Skip to main content

Bimodal Protein Distributions in Heterogeneous Oscillating Systems

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7605))

Abstract

Bimodal distributions of protein activities in signaling systems are often interpreted as indicators of underlying switch-like responses and bistable dynamics. We investigate the emergence of bimodal protein distributions by analyzing a less appreciated mechanism: oscillating signaling systems with varying amplitude, phase and frequency due to cell-to-cell variability. We support our analysis by analytical derivations for basic oscillators and numerical simulations of a signaling cascade, which displays sustained oscillations in protein activities. Importantly, we show that the time to reach the bimodal distribution depends on the magnitude of cell-to-cell variability. We quantify this time using the Kullback-Leibler divergence. The implications of our findings for single-cell experiments are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acar, M., Mettetal, J.T., van Oudenaarden, A.: Stochastic switching as a survival strategy in fluctuating environments. Nat. Genet. 40(4), 471–475 (2008)

    Article  Google Scholar 

  2. Ackermann, M., Stecher, B., Freed, N.E., Songhet, P., Hardt, W.D., Doebeli, M.: Self-destructive cooperation mediated by phenotypic noise. Nature 454(7207), 987–990 (2008)

    Article  Google Scholar 

  3. Blake, W.J., Balázsi, G., Kohanski, M.A., Isaacs, F.J., Murphy, K.F., Kuang, Y., Cantor, C.R., Walt, D.R., Collins, J.J.: Phenotypic consequences of promoter-mediated transcriptional noise. Molecular Cell 24(6), 853–865 (2006)

    Article  Google Scholar 

  4. Das, M., Drake, T., Wiley, D.J., Buchwald, P., Vavylonis, D., Verde, F.: Oscillatory dynamics of Cdc42 GTPase in the control of polarized growth. Science 337(6091), 239–243 (2012)

    Article  Google Scholar 

  5. Kuepfer, L., Peter, M., Sauer, U., Stelling, J.: Ensemble modeling for analysis of cell signaling dynamics. Nat. Biotechnol. 25(9), 1001–1006 (2007)

    Article  Google Scholar 

  6. Miller, S., Childers, D.: Probability and Random Processes. With Applications to Signal Processing and Communications. Academic Press (January 2012)

    Google Scholar 

  7. Mirsky, H.P., Taylor, S.R., Harvey, R.A., Stelling, J., Doyle, F.J.: Distribution-based sensitivity metric for highly variable biochemical systems. IET Syst. Biol. 5(1), 50 (2011)

    Article  Google Scholar 

  8. Niepel, M., Spencer, S.L., Sorger, P.K.: Non-genetic cell-to-cell variability and the consequences for pharmacology. Curr. Opin. Chem. Biol. 13(5-6), 556–561 (2009)

    Article  Google Scholar 

  9. Ochab-Marcinek, A., Tabaka, M.: Bimodal gene expression in noncooperative regulatory systems. PNAS 107(51), 22096–22101 (2010)

    Article  Google Scholar 

  10. Ogunnaike, B.A.: Elucidating the digital control mechanism for DNA damage repair with the p53-Mdm2 system: single cell data analysis and ensemble modelling. J. R. Soc. Interface 3(6), 175–184 (2006)

    Article  Google Scholar 

  11. Samoilov, M., Plyasunov, S., Arkin, A.P.: Stochastic amplification and signaling in enzymatic futile cycles through noise-induced bistability with oscillations. PNAS 102(7), 2310–2315 (2005)

    Article  Google Scholar 

  12. Schliemann, M., Bullinger, E., Borchers, S., Allgöwer, F., Findeisen, R., Scheurich, P.: Heterogeneity reduces sensitivity of cell death for TNF-stimuli. BMC Syst. Biol. 5, 204 (2011)

    Article  Google Scholar 

  13. Shahrezaei, V., Swain, P.S.: Analytical distributions for stochastic gene expression. PNAS 105(45), 17256–17261 (2008)

    Article  Google Scholar 

  14. Sigal, A., Milo, R., Cohen, A., Geva-Zatorsky, N., Klein, Y., Liron, Y., Rosenfeld, N., Danon, T., Perzov, N., Alon, U.: Variability and memory of protein levels in human cells. Nature 444(7119), 643–646 (2006)

    Article  Google Scholar 

  15. Spencer, S.L., Gaudet, S., Albeck, J.G., Burke, J.M., Sorger, P.K.: Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459(7245), 428–432 (2009)

    Article  Google Scholar 

  16. Tsyganov, M.A., Kolch, W., Kholodenko, B.N.: The topology design principles that determine the spatiotemporal dynamics of G-protein cascades. Mol. Biosyst. 8(3), 730–743 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dobrzyński, M., Fey, D., Nguyen, L.K., Kholodenko, B.N. (2012). Bimodal Protein Distributions in Heterogeneous Oscillating Systems. In: Gilbert, D., Heiner, M. (eds) Computational Methods in Systems Biology. CMSB 2012. Lecture Notes in Computer Science(), vol 7605. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33636-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33636-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33635-5

  • Online ISBN: 978-3-642-33636-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics