
Exploiting over- and under-approximations
for infinite-state counterpart models?

Fabio Gadducci1, Alberto Lluch Lafuente2, and Andrea Vandin2

1 Department of Computer Science, University of Pisa, Italy
2 IMT Institute for Advanced Studies Lucca, Italy

Abstract. Software systems with dynamic topology are often infinite-
state. Paradigmatic examples are those modeled as graph transformation
systems (GTSs) with rewrite rules that allow an unbounded creation
of items. For such systems, verification can become intractable, thus
calling for the development of approximation techniques that may ease
the verification at the cost of losing in preciseness and completeness. Both
over- and under-approximations have been considered in the literature,
respectively offering more and less behaviors than the original system.
At the same time, properties of the system may be either preserved or
reflected by a given approximation. In this paper we propose a general
notion of approximation that captures some of the existing approaches
for GTSs. Formulae are specified by a generic quantified modal logic, one
that also generalizes many specification logics adopted in the literature
for GTSs. We also propose a type system to denote part of the formulae
as either reflected or preserved, together with a technique that exploits
under- and over-approximations to reason about typed as well as untyped
formulae.

Keywords: graph transition systems, approximated verification, abstraction,
graph logics.

1 Introduction

Various approaches have been proposed to equip visual specification formalisms
with suitable tools and techniques for verification. Recently, quite some attention
has been devoted to those proposals that have imported and adapted traditional
approaches (such as model checking) to the area of graph transformation. Among
others, we mention here two research lines that have integrated the techniques
they argue for into suitable verification tools, namely GROOVE [12, 9, 14, 5, 15,
16] and AUGUR [1, 3, 4, 10, 2]3.

A main ingredient in those works is the adoption of a suitable language for
property specification. The language is in form of a modal logic capturing very
often two essential dimensions of the state space of graph transformation systems

? Partly supported by the EU FP7-ICT IP ASCEns and by the MIUR PRIN SisteR.
3 See groove.cs.utwente.nl and www.ti.inf.uni-due.de/research/tools/augur2.

(GTSs): the topological structure of states (i.e. graphs) and the temporal structure
of transitions (i.e. graph rewrites). The topological dimension is usually handled
by variants of monadic second-order (MSO) logics [6], spatial logics [7] or regular
expressions [12], while the temporal dimension is typically tackled with standard
modal logics from the model checking tradition like LTL, CTL or the modal
µ-calculus. Our own contribution [8] to this field follows the tradition of [2] and it
is based on a quantified version of the µ-calculus that mixes temporal modalities
and graph expressions in the MSO-style.

Such logics are in general not decidable, mainly because the state space of the
transition system associated to a GTS (usually called graph transition system) is
very often infinite. Paradigmatic examples are GTSs with rewrite rules allowing
an unbounded creation of items. Verification becomes then untractable and calls
for appropriate state space reduction techniques. For example, many efforts
have been devoted to the definition of approximation techniques inspired by
abstract interpretation. The main idea is to consider a finite-state abstract system
that approximates (the properties of) an infinite-state one, so that verification
becomes feasible (at the acceptable cost of losing preciseness in the verification
results). Approximated systems represent either more or less behaviours than the
original one, resulting respectively in over- or under-approximations. In general,
in order to consider meaningful approximations, it is necessary to relate them
with the original systems via behavioural relations, like simulation ones. Such
approximation techniques have been developed in both the above mentioned
research lines: namely neighborhood abstractions [5] and unfoldings [1, 3, 4].

Contribution. Even if such techniques have been shown to be very effective,
we do believe that there is still space for pushing forward their exploitation in
the verification of GTSs. In this paper we propose a general formalization of
similarity-based approximations, and a verification technique exploiting them.
We focus on the type system of [4] proposed within the unfolding technique to
classify formulae as preserved or reflected by a given approximation. We extend
and generalize such type system in several directions: (i) our type system is
technique-agnostic, meaning that it does not require the approximated systems
to be obtained with a particular mechanism (e.g. the unfolding one); (ii) we
consider counterpart models, a generalization of graph transition systems; (iii)
our type system is parametric with respect to a given simulation relation (while
the original one considers only simulations with certain properties); (iv) we use
the type system to reason on all formulae (rather than just on closed ones);
and (v) we propose a technique that exploits over- and under-approximations to
estimate properties more precisely, handling also part of the untyped formulae.

Synopsis. §2 provides the necessary background. §3 defines simulation relations
between counterpart models. §4 provides a type system to classify formulae as
preserved, reflected or strongly preserved, exploited in §5 to define the approxi-
mated evaluation of formulae. Finally, §6 discusses related works, and concludes
the paper. The soundness of our approach is proved in Appendix.

2 Background

We summarize here the basic machinery of our approach: essentially, the notion
of counterpart models (which generalize graph transition systems) and a logic to
reason about such models. A detailed presentation can be found in [8].

2.1 Counterpart models

While graph transition systems have graphs associated to states, counterpart
models use many-sorted algebras to denote the structure of states (worlds).

Recall that a (many-sorted) signature Σ is a pair (SΣ , FΣ) composed by a
set of sorts SΣ = {τ1, · · · , τm} and by a set of function symbols FΣ = {fΣ :
τ1 × . . .× τn → τ | τi, τ ∈ SΣ} typed over S∗Σ , and that a (many-sorted) algebra
A with signature Σ (a Σ-algebra) is a pair (A,FA

Σ) such that: (i) the carrier
A is a set of elements typed over SΣ ; (ii) FA

Σ = {fAΣ : Aτ1 × . . .× Aτn → Aτ |
fΣ : τ1 × . . .× τn → τ ∈ FΣ} is a family of functions on A typed over S∗Σ , where
Aτ = {a ∈ A | a : τ}, and each fΣ ∈ FΣ corresponds to a function fAΣ in FA

Σ .
Given two Σ-algebras A and B, a (partial) morphism % is a family of partial

functions {%τ : Aτ ⇀ Bτ | τ ∈ SΣ} typed over SΣ , such that, for each function
symbol fΣ : τ1 × . . . × τn → τ ∈ FΣ and list of elements a1, . . . , an, if each
function %τi is defined for the element ai of type τi, then %τ is defined for
the element fAΣ (a1, . . . , an) of type τ and the elements %τ (fAΣ (a1, . . . , an)) and
fBΣ (%τ1(a1), . . . , %τn(an)) coincide. A morphism is injective, surjective or bijective
if all the %τ are so, meaning that they are so over its domain of definition.

Example 1. The signature for directed graphs is (SGr, FGr). The set SGr consists
of the sorts of nodes τN and edges τE , while the set FGr is composed by the
function symbols s : τE → τN and t : τE → τN , which determine the source and
the target node of an edge. For example, in Fig. 1 the graph tagged with w1 is
(N] E, {s, t}), where N = {u, v}, E = {e1}, s = {e1 7→ u} and t = {e1 7→ v}.

A basic ingredient of our logic are open terms. For this purpose we consider
signatures ΣX obtained by extending a many-sorted signature Σ with an enumer-
able set X of variables typed over SΣ . We let Xτ denote the τ -typed subset of
variables and with xτ or x : τ a variable with sort τ . Similarly, we let ετ or ε : τ
indicate a τ -sorted term. The set T (ΣX) of (possibly open) terms obtained from
ΣX is the smallest set such that X ⊆ T (ΣX) and f(ε1, . . . , εn) : τ ∈ T (ΣX) for
any f : τ1 × . . .× τn → τ ∈ FΣ and εi : τi ∈ T (ΣX).

For ease of presentation, we omit the sort when it is clear from the context
or when it is not necessary. Moreover, we fix a generic many-sorted signature Σ.

We are finally ready to introduce counterpart models, which can be seen as a
generalization of graph transition systems (see e.g. [2]).

Definition 1 (Counterpart model). Let A be the set of Σ-algebras. A coun-
terpart model M is a triple (W, , d) such that W is a set of worlds, d : W → A
is a function assigning to each world a Σ-algebra, and ⊆W × (A⇀ A)×W is
the accessibility relation over W , enriched with (partial) morphisms (counterpart
relations) between the algebras of the connected worlds.

In the following we may use w1
cr w2 for (w1, cr, w2) ∈ . In particular, for

each w1
cr w2 we have that cr : d(w1)→ d(w2) defines the counterparts of (the

algebra of) w1 in (the algebra of) w2. Counterpart relations allow hence to avoid
trans-world identity, the implicit identification of elements of different worlds
sharing the same name. Element names thus have a meaning that is local to
their world. For this reason, these relations allow for the creation, deletion, and
type-respecting renaming and merging of elements. Duplication is forbidden: no
cr associates any element of d(w1) to more than one of d(w2).

•u // •u // •u //

�� ��

. . .

e1

��

// e1 e2 <<
** . . .

•v // •v // •v // . . .

w0 w1 w2 . . .

Fig. 1. A counterpart model

Should Σ be a signature for graphs, a
counterpart model is a two-level hierarchi-
cal graph: at the higher level the nodes
are the worlds w ∈W , and the edges are
the evolution steps labeled with the asso-
ciated counterpart relation; at the lower
level, each world w contains a graph repre-
senting its internal structure. In standard
terminology, we consider a transition system labeled with algebra morphisms, as
an immediate generalization of graph transition systems [2].

Example 2. The counterpart model in Fig. 1 is made of a sequence of worlds wi,
where world wi is essentially associated to a graph d(wi) with i edges between
nodes u and v. The counterpart relations (drawn with dotted lines) reflect the
fact that each transition (wi, cri, wi+1) is such that cri is the identity for d(wi).

2.2 A logic to reason about counterpart models

We now present a logic for counterpart models. The main idea is that the
interpretation of a formula in a model M provides sets of pairs (w, σw) where w
is a world of M and σw associates first- and second-order variables to elements
and to sets of elements, respectively, of d(w). In what follows we fix a counterpart
model M with signature Σ, and let X, X and Z denote alphabets of denumerable
sets of first-order, second-order, and fix-point variables, respectively.

Definition 2 (Quantified modal formulae). The set FΣ of formulae ψ of
our logic is generated by

ψ ::= tt | ε ∈τ χ | ¬ψ | ψ ∨ ψ | ∃τx.ψ | ∃τχ.ψ | ♦ψ | Z | µZ.ψ

where ε is a term over ΣX , ∈τ is a family of membership predicates typed over
SΣ (stating that a term with sort τ belongs to a second-order variable with the
same sort), ∃τ quantifies over elements (sets of elements) with sort τ , ♦ is the

“possibility” one-step modality, Z ∈ Z, and µ denotes the least fixed point operator.

The semantics of the logic is given for formulae-in-context ψ[Γ ;∆], where
Γ ⊂ X and ∆ ⊂ X are the first- and second-order contexts of ψ, containing at
least its free variables. However, we may omit types and contexts for the sake
of presentation. As usual, we restrict to monotonic formulae, where fix-point
variables occur under an even number of negations to ensure well-definedness.

The logic is simple, yet reasonably expressive. We can derive useful operators
other than boolean connectives ∧, →, ↔, and universal quantifiers ∀τ . For
instance “=τ”, the family of equivalence operators for terms in T (SΣ), typed
over SΣ , can be derived as ε1 =τ ε2 ≡ ∀τχ. (ε1 ∈τ χ↔ ε2 ∈τ χ). The greatest
fix-point operator can be derived as νZ.ψ ≡ ¬µZ.¬ψ, and the “necessarily” one-
step modality as �ψ ≡ ¬♦¬ψ (ψ holds in all the next one-steps). Moreover, we
can derive the standard CTL* temporal operators, as explained in detail in [8].

The semantic domain of our formulae are sets of assignments.

Definition 3 (Assignments). An assignment σw = (σ1
w, σ

2
w) for a w ∈W is a

pair of partial functions typed over SΣ with σ1
w : X ⇀ d(w) and σ2

w : X ⇀ 2d(w).
We use ΩM (or just Ω) to denote the set of pairs (w, σw), for σw an assignment
for w. A fix-point variable assignment is a partial function ρ : Z ⇀ 2ΩM .

Given a term ε and an assignment σ = (σ1, σ2), we denote with σ(ε) or σ1(ε)
the lifting of σ1 to T (ΣX). Intuitively, it evaluates ε under the assignment σ for
its variables. If σ is undefined for any variable in ε, then σ(ε) is undefined as well.

Example 3. In our logic it is easy to define a predicate regarding the presence of an
entity with sort τ in a world as presentτ (x) ≡ ∃τr. x = r. The predicate evaluates
in pairs (w, ({z 7→ a}, λ2)), with a : τ ∈ d(w). Consider again the model of Fig.1,
then the predicate (omitting typings) p(x, y) ≡ present(z)∧ s(z) = x∧ t(z) = y
regards the existence of an edge z connecting a node x to a node y. Note that
evaluating p(u, v) will provide assignments of z to edges connecting u to v.

We denote by Ω
[Γ ;∆]
M those pairs (w, (σ1

w, σ
2
w)) such that the domain of

definition of σ1
w is contained in Γ , and the one of σ2

w is exactly ∆. As we will

see, the evaluation function of our formulae is strongly based on Ω
[Γ ;∆]
M . Note

the asymmetry in the definition: σ may be undefined over the elements of Γ , yet
not over those of ∆. Intuitively, σ(x) may be undefined if the element it was
denoting has been deallocated, while we can always assign the empty set to σ(χ).
We hence use partial first-order assignments to treat item deallocations.

Given models M = (W, , d), M ′ = (W ′, ′, d′), worlds w ∈ W , w′ ∈ W ′,
morphism φ : d(w)→ d′(w′), and assignment σw = (σ1

w, σ
2
w) for w, we use φ ◦ σw

to denote the assignment σw′ (for w′) obtained applying φ to the components of
σw′ , i.e. σ1

w′ = φ ◦ σ1
w, and σ2

w′ = 2φ ◦ σ2
w, for 2φ the lifting of φ to sets.

Assignments can be restricted to and extended by variables. Given an assign-
ment σ = (σ1, σ2) such that (w, σ) ∈ Ω[Γ,x;∆], its restriction σ ↓x wrt. x 6∈ Γ is
the assignment (σ1 ↓x, σ2), such that (w, σ ↓x) ∈ Ω[Γ ;∆], obtained by removing
x from the domain of definition of σ1. Vice versa, the extension σ[a/x] of an
assignment σ = (σ1, σ2) such that (w, σ) ∈ Ω[Γ ;∆] wrt. mapping x 7→ a (for x 6∈ Γ
and a ∈ d(w)) is the assignment (σ1[a/x], σ2) such that (w, σ[a/x]) ∈ Ω[Γ,x;∆].

The notation above is analogously and implicitly given also for second-order
variables, as well as for their lifting to sets 2↓x and 2↑x . Intuitively, by extending
Ω[Γ ;∆] with respect to a variable xτ 6∈ Γ , we replace every pair (w, σw) ∈ Ω[Γ ;∆]

with the set {(w, σw[a/x]) | a : τ ∈ d(w)}. Note that extensions may shrink the
set of assignments, should the algebra associated to the world have no element

of the correct type. In general terms, the cardinality of 2↑xτ ({(w, σw)}) is the
cardinality of d(w)τ , i.e. the cardinality of the set of elements of type τ in d(w).

Given a transition w cr w′ and (w, σw) ∈ Ω[Γ ;∆], the counterpart assignment
of σw relatively to cr (denoted σw

cr σw′) is the assignment σw′ = cr ◦ σw. Thus,
for x ∈ Γ , if σw(x) is undefined, then σw′(x) is undefined as well, meaning that if
σw(x) refers to an element deallocated in w, then also σw′(x) does in w′; if σw(x)
is defined, but cr(σw(x)) is not, then the considered transition deallocates σw(x).
Whenever both σw(x) and cr(σw(x)) are defined, then σw(x) has to evolve in
σw′(x) accordingly to cr. As for χ ∈ ∆, the elements in σw(χ) preserved by cr
are mapped in σw′(χ). If σw(χ) is defined, then σw′(χ) is also defined, with a
cardinality equal or smaller, due to fusion or deletion of elements induced by cr.

We now introduce the evaluation of formulae in a model M , as a mapping
from formulae ψ[Γ ;∆] into sets of pairs contained in Ω[Γ ;∆]. Hence, the domain
of the assignments in these pairs is, respectively, contained in Γ , and exactly ∆.
Intuitively, a pair (w, σw) belongs to the semantics of ψ[Γ ;∆] if it holds in w
under the assignment σw for its free variables. We assume that all the bound
variables are different among themselves, and from the free ones.

Definition 4 (Semantics). The evaluation of a formula ψ[Γ ;∆] in M under

assignment ρ : Z → 2Ω
[Γ ;∆]

is given by the function J·Kρ : F [Γ ;∆] → Ω[Γ ;∆]

Jtt[Γ ;∆]Kρ = Ω[Γ ;∆]

J(ε ∈τ χ)[Γ ;∆]Kρ = {(w, σw) ∈ Ω[Γ ;∆] | σw(ε) is defined and σw(ε) ∈ σw(χ)}
J¬ψ[Γ ;∆]Kρ = Ω[Γ ;∆] \ Jψ[Γ ;∆]Kρ

Jψ1 ∨ ψ2[Γ ;∆]Kρ = Jψ1[Γ ;∆]Kρ ∪ Jψ2[Γ ;∆]Kρ
J∃τx. ψ[Γ ;∆]Kρ = 2↓x({(w, σw) ∈ Jψ[Γ, x;∆]K(2↑x◦ρ) | σw(x) is defined})
J∃τχ. ψ[Γ ;∆]Kρ = 2↓χ(Jψ[Γ ;∆,χ]K(2↑χ◦ρ))

J♦ψ[Γ ;∆]Kρ = {(w, σw) ∈ Ω[Γ ;∆] | ∃w cr w′. ∃(w′, σw′) ∈ Jψ[Γ ;∆]Kρ . σw cr σw′}
JZ[Γ ;∆]Kρ = ρ(Z)

JµZ.ψ[Γ ;∆]Kρ = lfp(λY.Jψ[Γ ;∆]Kρ[Y /Z])

Notice how in order to evaluate ∃τx.ψ[Γ ;∆], we first evaluate ψ extending
Γ with x. Then, by dropping the pairs with undefined assignment for x, we
obtain the ones whose worlds contain items satisfying ψ if assigned to x. The
second-order case is similar, but assignments are defined for all the variables in
∆. Note that ρ is modified accordingly, thus ensuring a proper sorting for ρ(Z).

Another interesting case arises evaluating formulae ♦ψ[Γ ;∆], where we search
for pairs (w, σw) such that there exists a transition w cr w′ and a σw′ with
σw

cr σw′ and (w′, σw′) belonging to the evaluation of ψ[Γ ;∆]. In words, σw′

has to respect the relation induced by cr between the items of the two worlds.
Finally, the evaluation of a closed formula, i.e. with empty context, is a set of

pairs (w, λ), for λ the empty assignment, ensuring that our proposal properly
extends standard semantics for propositional modal logics.

Example 4 (Evaluation of formulae). Consider the formula of Example 3, the
model of Fig. 1 and the empty assignment λ = (λ1, λ2). Evaluating Jp(u, v)KM
results in {(w1, ({z 7→ e1}, λ2)), (w2, ({z 7→ e1}, λ2)), (w2, ({z 7→ e2}, λ2)), . . . }.

3 Behavioural equivalences for counterpart models

In this section we lift classical behavioural preorders and equivalences to counter-
part models. For the sake of presentation, for the rest of the paper we fix two
models M = (W, , d) and M ′ = (W ′, ′, d′). Intuitively, we define relations
from M to M ′ as sets of triples (w, φ,w′) ∈ R formed by a world w ∈W , a world
w′ ∈W ′ and a morphism φ : d(w)→ d(w′) relating their respective topologies.

Definition 5 (Simulation). Let R ⊆ W × (A ⇀ A) ×W ′ be a set of triples
(w, φ,w′), with φ : d(w) → d′(w′) a morphism. R is a simulation from M to

M ′ if for every (w1, φ1, w
′
1) ∈ R we have that w1

cr w2 implies w′1
cr′ w′2

for some w′2 ∈ W ′, with (w2, φ2, w
′
2) ∈ R and φ2 ◦ cr = cr′ ◦ φ1. If R−1 =

{(w′, φ−1, w) | (w, φ,w′) ∈ R} is well defined, and is also a simulation, then R
(as well as R−1) is called bisimulation.

w0
///o/o/o w1

�� H�
S�e%

o/y9�K
�V

•u // •u
tt

e

��

xx

•v // •v
tt

w0 ///o/o/o
φ0

KS

w1 ///o/o/o/o/o
φ1

KS

w2 ///o/o/o/o/oφ2

em SSSSSSSSS

SSSSSSSSS
. . .

φi
hp YYYYYYYYYYYYYYYYYYYY

YYYYYYYYYYYYYYYYYYYY

•u // •u // •u //

�� ��

. . .

e1

��

// e1 e2 <<
** . . .

•v // •v // •v // . . .

w0 ///o/o/o
φ0

KS

w1 ///o/o/o/o/o
φ1

KS

w2

φ2

KS

•u // •u // •u

�� ��

e1

��

// e1 e2

•v // •v // •v

Fig. 2. Approximations

Notice how the φ components of bisim-
ulations are forcibly injections. We call
“iso” a bisimulation whose φ components
are isomorphisms. We may abbreviate
(w, φ,w′) ∈ R in wRw′ if φ is irrelevant.
As usual, we define (bi)similarity as the
greatest (bi)simulation, and say that M
is similar to M ′ or that M ′ simulates M ,
written M vR M ′ (where we may omit
R), if there exists a simulation R from M
to M ′ such that, for every w ∈ W , there
exists at least a w′ ∈W ′ with wRw′.

Example 5. Fig. 2 depicts three mod-
els: M (center), M (top) and M (bot-
tom). The model M , taken from Exam-
ple 2, is infinite-state and M and M can
be understood as its over- and under-
approximations, respectively. Indeed, we
have relations R and R (denoted with dou-
ble arrows) such that M vR M vR M .

Intuitively, M is a truncation of M
considering only the first two transitions
of M . Every tuple (w, φ,w) in R is such
that φ : d(w)→ d(w) is the identity.

On the other hand, M can be seen as “M modulo the fusion of edges”. That
is, every tuple (w, φ,w) in R is such that φ : d(w)→ d(w) is a bijection for nodes
(in particular, the identity restricted to the nodes of d(w)) and a surjection on
edges mapping every edge ei into edge e.

Given a set of pairs ω ⊆ ΩM and a simulation R from M to M ′ we use R(ω)
to denote the set {(w′, φ ◦ σw) | (w, σw) ∈ ω ∧ (w, φ,w′) ∈ R}. Note that R−1 is

not always well-defined since the morphisms in the triples (w, φ,w′) may not be
injective. However, we often use the pre-image R−1[·] of R, defined for a set of
pairs ω′ ⊆ ΩM ′ as R−1[ω′] = {(w, σw) ∈ ΩM | ∃(w, φ,w′) ∈ R. (w′, φ◦σw) ∈ ω′}.

4 Preservation and reflection

As usual, the evaluation of formulae in a model M may be only approximated by
a simulation M ′. We hence introduce the usual notions of preserved formulae,
those whose “satisfaction” in M implies their “satisfaction” in M ′, and reflected
formulae, those whose “satisfaction” in M ′ implies their “satisfaction” in M . Of
course, since the semantic domain of our logic are assignment pairs, the notion
of “satisfaction” corresponds to the existence of such pairs.

Definition 6 (Preserved and reflected formulae). Let R be a simulation
from M to M ′ (i.e., M vR M ′), ψ[Γ ;∆] a formula, and ρ an assignment. We say
that ψ is preserved under R (written ψ :R⇒) if Jψ[Γ ;∆]KM

′

R◦ρ ⊇ R(Jψ[Γ ;∆]KMρ);

reflected under R (written ψ :R⇐) if R−1[Jψ[Γ ;∆]KM
′

R◦ρ] ⊆ Jψ[Γ ;∆]KMρ ; and
strongly preserved under R (written ψ :R⇔) if ψ :R⇒ and ψ :R⇐.

Note that the actual choice of ρ, Γ , and ∆ is irrelevant. Note also how the defi-
nition for ψ :R⇐ is stronger than the more intuitive one based on R. In particular,

if ψ:R⇐, then we additionally have that a pair in Ω
[Γ ;∆]
M \ Jψ[Γ ;∆]KMρ cannot be

similar to any pair in Jψ[Γ ;∆]KM
′

R◦ρ (i.e. R(J¬ψ[Γ ;∆]KMρ) ∩ Jψ[Γ ;∆]KM
′

R◦ρ = ∅).

Example 6. Consider again the predicate p(x, y) of Example 3 stating the
existence of an edge connecting node x to node y, and the models M vR
M vR M of Example 5 shown in Fig. 2. It is easy to see that p(u, v) is
strongly preserved both under R and under R. Recall that in Example 4 we
saw that Jp(u, v)KM = {(w1, ({z 7→ e1}, λ2)), (w2, ({z 7→ e1}, λ2)), (w2, ({z 7→
e2}, λ2)), . . . } (for any ρ, thus neglected). Now, Jp(u, v)KM = {(w1, ({z 7→
e1}, λ2)), (w2, ({z 7→ e1}, λ2)), (w2, ({z 7→ e2}, λ2))}, and hence R(Jp(u, v)KM) is
{(w1, ({z 7→ e1}, λ2)), (w2, ({z 7→ e1}, λ2)), (w2, ({z 7→ e2}, λ2))} which is clearly
contained in Jp(u, v)KM . Moreover we also have that R−1[Jp(u, v)[Γ ;∆]KM] ⊆
Jp(u, v)[Γ ;∆]KM . We hence have that p(u, v) :R⇔. Similarly, we have that

Jp(u, v)KM = {(w1, ({z 7→ e}, λ2))}, and R(Jp(u, v)KM) = {(w1, ({z 7→ e}, λ2))}.
Both conditions are again satisfied, and hence we have p(u, v) :R⇔.

Of course, determining whenever a formula is preserved (or reflected) cannot
be done in practice by performing the above check, since that would require to
calculate the evaluation of the formula in the (possibly infinite) original model
M , which is precisely what we want to avoid. Moreover, note that determining
whenever a formula is preserved (and the same occurs for being reflected) is an
undecidable problem, since our logic subsumes that of [4].

Nevertheless, we can apply the same approach of [4] and define a type system
that approximates the preservation and reflection of formulae. In particular,
our type system generalizes the one of [4] in several directions: (i) we consider

counterpart models, a generalization of graph transition systems; (ii) our type
system is parametric with respect to the simulations R (while the original one is
given for graph morphisms that are total and bijective for nodes, and total and
surjective for edges); (iii) we use the type system to reason on all formulae (while
the original proposal restricts to closed ones); and (iv) we propose a technique
exploiting over- and under-approximations of a model to obtain more precise
approximated formulae evaluations, and we handle part of the untyped formulae.

The type system is parametric with respect to the properties ofR. In particular,
we consider the properties of the morphisms in R, namely, for each sort τ , if they
are τ -total (τt), τ -surjective (τs) or τ -bijective (τb). To easy the presentation, we
say “τprop R”, with prop ∈ {t, s, b}, whenever all (w, φ,w′) ∈ R are such that φ
is τ -prop. Moreover, we shall consider the case in which R is an iso-bisimulation.

Definition 7 (Type system). Let R be a simulation from M to M ′ (i.e.,

M vR M ′), ψ a formula, and T = {←,→,↔} a set of types. We say that ψ has

type d ∈ T if ψ : d can be inferred using the following rules

tt :R ↔

d=

{
→ for τt R
← for τb R

ε∈τχ :R d
ψ :R → ψ :R ←

ψ :R ↔
ψ :R ↔
ψ :R d

ψi :R d
ψ1∨ψ2 :R d

ψ :R d with d=

{
→ for τt R
← for τs R

∃τx.ψ :R d and ∃τχ.ψ :R d
ψ :R d
¬ψ :R d−1

Z :R ↔

ψ :R d with d=

{
→ for any R
← for R a iso-bisimulation

♦ψ :R d
ψ :R d

µZ.ψ :R d

where it is intended that →−1=←, ←−1=→ and ↔−1=↔.

The type system is not complete, meaning that some formulae cannot be
typed: if ψ cannot be typed, we then write ψ :R ⊥. However, the next proposition
states its soundness: its proof can be found in the Appendix.

Proposition 1 (Type system soundness). Let R be a simulation from M
to M ′ (i.e., M vR M ′) and ψ a formula. Then (i) ψ :R→ implies ψ :R⇒; (ii)
ψ :R← implies ψ :R⇐; and (iii) ψ :R↔ implies ψ :R⇔.

Our type system can be instantiated for graph signatures, in order to obtain
the one of [4] as a subsystem. In fact, the authors there consider only simulation
relations R that are total on both sorts, as well as being (τN)b (that is, bijective
on nodes) and (τE)s (surjective on edges).

Another instance is for iso-bisimulations. This is the case of the analysis of
graph transition systems up to isomorphism (e.g. as implemented in [13]). In this
case the type system is complete and correctly types every formula as ψ :↔.

Example 7. Consider the models M vR M vR M of Fig. 2, and the formula

p(u, v) of Example 6, where we saw that p(u, v) : R⇔ and p(u, v) : R⇔. Our

type system provides the types p(u, v) :R↔ and (since R is not injective on

edges) p(u, v) :R→. Note that the type for R is exactly inferred, while for R it is
only approximated as we get preserved while it is actually strongly preserved.

5 Approximated semantics

Approximations can be used to estimate the evaluation of formulae. Consider the
case of three models M , M and M , with M vR M vR M , as in Fig. 2, where

M and M are, respectively, under- and over-approximations of M . Intuitively,
an approximated evaluation of a formula ψ in M or M may provide us a lower-
and upper-bound, defined for either M or M , of the actual evaluation of ψ in
M . We call under- and over-approximated evaluations the ones obtained using,
respectively, under- (e.g. M), and over-approximations (e.g. M).

Exploiting approximated evaluations, we may address the local model checking
problem: “does a given assignment pair belong to the evaluation of the formula ψ
in M?”. Given that approximated semantics compute lower- and upper-bounds,
we cannot define a complete procedure, i.e. one answering either true or false.
A third value is required for the cases of uncertainty. For this purpose we use a
standard three valued logic (namely Kleene’s one) whose domain consists of the
set of values K = {T ,F , ?} (where ? reads “unknown”), and whose operators
extend the standard Boolean ones with T ∨ ? = T , F ∨ ? = ?, ¬? = ? (i.e. where
disjunction is the join in the complete lattice induced by the truth ordering
relation F < ? < T). Moreover, we also consider a knowledge addition (binary,
associative, commutative, partial) operation ⊕ : K×K⇀ K defined as T⊕T = T ,
F ⊕F = F and x⊕? = x for any x ∈ K. Notice how we intentionally let undefined
the case of contradictory addition “F ⊕ T”.

In particular, given a formula, with our approximated semantics we are able
to group the pairs of an approximating model in three distinct sets: the ones
associated with T , the ones associated with F , and the ones associated with ?.
For instance, the over-approximated semantics is defined as follows.

Definition 8 (Over-approximated semantics). Let R be a simulation from
M to M (i.e., M vR M) and ρ an assignment. The over-approximated semantics

of J·KMρ in M via R is given by the function {[·]}Rρ : F [Γ ;∆] → (Ω
[Γ ;∆]

M
→ K),

defined as {[ψ[Γ ;∆]]}Rρ = {(p, k(p, ψ[Γ ;∆], R)) | p ∈ Ω[Γ ;∆]

M
}, where

k(p, ψ[Γ ;∆], R) =

{
T if ψ :R← and p ∈ Jψ[Γ ;∆]KM

R◦ρ

F if ψ :R→ and p /∈ Jψ[Γ ;∆]KM
R◦ρ

? otherwise

Intuitively, the mapping of the pairs in Ω
[Γ ;∆]

M
depends on the type of ψ. If it

is typed as reflected, then all pairs in Jψ[Γ ;∆]KM
R◦ρ are mapped to T , since their

counterparts in M do certainly belong to the evaluation of ψ. Nothing can be
said about the rest of the pairs, which are hence mapped to ?.

{[p(u, v)]} {[¬p(u, u)]} {[p(u, v) ∨ ¬p(u, u)]} +{{[[p(u, v) ∨ ¬p(u, u)]]}}
(w0, λ), (w1, λ) F T ? T
(w1, (z 7→ e, λ2)) ? T ? T

(w0, λ),(w1, λ),(w2, λ), F T T T
(w1, (z 7→ e1, λ2) T T T T
(w2, (z 7→ e1, λ2) T T T T
(w2, (z 7→ e2, λ2) T T T T

(w2, (z 7→ e2, λ2)) |=R J·K ? T ? T
(w2, (z 7→ e2, λ2)) |=R J·K T T T T

(w2, (z 7→ e2, λ2)) |=R
R J·K T T T T

Fig. 3. Approximated semantics and checks for some formulae

Dually, if ψ is typed as preserved, then all those pairs that do not belong to

Jψ[Γ ;∆]KM
R◦ρ are mapped to F because we know that their counterparts in M

do certainly not belong to the evaluation of ψ. Again, nothing can be said about
the rest of the pairs, which are hence mapped to ?.

Finally, if ψ cannot be typed, then all pairs are mapped to ?.
Notice how, in practice, we rarely have to explicitly define R ◦ ρ. In fact,

formulae of our logic are thought to be evaluated under an empty assignment
for fix-point variables, which is later manipulated during the evaluation, and
clearly R ◦ ∅ = ∅ for any R. Moreover, it can be shown that the rules of the
semantics preserve this equivalence (see also the case ψ = µZ.ψ′ in the proof of
Proposition 1 that is given in Appendix).

We can hence use the over-approximated semantics to decide whether an
assignment pair belongs to the evaluation of a formula in M as formalized below.

Definition 9 (Over-check). Let R be a simulation from M to M (i.e., M vR
M) and ρ an assignment. The over-approximated model check (shortly, over-

check) of J·KMρ in M via R is given by the function · |=R J·KMρ : Ω
[Γ ;∆]
M ×F [Γ ;∆] →

K, defined as

p |=R Jψ[Γ ;∆]KMρ =

{
? if R(p) = ∅∨
p∈R(p)

{[ψ[Γ ;∆]]}Rρ (p) otherwise

Example 8. Consider again the predicate p(x, y) of Example 3 stating the exis-
tence of an edge connecting node x to node y, and the models M and M with
M vR M of Example 5 shown in Fig. 2. In the first group of lines of Fig. 3 we exem-
plify the over-approximated semantics inM via R of Jp(u, v)KM , J¬p(u, u)KM , and

Jp(u, v) ∨ ¬p(u, u)KM , considering the pairs Ω
[z;∅]
M

= {(w0, λ), (w1, λ), (w1, (z 7→
e, λ2))}. We recall from Example 7 that p(u, v) :R→, and, hence, ¬p(u, u) :R←
and p(u, v) ∨ ¬p(u, u) :R ⊥. Moreover we know that Jp(u, v)KM = {(w1, (z 7→
e, λ2))}, and J¬p(u, u)KM = Ω

[z;∅]
M

. Following Definition 8, we hence have that

(w0, λ) and (w1, λ) are mapped to F for p(u, v), and to T for ¬p(u, u), while
(w1, (z 7→ e, λ2)) is mapped to ? and to T . Different is the case of p(u, v)∨¬p(u, u):
it cannot be typed and its approximation hence maps the three pairs to ?.

In the third group of lines of Fig. 3 we find the over-check “· |=R J·K” of
(w2, (z 7→ e2, λ2)) in M via R for the three formulae. Note that R((w2, (z 7→
e2, λ2))) = (w1, (z 7→ e, λ2)), hence the over-checks of p(u, v) and of p(u, v) ∨
¬p(u, u) give ?, because no pair in R((w2, (z 7→ e2, λ2))) is mapped to either
T or F . Instead, given that {[¬p(u, u)]}((w1, (z 7→ e, λ2))) = T , then we have

(w2, (z 7→ e2, λ2)) |=R J¬p(u, u)K = T .

With the next proposition we state that the above described check is sound.

Proposition 2 (Soundness of over-check). Let R be a simulation from M
to M (i.e., M vR M), ψ[Γ ;∆] a formula, and ρ an assignment. Then (i)

p |=R Jψ[Γ ;∆]KMρ = T implies p ∈ Jψ[Γ ;∆]KMρ ; and (ii) p |=R Jψ[Γ ;∆]KMρ = F

implies p 6∈ Jψ[Γ ;∆]KMρ .

Now, we can define the under-approximated semantics in a specular way.

Definition 10 (Under-approximated semantics). Let R be a simulation
from M to M (i.e., M vR M) and ρ an assignment. Then, the under-approximated

semantics of J·KMρ in M via R is the function {[[·]]}Rρ : F [Γ ;∆] → (Ω
[Γ ;∆]
M → K),

defined as {[[ψ[Γ ;∆]]]}Rρ = {p 7→ k(p, ψ[Γ ;∆], R) | p ∈ Ω[Γ ;∆]
M }, where

k(p, ψ[Γ ;∆], R) =

{
T if ψ :R→ and p ∈ Jψ[Γ ;∆]KM

R−1[·]◦ρ
F if ψ :R← and p /∈ Jψ[Γ ;∆]KM

R−1[·]◦ρ
? otherwise

As for over-approximation, the use of R−1[·] ◦ ρ is not a problem in practice.

We can define an under-approximated model checking procedure as follows.

Definition 11 (Under-check). Let R be a simulation from M to M (i.e.,
M vR M) and ρ an assignment. The under-approximated model check (shortly,

under-check) of J·KMρ in M via R is given by the function · |=R J·KMρ : Ω
[Γ ;∆]
M ×

F [Γ ;∆] → K, defined as

p |=R Jψ[Γ ;∆]KMρ =

{
? if R−1[p] = ∅∨
p∈R−1[p]

{[[ψ[Γ ;∆]]]}Rρ (p) otherwise

Next proposition states the soundness of the under-check procedure.

Proposition 3 (Soundness of under-check). Let R be a simulation from
M to M (i.e., M vR M), ψ[Γ ;∆] a formula, and ρ an assignment. Then (i)
p |=R Jψ[Γ ;∆]KMρ = T implies p ∈ Jψ[Γ ;∆]KMρ ; and (ii) p |=R Jψ[Γ ;∆]KMρ = F

implies p 6∈ Jψ[Γ ;∆]KMρ .

We finally show how to combine sets of under- and over-approximations.

Definition 12 (Approximated check). Let {Ri} be a set of simulations from
{M i} to M and {Rj} a set of simulations from M to {M j} (i.e., Mi vRi
M vRj Mj for any i and j) and ρ an assignment. The approximated check

of J·KMρ in {Mi} and {Mj} via {Ri} and {Rj} is the function · |={Rj}{Ri} J·KMρ :

Ω
[Γ ;∆]
M ×F [Γ ;∆] ⇀ K, defined as

p |={Rj}{Ri} Jψ[Γ ;∆]KMρ =
⊕
j

(p |=Rj Jψ[Γ ;∆]KMρ) ⊕
⊕
i

(p |=Ri
Jψ[Γ ;∆]KMρ) ⊕ ?

Note that, even if ⊕ is partial, the approximated check is well-defined since
Propositions 2 and 3 ensure that we never have to combine contradictory results
(e.g. T ⊕ F). It is also easy to see that the soundness result of Propositions 2
and 3 allows to conclude the soundness of the approximated check.

Theorem 1 (Soundness of approximated check). Let {Ri} be a set of
simulations from {M i} to M and {Rj} a set of simulations from M to {M j} (i.e.,
Mi vRi M vRj Mj for any i and j), ψ[Γ ;∆] a formula, and ρ an assignment.

Then (i) p |={Rj}{Ri}
Jψ[Γ ;∆]KMρ = T implies p ∈ Jψ[Γ ;∆]KMρ ; and (ii) p |={Rj}{Ri}

Jψ[Γ ;∆]KMρ = F implies p 6∈ Jψ[Γ ;∆]KMρ .

5.1 Dealing with untyped formulae

Approximated semantics provide us with a suitable evaluation of any formula,
even though its result may not be meaningful, since we may have empty lower-
bounds or unbounded upper-bounds as particular instances, namely when all
the pairs are assigned to ?. Indeed, this is the case of formulae that cannot be
typed with our type system. In order to obtain a more significant approximation
also in those cases, we may try to enrich our approximated semantics by rules
mimicking the actual semantics.

We can thus extend both under- and over-approximated semantics (Defini-
tions 8 and 10): in the following we present the enrichment for over-approximated
semantics only, with the under-approximated case treated seamlessly.

Definition 13 (Enriched over-approximated semantics). Let R be a sim-

ulation from M to M (i.e., M vR M) and ρ an assignment, such that {[·]}Rρ
is the over-approximated semantics of J·KMρ in M via R. The enriched over-

approximated semantics of J·KMρ in M via R is given by the function +{{[[·]]}}Rρ :

F [Γ ;∆] → (Ω
[Γ ;∆]

M
→ K) defined as

+{{[[ψ[Γ ;∆]]]}}Rρ =


+{{[[ψ1[Γ ;∆]]]}}Rρ ∨

+{{[[ψ2[Γ ;∆]]]}}Rρ if ψ :R ⊥ and ψ ≡ ψ1 ∨ ψ2

¬+{{[[ψ1[Γ ;∆]]]}}Rρ if ψ :R ⊥ and ψ ≡ ¬ψ1

{[ψ[Γ ;∆]]}Rρ otherwise

We may enrich the under-approximated semantics exactly in the same way,

and thus straightforwardly define an enriched version “· +|={Rj}{Ri} J·KMρ ” of the

approximated checking by replacing both approximated semantics with their
enriched variants. It is also easy to verify that also this new check is sound.

6 Conclusions and further works

In the present work we proposed a general framework for similarity-based ap-
proximations, and we exploited them for developing a verification technique
based on a suitable type system for formulae of a second-order modal logic with
fix-point operators. The logic was previously introduced for the specification
of systems with dynamic topology [8, 11], and it is thus now equipped with a
powerful abstraction mechanism.

Our approach can be seen as an evolution of the verification technique for
graph transformation systems based on temporal graph logics and unfoldings [4,
2], which is extended on the kind of models and of simulations under analysis.

We are also confident that our proposal may provide interesting insights for
other approximation techniques presented in the literature, such as neighbour-
hood abstraction [5], where states are labelled graphs, and suitable abstraction
morphisms (i.e. surjective graph morphisms, similar to the morphisms of our
simulations) coalesce nodes and edges of concrete states according to their neigh-
bourhood similarity. The logic that is adopted there is less expressive than the
one we use here (as well as of the one used in [2]), but it offers the advantage
that all formulae are both reflected and preserved.

We foresee several directions for further research. First, we plan to enrich our
prototypal model checker for finite models [11] with the techniques presented
here. Second, we would like to investigate the enrichment of approximated
semantics in order to deal with more untyped formulae. An interesting question
in this regard is whether we can use both an under- and an over-approximation
simultaneously, by translating assignment pairs back and forth via the composition
of the corresponding abstraction and concretization functions.

References

1. Baldan, P., Corradini, A., König, B.: A static analysis technique for graph transfor-
mation systems. In: Larsen, K., Nielsen, M. (eds.) CONCUR. LNCS, vol. 2154, pp.
381–395. Springer (2001)

2. Baldan, P., Corradini, A., König, B., Lluch Lafuente, A.: A temporal graph logic
for verification of graph transformation systems. In: Fiadeiro, J.L., Schobbens, P.Y.
(eds.) WADT. LNCS, vol. 4409, pp. 1–20. Springer (2007)

3. Baldan, P., König, B.: Approximating the behaviour of graph transformation
systems. In: Corradini, A., Ehrig, H., Kreowski, H.J., Rozenberg, G. (eds.) ICGT.
LNCS, vol. 2505, pp. 14–29. Springer (2002)

4. Baldan, P., König, B., König, B.: A logic for analyzing abstractions of graph
transformation systems. In: Cousot, R. (ed.) SAS. LNCS, vol. 2694, pp. 255–272.
Springer (2003)

5. Bauer, J., Boneva, I., Kurbán, M.E., Rensink, A.: A modal-logic based graph
abstraction. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT.
LNCS, vol. 5214, pp. 321–335. Springer (2008)

6. Courcelle, B., Engelfriet, J.: Graph structure and monadic second-order logic, a
language theoretic approach. Cambridge University Press (2012)

7. Dawar, A., Gardner, P., Ghelli, G.: Expressiveness and complexity of graph logic.
Information and Computation 205(3), 263–310 (2007)

8. Gadducci, F., Lluch Lafuente, A., Vandin, A.: Counterpart semantics for a second-
order mu-calculus. Fundamenta Informaticae 118(1-2) (2012)

9. Ghamarian, A.H., de Mol, M., Rensink, A., Zambon, E., Zimakova, M.: Modelling
and analysis using groove. STTT 14(1), 15–40 (2012)

10. König, B., Kozioura, V.: Counterexample-guided abstraction refinement for the
analysis of graph transformation systems. In: Hermanns, H., Palsberg, J. (eds.)
TACAS. LNCS, vol. 3920, pp. 197–211. Springer (2006)

11. Lluch Lafuente, A., Vandin, A.: Towards a maude tool for model checking temporal
graph properties. In: Gadducci, F., Mariani, L. (eds.) GT-VMT. ECEASST, vol. 42.
EAAST (2011)

12. Rensink, A.: Towards model checking graph grammars. In: Leuschel, M., Gruner,
S., Lo Presti, S. (eds.) AVOCS. DSSE-TR, vol. 2003-2. University of Southampton
(2003)

13. Rensink, A.: Isomorphism checking in groove. In: Zündorf, A., Varró, D. (eds.)
GraBaTs. ECEASST, vol. 1. EAAST (2006)

14. Rensink, A., Distefano, D.: Abstract graph transformation. In: WWV. ENTCS, vol.
157(1), pp. 39–59. Elsevier (2006)

15. Rensink, A., Zambon, E.: Neighbourhood abstraction in GROOVE. In: de Lara, J.,
Varró, D. (eds.) GraBaTs. ECEASST, vol. 32. EAAST (2010)

16. Zambon, E., Rensink, A.: Using graph transformations and graph abstractions
for software verification. In: Corradini, A. (ed.) ICGT - Doctoral Symposium.
ECEASST, vol. 38. EASST (2011)

Appendix

In this appendix we prove the three Propositions 1, 2 and 3, implying consequently
also Theorem 1.

We first prove that Proposition 1 holds, stating the soundness of our type
system with respect to Definition 6. Namely, we show that if our type system
assigns a type to a formula, then it is coherent with the preservation and/or
reflection of the formula.

Proposition 1 (Type system soundness). Let R be a simulation from M
to M ′ (i.e., M vR M ′) and ψ a formula. Then (i) ψ :R→ implies ψ :R⇒; (ii)
ψ :R← implies ψ :R⇐; and (iii) ψ :R↔ implies ψ :R⇔.

Proof. We focus on the points (i) and (ii), since point (iii) follows directly.
Rephrasing Definition 6, what we have to show is: for every (w1, φ1, w

′
1) ∈ R, if (i)

ψ :R→, then (w1, σw1) ∈ Jψ[Γ ;∆]KMρ implies (w′1, φ1 ◦σw1) ∈ Jψ[Γ ;∆]KM
′

R◦ρ; while,

if (ii) ψ :R←, then (w′1, φ1 ◦ σw1
) ∈ Jψ[Γ ;∆]KM

′

R◦ρ implies (w1, σw1
) ∈ Jψ[Γ ;∆]KMρ .

The proof is done on structural induction on ψ.

The proposition trivially holds for the cases tt, Z and ψ1 ∨ ψ2.

[ψ ≡ ε ∈τ χ :R→] Following the semantics, we have Jε ∈τ χ[Γ ;∆]KMρ = {(w, σ) ∈
Ω

[Γ ;∆]
M | σ(ε) is defined and σ(ε) ∈ σ(χ)}. Hence there exists an a : τ ∈ d(w1)

such that a = σw1
(ε), and a ∈ σw1

(χ). Clearly, φ1(a) ∈ φ1 ◦σw1
(χ). A term ε is a

variable or an operation applied to a term. From our type system we know that
ε ∈τ χ has type → for τtotal R, which, together with the fact that morphisms
preserve terms’ operations, allows us to conclude φ1 ◦ σw1

(ε) = φ1(a).

[ψ ≡ ε ∈τ χ :R←] From (w′1, φ1◦σw1
) ∈ Jε ∈τ χ[Γ ;∆]KM

′

R◦ρ ≡ {(w′, σ′) ∈ Ω
[Γ ;∆]
M ′ |

σ′(ε) is defined and σ′(ε) ∈ σ′(χ)}, we know that there exists an a′ : τ ∈ d′(w′1)
with a′ = φ1 ◦ σw1(ε), and a′ ∈ φ1 ◦ σw1(χ). From our type system we know that
R is τbijective, hence there exists an a ∈ d(w1) such that φ1(a) = a′. Clearly,
a ∈ σw1

(χ), and σw1
(ε) = a.

[ψ ≡ ¬ψ′ :R→] We want to prove that (w′1, φ1 ◦ σw1
) ∈ J¬ψ′[Γ ;∆]KM

′

R◦ρ, knowing

that (w1, σw1
) ∈ J¬ψ′[Γ ;∆]KMρ ≡ Ω

[Γ ;∆]
M \Jψ′[Γ ;∆]KMρ . In particular, (w′1, φ1◦σw1

)

may belong either to Jψ′[Γ ;∆]KM
′

R◦ρ or toΩ
[Γ ;∆]
M ′ \Jψ′[Γ ;∆]KM

′

R◦ρ. By absurd consider

(w′1, φ1 ◦ σw1
) ∈ Jψ′[Γ ;∆]KM

′

R◦ρ. From our type system we know that ψ′ :R←,

which, by induction hypothesis, implies (w1, σw1) ∈ Jψ′[Γ ;∆]KMρ , obtaining a
contradiction.

[ψ ≡ ¬ψ′ :R←] This case is specular to the ψ :R→ one.

[ψ ≡ ∃τx.ψ′ :R→] Following the semantics, J∃τx. ψ′[Γ ;∆]KMρ = 2↓x({(w, σ) ∈
Jψ′[Γ, x;∆]KM2↑x◦ρ | σ(x) is defined}). From the type system we know that R is

τtotal, hence φ1 ◦ σw1
(x) is defined iff σw1

(x) is defined, allowing to reduce
the problem in: (w1, σw1

) ∈ 2↓x(Jψ′[Γ, x;∆]KM2↑x◦ρ) implies (w′1, φ1 ◦ σw1
) ∈

2↓x(Jψ′[Γ, x;∆]KM
′

2↑x◦ρ′). We also know that ψ′ :R→, hence, by induction hypoth-

esis, (w1, σ2w1
) ∈ Jψ′[Γ, x;∆]KM2↑x◦ρ implies (w′1, φ1 ◦ σ2w1

) ∈ Jψ′[Γ, x;∆]KM
′

2↑x◦ρ′ ,

with σ2w1
∈ Ω[Γ,x;∆]

w1 . Noting that 2↑x and 2↓x are monotone, we have (w1, σw1
) ∈

2↓x(Jψ′[Γ, x;∆]KM2↑x◦ρ) implies 2↑x((w1, σw1
)) ⊆ Jψ′[Γ, x;∆]KM2↑x◦ρ, and (w1, σ2w1

) ∈
Jψ′[Γ, x;∆]KM2↑x◦ρ implies 2↓x((w1, σ2w1

)) ∈ 2↓x(Jψ′[Γ, x;∆]KM2↑x◦ρ). It is now

easy to see that for every (w1, σw1) ∈ 2↓x(Jψ′[Γ, x;∆]KM2↑x◦ρ) there exists a

(w1, σ2w1) ∈ Jψ′[Γ, x;∆]KM2↑x◦ρ such that (w1, σw1) = 2↓x((w1, σ2w1)), for which, in

turn, there exists a (w′1, φ1 ◦σ2w1) ∈ Jψ′[Γ, x;∆]KM
′

2↑x◦ρ′ such that (w′1, φ1 ◦σw1) =

2↓x((w′1, φ1 ◦ σ2w1)).

[ψ ≡ ∃τx.ψ′ :R←] What we want to prove is (w′1, φ1 ◦ σw1) ∈ J∃τx. ψ′[Γ ;∆]KM
′

R◦ρ
implies (w1, σw1) ∈ J∃τx. ψ′[Γ ;∆]KMρ . From the type system we know that R is
partial and surjective for the sort τ , hence we can again reduce the problem to
(w′1, φ1◦σw1

) ∈ 2↓x(Jψ′[Γ, x;∆]KM
′

2↑x◦ρ′) implies (w1, σw1
) ∈ 2↓x(Jψ′[Γ, x;∆]KM2↑x◦ρ).

We also know that ψ′ :R←, hence, by induction hypothesis, (w′1, φ1 ◦ σ2w1) ∈
Jψ′[Γ, x;∆]KM

′

2↑x◦ρ′ implies (w1, σ2w1) ∈ Jψ′[Γ, x;∆]KM2↑x◦ρ, with σ2w1 ∈ Ω
[Γ,x;∆]
w1 .

The rest of the proof is similar to the (∃τx.ψ′ :R→) case.

[ψ ≡ ∃τχ.ψ′ :R↔] The proofs are similar to the first-order cases.

[ψ ≡ ♦ψ′ :R→] From the semantics, (w1, σw1
) ∈ J♦ψ′[Γ ;∆]KMρ implies the exis-

tence of a w2 ∈ W s.t. w1
cr w2 and (w2, σw2

) ∈ Jψ′[Γ ;∆]KMρ , with σw1

cr σw2
.

We apply the induction hypothesis: (w, φ,w′) ∈ R and (w, σw) ∈ Jψ′[Γ ;∆]KMρ
implies (w′, φ ◦ σw) ∈ Jψ′[Γ ;∆]KM

′

ρ′ . Following Def. 5, there exists a transition

w′1
cr′ w′2, with (at least) an (w2, φ2, w

′
2) ∈ R and φ2 ◦ cr = cr′ ◦ φ1. Following

the induction hypothesis, (w′2, φ2 ◦ σw2
) ∈ Jψ′[Γ ;∆]KM

′

ρ′ . All remains to prove is

φ1 ◦ σw1

cr′ φ2 ◦ σw2 , which follows from σw1

cr σw2 and φ2 ◦ cr = cr′ ◦ φ1.

[ψ ≡ ♦ψ′ :R←] From the type system we know that R is an iso-bisimulation,
hence R−1 ≡ {(w′, φ−1, w) ∈ R−1 | (w, φ,w′) ∈ R} is defined, and is a simulation
from M ′ to M . What we want to prove is (w′1, φ1 ◦σw1

) ∈ J♦ψ′[Γ ;∆]KM
′

R◦ρ implies

(w1, σw1
) ∈ J♦ψ′[Γ ;∆]KMρ . From the ♦ψ′ :R→ case we know that (w′1, φ1 ◦σw1

) ∈
J♦ψ′[Γ ;∆]KM

′

R◦ρ implies (w1, φ
−1
1 ◦ φ1 ◦ σw1

) ∈ J♦ψ′[Γ ;∆]KMR−1◦R◦ρ. It is easy to

see that for a bisimulation R, φ−11 ◦ φ1 ◦ σw1
= σw1

and R−1 ◦R ◦ ρ = ρ, closing
the case.

[ψ ≡ µZψ′ :R↔] Let F = λY.Jψ′[Γ ;∆]KMρ[Y /Z], and F ′ = λY ′.Jψ′[Γ ;∆]KM
′

ρ′[Y ′/Z]
.

By definition, JµZ.ψ′[Γ ;∆]KMρ = lfp(F). We are proving (w1, φ1, w
′
1) ∈ R implies

(w1, σw1
) ∈ lfp(F) iff (w′1, φ1 ◦ σw1

) ∈ lfp(F ′). We apply the induction hypothesis
on ψ′: for any Y ,Y ′ with Y ′ = R ◦Y , then (w, φ,w′) ∈ R implies (w, σw) ∈ F (Y)
iff (w′, φ ◦ σw) ∈ F ′(Y ′), from which we have F ′(Y ′) = R ◦ F (Y). From Kleene’s
theorem, lfp(F) = sup(Fn(∅) | n ∈ N), computable as the first Yn such that
Yn = Yn−1, with Y0 = ∅, and Yi = F (Yi−1). Clearly ∅ = R ◦ ∅, implying
Y ′1 = F ′(∅) = R ◦ F (∅) = R ◦ Y1. Iterating, F ′(lfp(F ′)) = R ◦ F (lfp(F)), closing
the case. ut

We now prove that Proposition 2 holds, stating the soundness of our over-
approximated model checking procedure.

Proposition 2 (Soundness of over-check). Let R be a simulation from M
to M (i.e., M vR M), ψ[Γ ;∆] a formula, and ρ an assignment. Then (i)

p |=R Jψ[Γ ;∆]KMρ = T implies p ∈ Jψ[Γ ;∆]KMρ ; and (ii) p |=R Jψ[Γ ;∆]KMρ = F

implies p 6∈ Jψ[Γ ;∆]KMρ .

Proof. We first focus on case (i). From Definition 9, p |=R Jψ[Γ ;∆]KMρ = T iff

there exists a p ∈ R(p), such that {[ψ[Γ ;∆]]}MvRMρ (p) = T . This in turn implies

that ψ :R← and p ∈ Jψ[Γ ;∆]KM
R◦ρ. Finally, from Definition 6 and Proposition 1,

we can conclude that all the pairs in R
−1

[p] (including p) belong to Jψ[Γ ;∆]KMρ .

We now consider case (ii). From Definition 9, p |=R Jψ[Γ ;∆]KMρ = F iff there

exists a p ∈ R(p), such that {[ψ[Γ ;∆]]}MvRMρ (p) = F , and does not exist any

pair p′ ∈ R(p), such that {[ψ[Γ ;∆]]}MvRMρ (p) = T . This in turn implies that

ψ :R→ and p /∈ Jψ[Γ ;∆]KM
R◦ρ. From Definition 6 and Proposition 1, we know

that R(Jψ[Γ ;∆]KMρ) ⊆ Jψ[Γ ;∆]KM
R◦ρ. Finally, since p /∈ Jψ[Γ ;∆]KM

R◦ρ, then no

assignment pair in R
−1

[p] (including p) belongs to Jψ[Γ ;∆]KMρ . ut

Finally, we now prove that Proposition 3 holds, stating the soundness of our
under-approximated model checking procedure.

Proposition 3 (Soundness of under-check). Let R be a simulation from
M to M (i.e., M vR M), ψ[Γ ;∆] a formula, and ρ an assignment. Then (i)
p |=R Jψ[Γ ;∆]KMρ = T implies p ∈ Jψ[Γ ;∆]KMρ ; and (ii) p |=R Jψ[Γ ;∆]KMρ = F

implies p 6∈ Jψ[Γ ;∆]KMρ .

Proof. We first focus on case (i). From Definition 11, p |=R Jψ[Γ ;∆]KMρ = T

iff there exists a p ∈ R−1[p], such that {[ψ[Γ ;∆]]}MvRMρ (p) = T . This in turn

implies that ψ :R→ and p ∈ Jψ[Γ ;∆]KM
R−1[·]◦ρ. Finally, from Definition 6 and

Proposition 1, we can conclude that all the assignment pairs in R(p) (including

p) belong to Jψ[Γ ;∆]KMρ .

We now consider case (ii). From Definition 11, p |=R Jψ[Γ ;∆]KMρ = F iff there

exists a p ∈ R−1[p], such that {[ψ[Γ ;∆]]}MvRMρ (p) = F , and does not exist any

pair p′ ∈ R−1[p], such that {[ψ[Γ ;∆]]}MvRMρ (p′) = T . This in turn implies that

ψ :R← and p /∈ Jψ[Γ ;∆]KM
R−1[·]◦ρ. From Definition 6 and Proposition 1, we know

that R−1[Jψ[Γ ;∆]KMρ] ⊆ Jψ[Γ ;∆]KM
R−1[·]◦ρ. Finally, since p /∈ Jψ[Γ ;∆]KM

R−1[·]◦ρ,

then R(p) ∩ Jψ[Γ ;∆]KMρ = ∅, hence, no pair in M similar to p (including p)

belongs to Jψ[Γ ;∆]KMρ . ut

