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Abstract. Pairwise Markov random fields are an effective framework
for solving many pixel labeling problems in computer vision. However,
their performance is limited by their inability to capture higher-order
correlations. Recently proposed higher-order models are showing supe-
rior performance to their pairwise counterparts. In this paper, we derive
two variants of the higher-order lower linear envelop model and show how
to perform tractable move-making inference in these models. We propose
a novel use of this model for encoding consistency constraints over large
sets of pixels. Importantly these pixel sets do not need to be contiguous.
However, the consistency model has a large number of parameters to be
tuned for good performance. We exploit the structured SVM paradigm
to learn optimal parameters and show some practical techniques to over-
come huge computation requirements. We evaluate our model on the
problems of image denoising and semantic segmentation.

1 Introduction

Many challenging problems in computer vision, such as semantic segmenta-
tion [T2], geometric interpretation [3] and image denoising [4], can be formulated
in terms of pixel labeling. Here the goal is to assign a label to each pixel in an
image from some predefined label set. Conditional random fields (CRFs) are a
powerful framework for solving these problems. Usually, the CRF's encode la-
beling preferences via unary terms conditioned on local pixel features and a
pairwise smoothness prior over adjacent pixels. However, this encoding scheme
fails to model the complex structure of objects in images.

Shotton et al. [2] attempted to enforce consistency globally by learning an
image-specific appearance model for each object class and encoded as hidden
variables in the CRF. This approach has the benefit of encoding consistency
between disconnected regions. However, the approach is necessarily iterative
since appearance models need to be estimated from an initial prediction of the
pixel labeling, and errors in these predictions can negatively affect the quality
of the results. Moreover, the introduction of hidden variables into the model
complicates parameter learning.

Many authors have demonstrated the improvement over pairwise CRFs by
incorporating higher-order constraints, which encode complex relationships over
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the image. One important class of higher-order constraint enforces consistency
over contiguous regions in the image. The consistency model, for example, starts
from P™ Potts model [5], which favors the same label to be assigned to all pixels
within the region. However, the P™ Potts model can be quite brittle especially
on poorly estimated regions. For instance, if all pixels in a clique do not take the
same label, the same penalty is incurred regardless of the number of inconsis-
tent pixels. To overcome this problem, Kohli et al. [6] proposed the Robust P™
Potts model and reported impressive segmentation results due to better mod-
eling of superpixel regions. Their model defines a penalty proportional to the
number of inconsistent labels up to some maximum penalty. This model has
been generalized to an arbitrary number of linear functions that define lower
and upper envelops [7]. However, model performance is still sensitive to the su-
perpixel definition of regions. One possible remedy is provided by Ladicky et
al. [8], who combined multiple contiguous regions hierarchically and included a
generalization of the Robust P™ model.

With the significant improvements promised by higher-order terms, the is-
sue of learning the model parameters efficiently and effectively has become an
important research question. As the number of parameters increases by the intro-
duction of the higher-order potential, cross-validation—typically used for pairwise
models—is not effective. Szummer et al. [9] show the max-margin framework is ef-
ficient solution for learning parameters in pairwise CRF models, especially using
graph cuts. Gould [10] proposed an alternative energy minimization construc-
tion for the case of binary consistency potentials and resolved the learning issue
with a modified max-margin framework. On top of the standard max-margin
framework, they included additional linear constraints by adding a second-order
curvature constraint to ensure that the higher-order potentials remain concave
functions. Komodakis [I1I] showed an alternative interpretation of the max-
margin learning using the dual-decomposition method.

In this paper, we explore variants of the higher-order potential that encodes
a preference for consistency over large (and possibly disjoint) regions. Building
on the work of Gould [10], we generalize the binary case to the multi-class case.
Our model defines a concave penalty function over the number of pixels within
a predefined region (or clique) that is annotated with a given label. Importantly,
we do not restrict the pixel sets to contiguous local regions. In our experiments,
we show that the non-local regions are beneficial in encoding global labeling
constraints. We derive a-expansion and af-swap moves that can be generalized
to multi-class lower linear envelop functions. Our paper also provides efficient
and effective learning methods for the large number of parameters. We show
how the max-margin learning method is affected by our approximate inference
to find the optimal parameters, and propose a number of heuristics to reduce
the heavy computation required by the max-margin method.

Our contributions in this paper include: First, we derive two different ex-
tensions (i.e., min or sum) of the binary lower linear envelop function to the
multi-class case with approximate move-making inference. The derivation gen-
eralizes the higher-order consistency terms with the lower linear envelop function.
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Second, we explore the max-margin learning for our extended higher-order terms
and reduce the training time significantly with approximate solutions for large-
scale training examples. Third, we apply our model to the task of multi-class
pixel labeling with non-local consistency constraints. Our approach is evaluated
on the 21-class MSRC image segmentation data set.

2 Background

We begin by providing a brief background to submodular energy functions and
move-making inference for multi-class conditional random fields (CRFS)

Submodular Energy Functions. Consider a binary pairwise conditional
Markov random field (CRF) over variables y = (y1,...,yn) € {0,1}" and ob-
served features x. Let V = {1,...,n} denote the set of nodes and € C V x V
denotes the set of edges. Then we can write the energy function for the CRF as

E(y;z,0) => (i) + > ¢ i, yi@) (1)

% (i,5)€E

where 0 are the model parameters. The terms ¥V (y;;x) are known as unary
potentials and capture the labeling preference for a single variable in the ran-
dom field. The terms 1/}5 (yi,y;; ) are known as pairwise potentials and define
a preference over two variables. The pairwise terms are typically defined over a
sparse subset &£ of all possible variables pairs (i.e. adjacent pixels in the image).
If two nodes (i,7) € &, then the node i and the node j are said to be neighbors.
In pixel labeling problems, it is usual to use the pairwise term to smooth via a
contrast sensitive term of the form

50 9552) = Al 2 oo { = o= 17 )

where [-] is the indicator function which takes 1 when the argument is true and
0 otherwise, x; is the color vector for pixel 4, and A and 3 are global and image
specific constants that determine the strength of the smoothness prior.

An equivalent representation for the pairwise binary CRF is as a quadratic
pseudo-Boolean function (QPBF) [12]. Here we write the energy function E :
{0,1}™ — R in posiform as

E(yvmaa) const +ZQZO yz+01 1( )
%

+ D Oioo(@)yy; + Oigon (@)y,95 + 0o (@)yay; + i (@)iy;  (3)
(i,j)€€

! We will use the terms MRF and CRF interchangeably from now on.
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where y; = 1 — y; and all coefficients 0,.,;(x) are non-negative with the possible
exception of the constant term HConstE The coefficients can be constant or some
functions of the observed features . With respect to the pixel labeling problem,
we have 91‘]‘;00 = (9,']';11 =0 and 91‘]‘;01 = eij;lo = )\exp {—21/3 ||.Z‘Z — l‘jHQ}.

A pseudo-Boolean function is called submodular if and only if f(u)+ f(v) >
flu Vo) + f(uAwv) for all binary vectors u,v € {0,1}". An equivalent condi-
tion for the binary pairwise CRFs (i.e., quadratic pseudo-Boolean function) can
be written in posiform notation with 6500 = 6i5;11 = 0 for all variable pairs
(i,7) € &. Note that the contrast sensitive smoothness prior (Eq. (@) is sub-
modular. In the computer vision literature submodularity is sometimes referred
to as regularity [13].

The goal of inference is to find the assignment ¢ with minimum energy.
Message-passing algorithms can be suitable for the objective, but it is well known
that for submodular pairwise energy functions this can be done efficiently by find-
ing the minimum-cut in a suitably constructed graph [I4JI5/T6]. Unfortunately,
in general for multi-label CRFs (or indeed, non-submodular binary CRFs), in-
ference is intractable and we need to resort to approximate routines.

Move-Making Inference. Generally, most energy minimization problems are
NP-hard [I3]. However, there are good approximate solutions available. For ex-
ample, some move-making algorithms reduce the energy minimization to se-
quence of smaller problems which are submodular. Here, each move restricts the
label space of variables to at most two values from the label set. The algorithm
starts from an initial labeling. Then, it searches move spaces to minimize the
energy relative to the previous assignment. If no improvement is found after
searching over the restricted label space, the solution is considered to converge
to a local minimum. The algorithm can be formalized as follows: Consider the
current assignment yP"¢¥ € L" where L is the set of possible labels to each
variable. If the energy E(y,) from y, € {y?"*} U V! is less than E(yP"®’), the
assignment y, is updated as y™*** at the iteration ¢, where ' is a possible
movement at the iteration t. Otherwise, yP"¢* is kept as y"™<*t.

An early example of move-making algorithms is Iterated Conditional Modes
(ICM) [I7]. For a variable, it finds the optimal solution conditioned on all other
variables. However, the update of a single variable makes its convergence slow
and can easily get stuck in poor local optima. The more advanced examples
of move-making algorithms are a-expansion and af-swap [15]. In a-expansion,
a label from L is chosen iteratively. Each variable can switch to the chosen
label a or keep the current label, which expands the current label o to other
regions as long as the energy is reduced. It continues to iterate through the
label set until the energy reduces no more. Similarly, during aS-swap, two labels
from L are iteratively selected. Then it makes moves by swapping only between
variables with either of the two labels and retains all other variable assignments.
In summary, the three algorithms are characterized as follows:

2 Note that this representation is not unique.
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— ICM: for a given variable i € V, we choose the y®** € £ that minimizes
the energy with y7*** =y for all j # i.

— a-expansion: for all ¢, we choose the y*** € {y?"*’| o} that jointly minimize
the energy.

— af-swap: for all i such that y?"*" € {a, 8}, we choose the y?*** € {a, 8}
that jointly minimize the energy and y7** = y!"" for all other variables.

For a-expansion and af-swap, an efficient graph-cut based algorithm has been
proposed to minimize the energy functions composed of pairwise potential func-
tions [T6I13].

3 Higher-Order Consistency Potentials

The usual form of the energy function for a CRF model is composed of the sum
of unary and pairwise potentials. The unary potential 1; is represented as the
negative log of the likelihood of a label assigned to a node ¢ while the pairwise po-
tential 1);; encodes the interaction between the neighborhood nodes. The Potts
model is an example of the pairwise potential to impose image smoothness. In
spite of its improvement in removing noise, the pairwise terms can over smooth
resulting in poor object boundaries. Due to the limitations of the pairwise po-
tential model, the development of more sophisticated models with higher-order
terms have been developed (see Eq. (). These higher degree potentials ! are
capable of capturing more powerful statistics over images.

E(yiz,0)=> V) + Y. i)+ vy, (4)

=% (i,§)€E ceC

In this section, we describe two variants of lower linear envelop functions in-
troduced by [7]. These can encode arbitrary concave functions over the number
of variables taking a given assignment. Gould [10] showed that the potentials
can be represented by pairwise submodular energy functions for the case of bi-
nary MRFs. We extend the binary lower linear envelope functions to multi-class
inference problem using a-expansion and af-swap move algorithms.

Generalized Multi-class Representation. Here we extend and generalize
the binary lower linear envelope potential functions described in Gould [I0] to a
multi-class problem. Consider an arbitrary set of multi-class variables y,. = {v; |

i € ¢} where ¢ C {1,...,n}. We define our multi-class consistency potential as
@ mln {a,C Zwl[[yz =1 +0bt} (5)
lel i€c

where (aéc, béc) are parameter pairs of each k-th linear envelop function for label
l. We assume that the parameters are sorted by aéc in decreasing order for each
label, which means that af, > aj_, and b} < b}, for each label I. Thus, a set
of K, linear functions composes piecewise linear envelop functions to assign a
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penalty for each label [ being inconsistent over the subset y,.. The aggregation
€P can represent {min or >} to measure various penalties over the cliques. We
consider three cases for the same objective:

L () = mingmine (b}, + ol e, [y = 11}
2. wg{(yc) = Zl mlnk{bi —+ a/;c ZiEc[[yi _ l]]}
3. I (y.) = ming b + ar e lyi = ]}

Case [ finds the least potential function among all label set with K; functions
and is identical to Case [l just with different parameterizations over all sorted
functions. Case [2is the extended form of the binary case [10], which minimizes
the sum of the penalties over each lower linear envelop function. Note that the
per-variable weight w; is set as one for convenience.

a-Expansion Move. From the generalized higher-order potential function, we
derive the a-expansion move for approximate minimization of the linear envelop
potential functions. Let yP™*¥ € L™ be the current best assignment of labels
and S; = {i | y¥"°" = [} be the subset whose variables are assigned to label I.

For a-expansion, we constrain the moves to y?*** € {y?"“’,a}. To encode the

expansion moves, the binary transfer vector ¢ is defined as

prev .
next _ ) Y; (7é Oé) if t; =0
vi _{a ift;=1. ()

Then, we can rewrite the restricted potential function with the new variables;

V(L) = @mkin {a; D {till = o] + [l # o]} + bﬁc}

leL i€S
_ : l . l : « . (e
= @mkln{ak th +o} | @ Inkln{ak(z ti + Na) + i} (7)
l#a i€S i¢Sa

where N; = |Sj|. Replacing ¢; = 1 — ¢; and substituting each coefficient and
subset with

l
o =ap forl#Fa 5 ! & S forl#a
ak{aﬂ forl:a’bikarakNl’ and 5, = Sy forl=a"’ (8)

we have the general form of a lower linear envelop function over binary variables

Pe(t) = @mkin{&k > tit+ b} 9)

leL ieS;
aB-Swap Move. Similarly defining the transfer vector ¢ as

nex « 1ft2:0 .
y t_{ﬂ i) ViesauSs, (10)
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we arrive at

PP (t) = @mkm{a; Y ot+bir| P G (11)

l=a, 1€S,US3 l#a,f

where C; = mink{ale + bgc} is a constant to account for all variables ex-
cluded from the move. Again, this is a lower linear envelop function over binary
variables.

Applying Auxiliary Variables. In addition to the transfer vector t above, we
need to transform the higher-order potential functions to the form of quadratic
pseudo-Boolean function for energy minimization to be tractable. For simplicity,
we assume that each class has K linear functions and there are |£| different
classes. However, our method extends to the general case of K; # K. In [10],
an alternative way to minimize over the piecewise linear functions is introduced
using binary auxiliary variables. The minimization over K linear functions can
be encoded by introducing K — 1 binary auxiliary variables. Extended to the
multi-class case, the required binary variables 2} are |£|(K — 1) for the set of all
labels. Here we take an example of replacing the aggregation with ‘Z’E Then,
we can derive the QPBF representation for a-expansion as

Dot 2) = mzinEg‘(t,zo‘) + Y ELt, 2 (12)
l#a
K-1
where  E%(t) = a% Z t; +a% Ny + b + Z 2y (ay —agpyq) Z t;
i€ Sq k=1 i¢Sa
K-1 K-1
+ Z 2 (a; — ajyq)Na + 2 (b1 — b%) (13)
k=1 k=1
and
K-1 K-1
EL(t) =b) +abe Y tit Y zilag = aipr) Dot D (bl —0h) . (14)
= k=1 €S k=1

Note that contrasting the description in [I0], the explicit constraints to enforce
z,lC > z,lC 41 is not required any more because the constraints are implicitly suf-
ficient to get the minimum energy. Now, we have the restricted submodular
potential functions, which can be minimized in time polynomial in the num-
ber of variables using the graph cuts algorithm. Figure [l illustrate the st-graph
constructions for both the move-making algorithms.

3 Unlike the a8-swap move, the a-expansion should be derived for ‘S’ because of the
submodularity condition.
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(a) a-expansion (b) aB-swap

Fig. 1. st-graphs for a-expansion and af-swap moves. The rectangles indicate repli-
cation of nodes.

4 Learning Parameters with Structured SVM

In this section, we describe how to learn the parameters including our lower
linear envelop potentials. Our multi-class model needs to learn 2 4+ (K + 1)|£|
parameters for unary, pairwise and higher-order terms. The cross-validation ap-
proach usually employed for pairwise learning is not a feasible method for this
large number of parameters. To learn parameters efficiently, we adopt a variant
of the max-margin framework by [I8/T9].

Let an energy function F(y;0) = 0' ¢(y) be parameterized as linear combi-
nation of features ¢(y) € R™ and weights § € R™ where m is the number of
the parameters. The framework learns weights for the energy function given a
training set ) = {y,}/_; and the objective function with constraints is

1 C <

. 2

minimize  [10]° + ;& (15)

subject to E(y;0) — E(y,;0) > Ay, y,) — & Yy e, Vit
G6>0 (16)

where ), C L™ is the set of all possible assignments for ¢-th training example
and C is a regularization constant. The loss A compensates the large margin
for each high loss example. To solve the above quadratic program, the con-
strains should be satisfied by all the possible assignments y. Due to the large
number of the possible assignments, this optimization problem can be solved
by cutting-plane method by finding the most violated ones first; other poten-
tial constraints are then guaranteed to have larger margin than the subset of
constraints. The Hamming loss A is suitable to be decomposed to the unary
potential and we can get the most violated constraints by graph-cuts algorithm
(y* = argmin, E(y;0) — Ay, y;))-

In order to learn the parameters by the max-margin framework, our higher-
order term requires re-parameterization. Let ¢ (y;0) = 9T¢(y). The feature
vector ¢(y) = {¢' | I € £, ¢! € REF1}) represents the consistency of the clique
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by the number of pixels for each label I (i.e. ¢} (y) = > .3 ;e [y = I]). And the
coeflicients are converted to the parameters to learn such as afc = 02 — 92—1 and
bic = 92 — ImﬁC for k=1,..., K + 1. The additional constraint (I6]) enforces the
parameters 0 of our higher-order potentials to be the concave function (refer to
[10] for further details)E

Max-margin learning is a powerful framework but computationally expensive
on large data sets. Specifically, it demands comprehensive search for violated
constraints from all training examples at every iteration. Intuitively, we can bor-
row some idea from stochastic gradient descent to speed convergence. Instead
of testing the whole training set, taking a subset of the examples at each iter-
ation results in decrease of the computational complexity. For example, if an
example had no violated constraints found before, the example will be discarded
for inference of most violated constraint. After skipping all examples, we seek
violated constraints for all examples again. This method still guarantees to con-
verge to optimal parameters because it finally satisfies all constraints for the
training examples. Another heuristic speed-up is to reduce the number of it-
erations in move-making inference. During training, we know the ground-truth
labels of the training examples, therefore we expect that the minimum energy
assignment tends to belong to the ground-truth labels. By reducing the label set
to only ground-truth labels in the move-making algorithm, the loss-augmented
inference time as a main part of the training time, can be saved at the risk of
missing the most violated constraints. Choosing the optimal move space is a
topic of active research area (see [20]).

5 Experiments

Denoising with Synthetic Data. This synthetic experiment is a toy example
that verifies the overall performance of the algorithm on a denoising task. The
input data is an artificially generated checkerboard image. Here we generate
8 x 8 checkerboards and each square contains 16 x 16 variables assigned with
one of five labels consistently. The unary potential is ¥V (y;) = 0“9V, (y;)
and generated with noise as x;(y;) = U[1, 2] — 0.3U[0, 1][y; = y}] where ¥} is a
ground truth label for the pixel ¢ and U0, 1] is the uniform distribution. The
pairwise potential is wf;(yi, y;) = 0P [y; # y;] and defined between every pair
of adjacent variables. Each checkerboard coincides with a consistency clique for
the input of the higher-order term. We set the number of the linear envelop
functions per label to K = 5.

FigurePlcompares the denoised images inferred with all the parameters learned
by the max-margin learning. As expected, the pairwise model does not recover
the noisy image perfectly (Fig. 2Bl and 2f). However, we can see the images
2d and Bdl where parameters have been learned by a-expansion, are coincident
with the ground truth. When af-swap is used, the performance is slightly worse
(see gl and BL)). With the higher-order terms involved, the value of the pairwise

pair

4 To ensure the energy function remains submodular, 6 must be non-negative.
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parameter became negligibleE‘ which indicates that the higher-order term is more
dominant than the pairwise term because the higher-order consistency term is
the generalized form of the pairwise term in the experiment. Another interesting
point is that move-making algorithms are approximate solutions to the global
minimum energy [I5] and the approximate inference for generating constraints
in learning can lead the max-margin framework to perform poorly [21], which
explains that the learning with af-swap move left some noise in the image.

o R R A

) truth ) pairwise hlgh all
¢

(e) noisy (f) pairwise (g) high (h) all

Fig. 2. Results from our synthetic data. Ralis the ground truth with 5 different labels
and [2d is the noisy image. Bl - 2dl are results by a-expansion. 21 - Bhl are results by
af-swap move.

Multi-class Segmentation. We evaluate the performance of our model con-
ducting semantic segmentation on the MSRC data set (23 classesﬂ While there
exist very powerful models for achieving state-of-the-art results on this data set
(e.g., Ladicky et al. [8] use sophisticated features and a hierarchical CRF model),
our interest is in evaluating the learning algorithm for higher-order consistency
potentials. We, therefore, choose a simpler baseline model consisting of a pair-
wise smoothness prior and unary potentials learned from local color and texture
features. As is standard with this data set, we removed the two scarcest classes
(‘horse’ and ‘mountain’) by filling with the ‘void’ label. Based on the previously
published works on this data set, we divided the image set into 315 training and
276 test images. This separation repeated with five random shuffles.

The baseline (unary, pairwise) models follow the standard pixelwise MRF
models[] The unary potentials are encoded by boosted decision trees via multi-
class logistic regression classifier. The features are derived from 17 filters over
images. The pairwise potentials are contrast-dependent smoothness terms for 8

neighbors defined as 1/15(%, y;) = [yi # yj] exp {7 213 i — x; ||2} where 3 is the
average squared distance between adjacent color vectors and z; and x; are RGB
® The ratio is about 42 times (“"*"¥ = 7.33 x 10~* and #7*'" = 1.76 x 107°).

Shttp://www.cs.cmu.edu/~tmalisie/projects/bmvc07/
"http://drun.anu.edu.au
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Fig. 3. Separate pixel sets for non-local regions and contiguous regions. The five pixel
sets by GMM are illustrated followed by mean-shift clustering.

color vectors for pixel i and j. Learning for the baseline model was conducted
by cross-validation given the limited number of pairwise parameters.
Regarding the higher-order consistency model, we used Gaussian Mixture
Model (GMM) clustering for higher-order cliques: five groups of clusters over
pixel colorsf As shown in Figure[3] the superpixels vary in size and shape unlike
the checkerboards. Different to contiguous clustering, the GMM clustering de-
fines non-local regions globally sharing common features (i.e. colors or textures)
over similar objects in images, which enables overlapped or disjointed object
parts to belong to each original object (see Fig.Bl). We set the number of linear
functions per class as K = 3 and the regularization constant as C' = 1.

Table 1. Averaged results with standard deviation for five experiments on 21-class
MSRC data set ((B)=‘Baseline’, (V)=*‘Validation’, (R)=‘Reduced Set’)

Model Evaluation Accuracy Time
Overall Class (d:h:m)

Unary(B) 58.4441.04 42.4041.08 26m
Unary+Pair(B) 73.2342.39 58.6944.21  2h53m ° 0
Unary+Pair 7T165£1.20 59.18+1.42  1h19m Thuy o
Unary+Pair(R) 71.19+1.25 58.64+1.50 9m  “egy @)
Unary+Pair(V) 76.09+£1.21 64.66+1.55 1h5m  “Jst - Pairvise(B)
Unary+Pair(RV) 74.1141.39 62.38+1.75 43m " " ramied®)
Unary+High ~ 73.22£1.22 61.23+1.27  8h8m || : s
Unary+High(V) 73.06£1.17 60.86+0.75  7h51m ’ 7 High
Full 79.47+1.38 69.5540.94 2d15h21m ] ’ Crar
Full(R) 75.514£1.59 66.48£1.92 11hd6m hw b
Full(V) 79.68+1.42 69.48+1.17 2d6h28m | = - FulRy) |
Full(RV) 76.024£1.74 67.4841.95 1d9h46m ¢ ¢ ¢ 5P = R E e E 0w @ w0

Table [ shows overall results from various models[d The full models performed
best in accuracy (79.7%). Unlike the previous experiment with the synthetic
data, the experiments with consistency terms alone do not always outperform
the result from the pairwise experiment. We recall that simple clustering over

8 Other clustering methods such as mean-shift clustering or mixture of clustered re-
gions can be considered.

9 The experiment was performed on a workstation with an Intel Xeon E5520 CPU
(2.27GHz) and 32GB RAM (10 cores were used).
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pixel colors decomposed objects apart into some classes (i.e. the human has dif-
ferent colors of limbs and clothing) and sometimes, a clique combines more than
one object classes together. In case of the pairwise parameter learning, the vali-
dation process was effective on gaining the optimal parameters while the learning
without validation missed the best parameters. For max-margin learning, valida-
tion may be required due to: a) loss in constraints may not represent sufficiently
large margin for minimum energy, b) the move-making inference is approximate
solution, and ¢) some amount of ‘void’ labeling can not be estimated properly in
learning. Naturally, the training and the inference times increase as the number
of parameters and variables increase. Our heuristic methods such as skipping
non-violated examples and cutting down label set in inference reduced the train-
ing time significantly. However, cutting down the label set sometimes results in
degraded accuracy as shown in Table [I}

(a) image (b) truth (c) unary  (d) pairwise (e) high (f) all

Fig. 4. Improved examples with the higher-order consistency terms. The black region
represents ‘void’. Best viewed in color.
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(a) image (c) unary  (d) pairwise (e) high (f) all

Fig. 5. Degraded examples including the higher-order consistency terms

Figured and FigureBlshow some examples of where the inclusion of the consis-
tency potential improved and degraded the results respectively. We can see that
the higher-order terms provide clear contours and accurate object segmentation
comparing to the pairwise term model. Note that our model with the definition
of non-local regions, for example, segmented the fence correctly with holes in it,
which differentiates from the use of contiguous local regions (see Fig. ). How-
ever, the higher-order terms can also degrade performance. Due to the coarse
color-based clustering, some objects have been labeled with a few different labels
instead of a single one. We suspect including multiple overlapping or hierarchical
clustering, this difficulty would be alleviated and performance improved.

6 Conclusion

In this paper we addressed the problem of parameter learning for multi-class
lower linear envelop energy functions. We first showed how to perform approx-
imate inference via move-making and thus how to employ max-margin param-
eter learning. Our results demonstrated that the higher-order terms were very
successful in MRF inference tasks such as image denoising and semantic seg-
mentation. However, the higher-order terms impose heavy computation cost on
inference and learning due to the large number of parameters and variables. In
our max-margin learning procedure, we proposed adaptive methods based on
subset optimization for reducing the training time.

It remains an open question how to best define the regions for the higher-
order terms. We utilized simple color based non-local regions for the higher-order
cliques and saw the improved results. But, we believe that there is still room
for improvement, for example, through more sophisticated clique discovery and
learning higher-order terms conditioned on refined image features.
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