, surveillance of young or elderly people, in a
non-intrusive way.

In summary, the future work will be directed to adequate the ontology to let the
creation of services each time closer to the user.

Acknowledgments.
The work presented in this paper has been partially funded by the Spanish Ministry of
Industry, Tourism and Trade in the framework of the European Research Project
"LifeWear-Mobilized Lifestyle with Wearables" (TSI-020400-2010-100), which
belongs to the ITEA 2 (Information Technology for European Advancement 2)
program, and by the Spanish Ministry of Economy and Competitiveness in the
AWARE Project (Ref TEC2011-28397).

References

1. Botts M., Robin A. OpenGis Sensor Model Lenguaje (SensorML) implementation
Specification. OpenGIS Implementation Specification OGC 07-000. The Open Geospatial
Consortium (2007).

2. Cox S.: Observations and Measurements - Part 1- Observation Schema. OpenGIS
Implementation Standard OGC 07-022rl The Open Geospatial Consortium (2007).

3. Cox S.: Observations and Measurements - Part 2 - Sampling Features. OpenGIS
Implementation Standard OGC 07-022r3 The Open Geospatial Consortium (2007).

4. The semantic sensor network ontology: a generic language to describe sensor assets. In
AGILE Workshop: Challenges in Geospatial Data Harmonization, (2009).

5. Compton M., Henson C, Lefort L., Neuhaus H., Sheth A.: A Survey of Semantic
Specification of Sensors. Proc. Semantic Sensor Networks, pp. 17-32 Springer (2009)

6. Chen, H., Finin, T., and Joshi, A.: An ontology for context-aware pervasive computing
environments. Special Issue on Ontologies for Distributed Systems, Knowledge Engineering
Review, vol. 18(3), ppl97-207 (2004).

7. Chen, H., Finin, T. and Joshi, A. Ontologies for Agents: Theory and Experiences, chapter of
The SOUPA Ontology for Pervasive Computing. Whitestein Series in Software Agent
Technologies, pp 233-258 Springer Velar, Berlin. (2005)

8. Gu T., Pung H. K. Zhang. D.Q.: A service-oriented middleware for building context-aware
services. Journal of Network and Computer Applications, vol.: 28(1), pp.1-18, (2005).

9. Tang, Y, Meerman, R., DIY-CDR: An Ontology-based, Do-it-Yourself Components
Discoverer and Recommender Theme Issue on Adaptation and Personalization for
Ubiquitous Computing, journal of Personal and Ubiquitous Computing, Springer, Z. Yu, D.
Cheng, I. Khalil, J. Kay, D. Heckmann (eds.), ISSN 1617-4909, June 21, 2011

10. B. Biegel, Cahill V.: A framework for developing mobile, context-aware applications. 2nd
IEEE Conference on Pervasive Computing and Communication. (2004).

11. Dey, A. K. Understanding and Using Context. Personal Ubiquitous Computing. (2001)
12. Sheng, Q. Z. and Benatallah B. ContextUML: a UML-based modelling language for model-

driven development of context-aware web services. ICMB'05, 11-13 July, pp 206 - 212
IEEE Computer Society, Washington, DC, USA. (2005).

13. Henricksen, K. and Indulska J. Developing context-aware pervasive computing applications:
Models and approach. Pervasive and Mobile Computing, 2, pp 37-64 (2006).

14. Ayed, D., Delanote D., Berbers Y., and Berbers Y. MDD Approach for the Development of
Context-Aware Applications. CONTEXT 2007, pp. 15-28.(2007).

15. Baldauf, M., Dustdar S., and Rosenberg F. A Survey on Context-Aware Systems.
International Journal of Ad Hoc and Ubiquitous Computing, 2, pp 263-277. (2007)

16. Ye, J., Coyle L., Dobson S., and Nixon P. A Unified Semantics Space Model. LoCA 2007,
pp 103-120, Springer-Verlag Berlin Heidelberg. (2007).

17. Chen, H., Perich F., Finin T., and Joshi A. (SOUPA: Standard Ontology for Ubiquitous and
Pervasive Applications. The First Annual International Conference on Mobile and
Ubiquitous Systems 22-26 August, pp 258 - 267. (2005).

18. Roussaki, I., Strimpakou M., Pils C , Kalatzis N., and Anagnostou M. Hybrid context
modeling: A location-based scheme using ontologies. Proceedings of the Fourth Annual
IEEE International Conference on Pervasive Computing and Communications Workshops
(PERCOMW'06), IEEE Computer Society. (2006)

19. Gu, T., Pung H. K., and Zhang D. Q. A service-oriented middleware for building context-
aware services. Journal ofNetwork and Computer Applications, 28, pp 1-18. (2005)

20. The Protege Ontology Editor and Knowledge Adcquisition, http://protege.stanford.edu
21. Pellet, OWL 2 Reasoner for Java, http://clarkparsia.com/pellet
22. Apache Jena , http://jena.apache.org
23. Apache Jena TDB, http://jena.apache.org/documentation/tdb/index.html
24. How To Design A Good API and Why it Matters. Google. (2007)
25. Guy, M. Report 2: API Good Practice Good practice for provision of and consuming APIs.

Tech. rept. UKOLN (2009).
26. Khattak, A.M., Latif, K., Lee, S. and Lee, Y.K.: Ontology Evolution: A Survey and Future

Challenges, Communications in Computer and Information Science, vol. 62, pp. 68-75.
(2009).

27. de Moor, A., De Leenheer, P., Meersman, R.: DOGMA-MESS: A Meaning Evolution
Support System for Interorganizational Ontology Engineering, Proc. of 14th ICCS
conference, Springer-Verlag, V. 4068, p. 189-203, Aalborg, Denmark. (2006)

28. De Leenheer, P. and Debruyne, C: DOGMA-MESS: a tool for fact-oriented collaborative
ontology evolution, in proc. Of OTM 2008 workshops, Meersman, Tari and Herrero (Eds.),
LNCS 5333, pp. 797-806, Srpinger-Verlag Berlin Heidelberg, (2008).

http://protege.stanford.edu
http://clarkparsia.com/pellet
http://jena.apache.org
http://jena.apache.org/documentation/tdb/index.html

