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Abstract. Model transformations are intrinsically related to model-
driven engineering. According to the increasing size of standardised meta-
model, large transformations need to be developed to cover them. Several
approaches promote separation of concerns in this context, that is, the
definition of small transformations in order to master the overall com-
plexity. Unfortunately, the decomposition of transformations into smaller
ones raises new issues: organising the increasing number of transforma-
tions and ensuring their composition (i.e. the chaining). In this paper,
we propose to use feature models to classify model transformations ded-
icated to a given business domain. Based on this feature models, au-
tomated techniques are used to support the designer, according to two
axis: (i) the definition of a valid set of model transformations and (ii)
the generation of an executable chain of model transformation that ac-
curately implement designer’s intention. This approach is validated on
Gaspard2, a tool dedicated to the design of embedded system.

1 Introduction

Model-Driven Engineering (MDE) advocates the principle of separation of con-
cerns, through the extensive use of models in all the steps of the software devel-
opment cycle [12, 18]. In this context, model transformations are used to achieve
integration of concerns [14, 17, 3]. Considering the intrinsic complexity of the
meta-models in use (e.g., UML 2.x and its profiles), large model transforma-
tions (up to ten thousands lines of code) are developed. Such transformations
have substantial drawbacks [15], including limited reusability, reduced scalabil-
ity, poor separation of concerns, limited learnability, and undesirable sensitivity
to changes. The separation of concerns paradigm advocates the decomposition
of a complex system (e.g., architectures, object-oriented models) into smaller
artefacts. Thus, exactly as other artefacts, it is desirable to decompose trans-
formations [20]. Other researches have also argued that focusing on such an
engineering of transformations improves the uptake of MDE [22]. It is then es-
sential to support the systematic definition of small model transformations with
a unique intention [5], to improve scalability, maintainability and reusability of
transformations. Such an approach leads to the definition of a family of trans-
formations associated to a given domain that jointly enable to generate systems
from a business domain.



The existence of small transformations raises two new issues. First, the chain
designer (called end user in the remainder of the paper) is in presence of a family
of model transformations, which needs to be organised. Secondly, the reification
of the dependencies that exist between elements of this family becomes critical.
As model transformations cannot be chained anyhow, dependencies that lead
to valid transformation chains must be captured. One way to automate this
development process is to use a Software Product Line (SPL) approach. In a
SPL, multiple products are derived by combining a set of different core assets.
One of the most important challenges of SPL engineering concerns variability
management, i.e., how to describe, manage and implement the commonalities
and variabilities existing among the members of the same family of products. A
well-known approach to variability modelling is by means of Feature Diagrams
(FD) introduced as part of Feature Oriented Domain Analysis [9] back in 1990.

Our contribution is to accurately combine model transformations and SPL to
support the end user while developing transformation-based applications. Busi-
ness experts’ knowledge is reified in a FD to accurately organise the different
transformations according to their intentions. Then, automated code analysis
techniques are used to accurately generate constraints between these transfor-
mations1, reified in the feature model as requirements between features. Thus, it
is possible for end users to use the FD to accurately define their own products,
that is, a valid subset of transformations that matches their intentions. Prod-
uct derivation mechanisms are then used to automatically generate the model
transformation chain that implements what the end user asked for. The ap-
proach is validated using Gaspard2, a transformation-based tool that supports
the modelling of embedded systems.

The remainder of this paper is organised as follows. In Section 2, we motivate
this work by exposing the different challenges that need to be addressed in
this domain. Then, Section 3 describes the approach we propose to tackle these
challenges. Section 4 validates the approach by applying it to the Gaspard2 case
study. Finally, Section 5 discusses the related works and Section 6 concludes this
paper by exposing some research perspectives.

2 Motivation

In order to enhance reusability, variability, flexibility and verifications, Gas-
pard2 [8], a co-design environment dedicated to high performance embedded
systems based on massively regular parallelism has been designed using Model
Driven Engineering (MDE) technologies. Thus it enables the generation of VHDL,
SystemC, OpenMP or Lustre code from a UML model enhanced with the Mod-
elling and Analysis of Real Time Embedded systems (MARTE) profile. Each
language is targeted using a chain composed of three to five dedicated trans-
formations. These large transformations (up to 1500 lines of codes) were not
reusable and hardly maintainable even by their own developers.

1 Informally, a transformation τ requires a transformation τ ′ if the model elements
handled by τ are produced by τ ′.



To introduce flexibility and reusability, the Gaspard2 environment has been
re-engineered to rely on smaller transformations. Each transformation has a sin-
gle intention such as memory management or scheduling and corresponds to
150 lines of code in average. Finally, 19 transformations including 4 model to
text (M2T) transformations, and thus 15 model to model (M2M) transforma-
tions were defined. The number of chains that can be constructed from them is
humongous. Let T = {τ1, . . . , τn} a set of model to model transformations, and
M = {µ1, . . . , µm} a set of model to text transformations. We denote as NT∪M

the number of chains available in this context. The number of potential model to
model chains is equal to the number of sequences without repetition that involve
elements defined in T (denoted as P (k, n)). Secondly, There is (m+ 1) potential
targets for the previously defined sub-chain (as a transformation chain may not
generate text). Finally, it is also possible to only generate text without involving
other model transformation (thus, m chains).

NT∪M = m+ (m+ 1)

n∑
k=1

P (k, n), P (k, n) =
n!

(n− k)!

NT∪P is hardly computable generically. Nevertheless, a sub-optimal approxima-
tion is to consider NT∪P bigger than (m+ 1) times the highest term of the sum
P (k, n) (i.e., P (n, n), that in our case is equals to 5× 15!).

NT∪P � (m+ 1)× P (n, n) = (m+ 1)× n!, n = 15,m = 4, NT∪P � 6, 5× 1012

But only a few chains make sense! It becomes crucial to help the designer to built
such chains. Thus, the definition of transformation libraries raises new issues such
as (i) the representation of the transformations highlighting their purpose and
the relationships between them; (ii) their appropriate selection according to the
characteristics of the expected targeted system and (iii) their composition in a
valid order.

Traditionally, transformations are represented in chains or with their meta-
models. Such representations are not adapted to the description of transforma-
tion libraries. In preparation for chaining the transformations, it seems indis-
pensable to specify their purpose (i.e., what they handle), in addition to their
associated metamodels. To generate systems with their own characteristics (e.g.,
management of distributed versus shared memory, optimised vs simple schedul-
ing), transformations have to be consequently selected. Thus the end user has
to select the transformations not only according to the characteristics of the
resulting system she would like, but also to the relationships between the trans-
formations. Manually performed, this selection may be tedious and error prone.
From the selected transformations, several chains can be built. Transformations
cannot be chained arbitrarily, some constraints must be fulfilled [7, 11]. If it is
often simple to identify the first transformation of the chain (depending on the
input metamodels) and the last one (that is a model to text transformation,
if code has to be generated), establishing a valid order between the other se-
lected transformations may be difficult. Indeed, existing approaches check if the
proposed order is valid, but do not automatically provide a valid one.



In order to support the end user in the design of transformation chains, the
following challenges have to be addressed:

C1 Propose to the end user a library in which each transformation can be eas-
ily identified according to the characteristics of the expected final system
(Section 3.1).

C2 Help the end user to select transformations while automatically taking into
account the relationships between transformations (Section 3.2).

C3 Automatically derive the transformation chain from the characteristics se-
lected by the end user (Section 3.3).

3 Solution

To tackle the aforementioned challenges, we propose a feature-oriented approach
and the associated too set to automatically generate accurate model transfor-
mation chains as depicted in Figure 1.
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Fig. 1. Approach Process Overview

This approach relies on three pillars: (i) the classification of the available
transformations as a Feature Diagram (FD) produced by the business expert,
(ii) the reification of requirement relationships between transformation (directly
generate from the Transformations set by the Extraction Tool) and (iii) the
automated generation of transformation chains for a given product (using our
Derivation Tool) from features selected by the end user.



The FD is designed once for all by the business expert as a prerequisite. It
is nevertheless possible to modify it when new transformations and thus new
features become available. The requirement relationships are expressed between
the features and automatically computed from the transformation codes by the
Extraction Tool we provide. The extracted relations enable to derive other fea-
tures (and then the associated transformation) from the ones selected by the
end user using a Configuration Tool (e.g., FeatureIDE2). The requirement rela-
tionships are also used by our Derivation Tool to order the selected features in
order to design valid chains.

3.1 Structuring the Transformation Set as a Feature Diagram

As a transformation is used to support a given intention according to a business
domain, a set of transformations implicitly model the variability of the different
intentions associated to a domain. FD were defined to model such a variability,
so its use is natural. We represent in Figure 2 an excerpt of the complete FD
associated to Gaspard2. Using FD, features (represented as nodes) are classified
among others according to constraints such as exclusiveness or optionality. Model
transformations are bound to features as assets. A feature f holds a link to the
actual model transformation to be used to implement the intention captured by
f at run-time. Normally, each feature corresponds to a single transformation and
vice versa. However, it occurs in practise that a single transformation may catch
many intentions and thus corresponds to many features.

For example, in Figure 2(a), the FD models that a given product must con-
tain a Scheduling feature, and may contain a Synchronisation feature. The
features Graph and Polyhedron are exclusive, i.e., the use of one in a given
product implies that the other cannot be used in this particular product. We
call a product a set of features that respects the constraints modelled in the
FD. For example, Figures 2(b) and 2(c) represent two products among the eight
valid w.r.t. the modelled FD. The first one (Figure 2(b)) considers a system syn-
chronised using a BlocByBloc method, and scheduled with a simple Graph. The
second product (Figure 2(c)) considers a system synchronised with a Barrier

method, and scheduled with a Polyhedron approach. In our context, features
reify model transformations: the actual implementation of the transformation
is bound as an asset of the associated feature node. Thus, considering a given
product, it is possible to automatically infer the set of transformations involved
in the transformation chain that supports it.

Key Points. The role of the FD is to capture the business knowledge associated to
a given set of transformations. It actually transforms a flat set of transformations
into an organised family of products.This classification is done by the business
expert, that is, someone who deeply knows the different transformations, their
underlying intentions, as well as the artifact they are handling. The key idea
here is that this work is done once by the business expert, and capitalised in the

2 http://wwwiti.cs.uni-magdeburg.de/iti db/research/featureide/



(a) Gaspard2 feature diagram (excerpt)

(b) p = {BlocByBloc, Simple, . . . } (c) p′ = {Barrier, Polyhedron, . . . }

Fig. 2. Gaspard2: Feature diagram and associated products (using FeatureIDE)

FD. Without the use of a FD to support such a classification, it would be up to
the end users to guess how the different transformations cope with each others
before assembling them.

3.2 Recovering Require Relationship from Transformations

On top of constraints expressing the mandatory/optional character of the fea-
tures as well as the and/or relationships between them, “require” relationships
can also be captured in FD. They enable to automatically deduced other fea-
tures from the selected ones, independently of the tree structure of the FD.
Require relationships can be determined manually by the business expert. How-
ever, when the number of features is huge, omission can happen leading to er-
roneous products determination. Therefore, we provide an automatic analysis
of the transformations to recover the require relationships (bijection) between
the features associated to them. A requirement between two features f and f ′

(denoted as a logical implication, i.e., f ⇒ f ′) means that the transformation
bound to f requires the transformation bound to f ′. The following question is



raised: “When does a require relationship between two transformations exists?”.
In fact, it relies on the element type production and consumption. For two trans-
formations τ and τ ′, if τ ′ consumes types created by τ , then it implies that a
require relationship exists between τ and τ ′, denoted as τ ′ → τ (for τ ′ requires
τ). For each transformation, it is thus mandatory to automatically determine
the element types it produces and it consumes to provide an automatic require
relationships determination.

This automatic analysis relies on the different actions performed on element
types by a transformation. Four actions are classically performed by transfor-
mations: reading, creating, deleting and modifying. This analysis does not rely
on transformation execution but on static code analysis. Thus an element of
the input or the output metamodel of a transformation is considered read if the
presence of one on its instance enables the application of a transformation rule.
An element is considered created, if at least one of its instance can be created
by the transformation, and so on. Thus, τ ′ requires τ if τ ′ reads some elements
created by τ [6]. As we stated in the previous section, for a feature f from the
FD, it exists at most one transformation τ . So, considering two features f , f ′ in
the FD and two transformations τ , τ ′ mapped to f , respectively f ′, if τ → τ ′,
it implies that f ⇒ f ′.

Key Points. The proposed generation of the require relationships relies on a
static analysis of the transformation codes. Once the FD designed and the con-
straints generated, the end user can use a Configuration Tool to select the
features she wants for her transformation chain. The Configuration Tool is
parametrised by the feature diagram and the generated constraints. Thus, by
taking into account the generated constraints, during the feature selection, the
Configuration Tool can either invalidate features or add required features accord-
ing to the ones already selected by the end user. The automatic characteristic
of the generation enables a certain evolutivity of the FD.

3.3 Generating Transformation Chains

Based on the two previous parts of the contribution, it is now possible to (i) con-
sider a set of model transformations as a product family and (ii) automatically
infer the requirement relationships that exist inside the product family. These
two contributions act at the level of the FD. According to the global process, the
selected features are then passed to a Derivation Tool, which uses the generated
constraints to propose transformation chains from the selected features.

We consider now a given product p = {f1, . . . , fn}, i.e., a subset of features
that satisfies the constraints modelled in the FD. As stated in Section 3.1, model
transformations are bound to features. It is then possible to obtain the set of
model transformations associated to p (denoted as Tp) by mapping each feature
to its associated transformation: Tp = {τ1, . . . , τm}. As some features are only
used to structure the FD and are not related to any concrete transformation, it
should be noted that the cardinality of Tp may be lesser than the cardinality of
p. But this set of transformations is not sufficient to properly derive a concrete



transformation chain from a given product. The requirement constraints identi-
fied in Section 3.2 must be taken into account. Considering two features f and
f ′, if the requirement f ⇒ f ′ exists, then the transformation τ ′ mapped to f ′

must be executed before the transformation τ mapped to f . As a consequence,
the analysis of the set of requirement constraints leads to the identification of
sequences of model transformations. Two situations can be encountered. If the
requirement constraints implement a total order on the set of transformations,
only one sequence will be identified, i.e., the proper transformation chain to
be executed to support the intentions captured by this product. But if the re-
quirement constraints implement a partial order, only partial sequences can be
identified automatically. But as there is no requirement between these different
sub-sequences, their order is not important. Consequently several valid chains
are generated. This “subchains approach” is useful to support the business ex-
pert while assessing the FM consistency. It also helps the non-expert end user
to construct a valid chain: any of the chains built upon these sub-chains, will by
essence respect the dependencies captured by the FM.

Key Points. A concrete chain of model transformations is automatically derived,
through the FD, from the transformation set selected by the end user. First, the
knowledge of a business expert is captured in the FD, and then an automatic
static analysis is used to properly extract technical constraints from the imple-
mentation of the transformations. Finally, it is possible to automatically derive
the chain, through the systematic exploration of the identified constraints. As a
consequence,the generation of the concrete model transformation chain is auto-
mated, and the end user does not require any knowledge of model transformation
from a technical point of view.

4 Validation: The Gaspard2 Case Study

Gaspard2 is a co-design environment dedicated to high performance embedded
systems based on massively regular parallelism. From high level specifications,
it automatically generates code for high performance computing, hardware-
software co-simulation, functional verification or hardware synthesis using model
transformations. Such generations are complex and require intermediary steps,
e.g., the explicit mapping of application tasks onto processing units, the mapping
of the data onto memories or the scheduling of the tasks. Each transformation
has a specific intention and deals with few concepts. Nineteen transformations
have been implemented for now but the framework may support even more of
them in the upcoming months. It is difficult for a non expert user to easily un-
derstand the purpose of each transformation, to select the ones useful to reach
the desired platform and finally to order them in order to compose a chain.

In this paper, we used the Familiar tool suite [1] to manipulate feature di-
agrams. This tool allows us to model FD, and is well integrated in the Eclipse
platform. Thus, standard Configuration Tools (e.g., FeatureIDE) can be used to



allow the end user to configure products. But it should be noted that the ap-
proach is not bound to this tool nor to this case study from a theoretical point
of view, as described in the previous section.

4.1 Step #1: Capturing Business Expert Knowledge in a FD

Embedded systems designers usually do not master model transformation para-
digm and underlying technologies. It is then essential to support them while
designing the transformation chains used to generate code from high level speci-
fications. The design of these chains consists in the selection of relevant transfor-
mations available in a library and in the computation of a valid order. Selecting
a transformation requires to easily distinguish one transformation from another
and to quickly identify its intention. In order to help the embedded systems
designers, we have classified the available transformations based on embedded
characteristics using feature model. It is up to the business expert to find the
most appropriate classification method to be used to support the end user. Dur-
ing the implementation of the case study, we applied an incremental definition of
the FD. We produced 12 successive versions of the FD. Excepting from one deep
refactoring to better handle business requirement constraint, the implementation
of the FD by the business expert was straightforward.

Most transformations of Gaspard2 have a unique intention representing a
specific characteristics of the produced systems such as memory management.
The transformations and their associated intentions are listed in Table 1. The
Gaspard2 transformation library counts 19 intentions through 15 M2M and 4
M2T transformations. For example, the scheduling transformation has the fol-
lowing intention: it manages a simple scheduling of application tasks on com-
puting units. As a consequence of the non mandatory bijection between features
and transformations, the barrier and the openMP features are implemented by
a single transformation. This many-to-one (surjection) relationship corresponds
to a lack of modularisation of the transformation.

From these intentions, the business expert builds the feature diagram by as-
sociating a feature to each intention. Moreover, some features are added in the
hierarchy in order to specify the relationship AND/OR/XOR between features.
Indeed, as stated in Section 3.1, each feature represents at most one transfor-
mation. The resulting FD, depicted in Figure 3, gathers, in an non exhaus-
tive way, some characteristics that an embedded system produced by Gaspard2
may possess. For example, the OpenCL and OpenMP features, introduce a sci-
entific computation intention. However, only one of these two features can be
selected. Indeed, the target language is either OpenCL, or OpenMP. In the FD,
this choice is designed by the introduction of an intermediary abstract node
ScientificComputation and an alternative between the two features.

The associated tooling provided by the Familiar platform can be used to
query the model, as shown in Figure 4. This FD models up to 200 different
available configurations (obtained by the Familiar counting algorithm). The
configs command computes all the available products, returning the set of
valid products defined by this FD.



Fig. 3. Feature model associated to Gaspard2.



Transformation Intention

tiler2task - Keep repetitions hierarchy

gpuApi - Manage hybrid GPU-CPU computing
pThread - Manage buffered synchronisation by bloc

sequentialC - Generate sequential C code
barrier - Manage barrier synchronisation for OpenMP

shape2loop - Develop repetitions in the generated systems
scheduling - Manage simple scheduling
poly loop - Manage polyhedron optimised scheduling

explicitAllocation - Explicitly place tasks on processors
memorymapping - Manage absolute memory addresses

tilerMapping - Manage tiler (i.e. task distributing data) mapping on com-
puting unit

shared - Manage the shared memory type

openCL - Generate OpenCL code for scientific computation purposes
openMP - Generate OpenMP code for scientific computation purposes
systemcPA - Bind SystemC architecture with SystemC application

systemcBind - Manage SystemC data exchanges

systemcStruct - Manage SystemC architecture

pthreadGen - Generate pthread code for simulation purposes
functional - Introduce functional abstraction

Table 1. Gaspard2 transformation set

Fig. 4. Using the Familiar shell to interact with the FD.

4.2 Step #2: Extracting Constraints from the Implementation

This feature model enables the classification and the distinction of the trans-
formations the one from the others. However, in this primary form, it does not
gather enough information to build the chains: some others may be required and
the selection of one transformation may require the selection of others. Such de-
pendencies between transformations have to be captured and the feature model
tools enable to take them into account for the product configuration. Thanks to
the Extraction Tool, the implementation of the available transformations is au-
tomatically analysed. The result of this analysis is a set of “require” constraints



between the features modelled in the FD. We represent in Listing 1.1 the set
of constraints obtained after the execution of the tool. These constraints are
generated using the syntax of the Familiar tool, and thus can be automatically
integrated in the FD. Contrarily to the initial FD that captures the knowledge
of the business expert, these relations reify the implementation constraints that
exist between the transformations, from a technical point of view. It then en-
sures that the products configured w.r.t. this FD will be valid at both level: (i)
business domain and (ii) technical implementation.

1 AbsoluteComputation -> Develop
2 AbsoluteComputation -> KeepHierarchy
3 AbsoluteComputation -> Polyhedron
4 BindingAppliArchi ->

AbsoluteComputation
5 BindingAppliArchi -> Architecture
6 BindingAppliArchi -> BlocByBloc
7 BindingAppliArchi -> MemoryType
8 BlocByBloc -> AbsoluteComputation
9 BlocByBloc -> Graph

10 BlocByBloc -> KeepHierarchy
11 BlocByBloc -> MemoryType

12 DataExchange -> Architecture
13 DataExchange -> KeepHierarchy
14 Functional -> Graph
15 Graph -> KeepHierarchy
16 Hybrid -> AbsoluteComputation
17 Hybrid -> Graph
18 Hybrid -> KeepHierarchy
19 Hybrid -> MemoryType
20 MemoryType -> KeepHierarchy
21 Simple -> Graph
22 Tiler -> Graph

Listing 1.1. Set of requirement constraints.

Considering this set of constraints, the Configuration Tool now proposes 37
available products to the end user (from 200 at the beginning). This highlights
the fact that working with the implementation of the transformation is critical.
The technical implementation of the transformations dramatically reduces the
initial variability of the domain as it was designed by the business expert.

Taking into account the “real” features implementations in the FD (i.e, the
transformations code in our context) through this set of automatically computed
constraints also leads to interesting situations that help the business expert. We
consider here the feature Repetition, defined as optional by the business ex-
pert (see Figure 3). The generated set of constraints identifies a requirement be-
tween the feature AbsoluteComputation and the feature Develop (line 1 in List-
ing 1.1). However, AbsoluteComputation is mandatory, and selecting Develop

implies to select Repetition. Thus, the Repetition feature is automatically
identified by the tool suite as a false optional feature, that is, a feature mod-
elled as optional but enforced as mandatory by a requirement constraints. In
this case, it helped the business expert to identify a missing artifact in the FD:
it should also contain an alternative implementation for Repetition instead of
only defining the Develop approach.

4.3 Step #3: Deriving Transformation Chains

Based on the FD enhanced with the implementation constraints, we can now
ensure that the products configured by the end user through the configuration
tool are valid. The final step is to use a derivation tool that properly builds the
transformation chains associated to a given product. We consider here one of
the 37 products available according to this FD, denoted as p corresponding for
example to the set of the features selected by the end user. The first step is to



translate p into Tp, that is, the set of transformations involved by this product. It
should be noted that |p| > |Tp|, as several features are only used to structure the
FD and consequently are not bound to concrete transformations. For example,
for the following product, corresponds the associated Tp:

p = {Gaspard,MemoryType, Polyhedron,Data,Barrier,MappingMgmt,

KeepHierarchy,Hierarchy, T iler,Develop, StaticScheduling,

AbsoluteComputation, Task,Explicit, ScientificComputation,

Scheduling,Objective,Repetition, Synchronisation,OpenMP}
Tp = {explicitAllocation,memMapping, openMP, poly loop,

shape2loop, tilerMapping, tiler2task}

The second step is to map the constraints between features as a partial order
among the transformations. The requirements involved in p are the following:

Feature Requirement  Transformation Ordering

AbsoluteComputation→ Develop  memMapping → shape2loop

AbsoluteComputation→ Polyhedron  memMapping → poly loop

MemoryType→ KeepHierarchy  memMapping → tiler2task

Based on this partial order, it is possible to compute3 the following sets of
“independent” sub-chains involved in this product, as a chain template, that is,
a partition of the transformation set taking into account the partial order:

tplp = [ [openMP ], [explicitAllocation], [tilerMapping] (1)

[memMapping, [shape2loop, poly loop, tiler2task] ] ] (2)

Among the computed sub-chains, the openMP transformation is a “model to
text” transformation and will always be the last one executed in the chain. In
line 2, the partial order indicates that the memMapping transformation must be
preceded by the 3 transformations listed, without specifying any order between
them. Thus, there is up to 6 ways to combine these transformations according
to this constraint. As the explicitAllocation and tilerMapping transformations
can be executed independently of these sub-chains, they can be executed before,
after or inside the previously described sub-chains. As a consequence, up to 180
chains can be obtained from this product. Following the sub-chains computed
by our derivation tool, a valid transformation chain could be:

explicitAllocatlion → tiler2task → tilerMapping → · · ·
· · · poly loop→ shape2loop→ memMapping → openMP

Without any lead, the end user has only one constraint: the model to text
transformation must be the last of the chain. From the product p and its asso-
ciated set of transformations Tp, it means that the end user has the choice to

3 We used a set of logical predicates implemented using he Prolog language to imple-
ment the Derivation Tool.



organise 6 transformations. Thus, she has P (6, 6) = 720 choices to organise the
model to model transformations. Among the 720 chaining possibilities, many are
not valid because the require relationships are not considered. So, without any
indication, the end user has to choose from 720, potentially non valid, chains,
whereas with our methodology, the choice is reduced to 180 valid chains only.

To sum up, our methodology and the associated tool have allowed the end
user (without any knowledge about transformations) to easily build chains. She
has selected transformations based on embedded system features i.e. using terms
she is familiar with. Finally, she has to choose among 180 valid chains whereas
initially she was confronted to a huge number of possible chains that she has to
build by scrutinizing the transformation code.

5 State of the Art

In order to enhance the reusability of transformations, several authors promote
the decomposition of transformations into smaller ones. However transformations
have then to be chained. Vanhooff et al. proposed an approach based on the
explicit and manual identification of the required and provided concepts by the
chain developer for example using a profile in order to later build the chain [21].
Our approach relies on the feature model to compose the transformations.

Several approaches have been proposed to build chains. Transformations are
considered as functions to compose if their domains are compliant [13] or UML
activity that can be chained using different operators: composition, conditional
composition, parallel composition and loop [16]. However, in both cases, the
transformation chain has to be manually specify by the designer, without any
specific help. In the latter case, they are executed using the provided model trans-
formation orchestration tool. Our approach could be used upstream to identify
the useful transformations and to compose them.

Transformation chaining relies on constraints that can be automatically iden-
tified, e.g. using the distinction between concepts copied and those mutated [4].
This approach only deals with endogenous transformations (even if a possible
extension to heterogeneous transformations is suggested). With the ”require”
constraints, we have extended this approach to heterogenous transformations.

Several approaches propose to deal with the complexity of large systems with
a feature-based approach. For example, feature models were accurately used to
model the intrinsic variability of the Linux Kernel [10], and support end-user
during the kernel configuration task. The approach proposed in this paper follow
the same idea, that is, the use of feature modelling to leverage a highly variable
systems into an entity configurable by the end-user.

Being able to extract the features from the implementation is a challenge [2].
The most difficult part is the extraction of the feature hierarchy from the “flat-
tened” implementation [19]. Inferring such a hierarchy relies on domain heuristics
that rank the possible hierarchy, and the final assessment of these ranks by a
domain expert. In this paper, we do not consider the automatic extraction of



the features from the transformation set, and only rely on the business expert to
properly model the feature diagram. Being able to support the business expert
during this task is an interesting perspective of this work.

Feature models are also used to support the reverse engineering of large scale
systems [1]. For example, the FraSCAti platform (an open source implemen-
tation of the SCA standard) was accurately reverse-engineered to support its
assessment. Based on a dedicated tool that extracts the architecture from the
implementation, the authors confront the automatically extracted feature model
with the one defined by the business expert. This approach complements ours, as
we also rely on a tool that automatically infers feature information from the ac-
tual implementation of the system (in our case requirements between features).
But instead of assessing the model defined by the business expert, we focused
on its enrichment, by merging the set of automatically identified information in
this feature model. We were able to identify several situations where the actual
system was not “as variable” as the business expert thought.

6 Conclusions & Perspectives

In order to be reusable and maintainable, model transformations are written
according to a single intention and complex transformations are built as the
chaining of smallest ones. In this paper, we proposed an approach based on FD
to support the design of model transformation chains. Based on a classification
of the transformations made by a business expert, This approach allows an end
user to build such chains, without any prior knowledge of model transformation
technologies. The implementation of the transformations is also automatically
taken into account to ensure that the built chains are valid from a run-time point
of view. From an implementation point of view, the approach is independent of
any tools and can be easily coupled to existing approaches (e.g., FeatureIDE,
Familiar). The approach was validated on the Gaspard2 case study, and we are
currently pursuing another validation study in the domain of website engineering.

The resulting chains are valid according to a type based approach [7]. How-
ever, two transformations that can be chained into both orders from a syntactic
perspective are not obviously commutable from a business point of view: the
execution of the two successive transformations on whatever models may not
always lead to the same result. A perspective of this work is to enhance the
expressiveness of the requirement detection mechanisms to address this issue.
Another perspective concerns the FD refinement. Indeed, the FD being man-
ually designed by the business expert, some constraints between features may
have been omitted. The automatic requirement relationships extraction could
be a first help to highlight a badly / incompletely designed FD. To help the
business expert in the definition or the refinement of the FD, we plan to auto-
matically extract features from the documentation written by the transformation
developers.
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8. A. Gamatié, S. Le Beux, É. Piel, R. Ben Atitallah, A. Etien, P. Marquet, and J.-L.
Dekeyser. A Model Driven Design Framework for Massively Parallel Embedded
Systems. ACM Transactions on Embedded Computing Systems, 10(4), 2011.

9. Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. Feature-Oriented Domain Analysis (FODA) - Feasibility Study. Tech-
nical report, The Software Engineering Institute, 1990.

10. Rafael Lotufo, Steven She, Thorsten Berger, Krzysztof Czarnecki, and Andrzej
Wasowski. Evolution of the linux kernel variability model. In Jan Bosch and
Jaejoon Lee, editors, SPLC, volume 6287 of Lecture Notes in Computer Science,
pages 136–150. Springer, 2010.

11. T. Mens, G. Taentzer, and O. Runge. Detecting Structural Refactoring Conflicts
Using Critical Pair Analysis. Electronic Notes in Theoretical Computer Science,
127(3):113–128, April 2005.

12. J. Miller and J. Mukerji. MDA Guide Version 1.0.1. Technical report, Object
Management Group (OMG), 2003.

13. Jon Oldevik. Transformation Composition Modelling Framework. In Proceedings
of the Distributed Applications and Interoperable Systems Conference, volume 3543
of Lecture Notes in Computer Science, pages 108–114. Springer, 2005.

14. Harold Ossher, William Harrison, and Peri Tarr. Software engineering tools and
environments: a roadmap. In ICSE ’00: Proceedings of the Conference on The
Future of Software Engineering, pages 261–277, New York, NY, USA, 2000. ACM.

15. Jens Pilgrim, Bert Vanhooff, Immo Schulz-Gerlach, and Yolande Berbers. Con-
structing and Visualizing Transformation Chains. In Proceedings of the European
conference on Model Driven Architecture, pages 17–32, 2008.
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