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Abstract. The well-known robust point matching (RPM) method uses
deterministic annealing for optimization, and it has two problems. First,
it cannot guarantee the global optimality of the solution and tends to
align the centers of two point sets. Second, deformation needs to be reg-
ularized to avoid the generation of undesirable results. To address these
problems, in this paper we first show that the energy function of RPM
can be reduced to a concave function with very few non-rigid terms after
eliminating the transformation variables and applying linear transfor-
mation; we then propose to use concave optimization technique to min-
imize the resulting energy function. The proposed method scales well
with problem size, achieves the globally optimal solution, and does not
need regularization for simple transformations such as similarity trans-
form. Experiments on synthetic and real data validate the advantages of
our method in comparison with state-of-the-art methods.

1 Introduction

Point matching is a fundamental yet challenging problem in computer vision,
pattern recognition and medical image analysis. Many methods [1–7] have been
proposed to solve the problem. Among them, the robust point matching (RPM)
method [3] is very popular because of its robustness to many types of distur-
bances such as deformation, noise and outliers. Several variants [4, 7, 6] of RPM
were later proposed.

In its basic form, RPM models point matching as a linear assignment−least
square problem, where the energy function takes the following form:

E(P, θ) =
∑
i,j

pij∥yj − T (xi|θ)∥2 + g(θ) (1)

Here xi and yj denote the model point i and data point j, respectively. P =
{pij} denotes the correspondence matrix with pij = 1 indicating that there is
a correspondence between xi and yj and pij = 0 otherwise. T (·|θ) denotes the
transformation with parameters θ. g denotes the regularization term used to

⋆ corresponding author.
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regularize the value of θ. To minimize (1), RPM relaxes P to be continuously
valued and employs deterministic annealing (DA) for optimization. Although
RPM performs well in practice, it cannot guarantee the global optimality of the
solution and tends to align the centers of two point sets. Besides, regularization
g is always needed to avoid the generation of undesirable results.

In this paper, we are interested in minimizing energy function (1) using global
optimization techniques, instead of heuristic schemes such as DA. After elimi-
nating the transformation variables, it can be observed that the minimization
problem is reduced to a concave quadratic program, which facilitates the use of
concave optimization techniques for global optimality. In contrast, RPM does not
possess such property. Unfortunately, it is known that general concave optimiza-
tion techniques are only suitable for small scale problems, whereas the number of
variables in our problem is the product of the cardinalities of two point sets to be
matched, which is quite large. Fortunately, after applying the eigen decomposi-
tion based linear transformation to our problem, the number of quadratic terms
shrinks to be the number of transformation parameters, which is generally very
small. It becomes a concave optimization problem where the number of variables
in the linear part is much greater than the number of variables in the concave
part. For this type of problems, there exist efficient optimization techniques [8].
Consequently, the proposed method scales well with problem size. Another ad-
vantage of our method over RPM lies in that it does not need regularization
when simple transformations such as similarity transform is employed. In con-
trast, RPM always needs regularization to avoid the generation of undesirable
results.

The rest of the paper is organized as follows. Section 2 reviews related work.
Section 3 discusses the proposed energy function. Section 4 presents the opti-
mization algorithm. Section 5 presents the experimental results. Finally, Section
6 concludes the paper.

2 Related Work

Point Matching. The iterative closest point (ICP) method [1] iterates between
finding point correspondence based on nearest neighbor relationship and up-
dating transformation as a least square problem. However, ICP is not robust
because of the discrete nature of point correspondence. To address the problem,
RPM [3] relaxes point correspondence to be continuously valued and employs
DA for optimization. Nonetheless, the optimization scheme of RPM is quite com-
plex. To address the problem, the coherent point drift (CPD) method [4] models
point matching under the probabilistic framework and uses the expectation-
maximization (EM) technique for optimization. The methods in [5, 6] view a
point set as the result of sampling from an unknown distribution and convert
point matching into the problem of matching corresponding distributions. The
covariance driven correspondence method [7] uses the covariance of the transfor-
mation to guide the determination of point correspondences, but the method can
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only handle rigid transformations. The above methods are all heuristic schemes
and therefore they can not guarantee the global optimality of the solution.

Concave Optimization. Concave optimization was used in [9] to solve the
correspondence problems arising from computer vision, but the techniques em-
ployed there are only suitable for small scale problems. In contrast, our method
scales well with problem size because of its special structure of optimization,
which facilitates the use of large scale optimization techniques.

Branch-and-Bound (B&B). B&B is a popular technique for solving dif-
ficult nonlinear optimization problems. It was used in [10] to solve the rigid
registration problem, where the correspondences between planes, lines or points
are assumed to be known, and hence only the transformation needs to be solved,
which involves a small number of variables. However, both point correspondence
and transformation are not known in our problem, which makes the optimization
much harder. In [11], two B&B methods were proposed to minimize the energy
function of RPM. The first method is based on branching in the correspondence
variable. But because of the high dimensionality of the correspondence variable,
this method is only suitable for small scale problems. In contrast, our method
works in the transformed variable space instead of the original correspondence
variable space, and the number of variables to be branched equals the num-
ber of deformation parameters, which is generally very small. Therefore, our
method has reasonable running time and scales well with problem size. The sec-
ond method in [11] is based on branching in the transformation variable. Due to
lack of properties such as concavity by the energy function, the lower bound of
this method is not tight, and its convergence speed is slow.

3 Derivation of the Energy Function

Suppose that there are two point sets in d−dimensional space to be matched:

the model point set X = {xi, i = 1, . . . ,m}, where point xi =
[
x1
i , · · · , xd

i

]T
,

and the data point set Y = {yj , j = 1, . . . , n}, where point yj =
[
y1j , · · · , ydj

]T
.

To make our problem tractable, we assumes that the transformation T (xi|θ)
is linear with respect to its parameters θ, i.e., T (xi|θ) = J(xi)θ, where J(xi) is
called the Jacobian matrix (examples include Eq. (13) and (14) in section 5). We
consider the following form of regularization in this paper: g(θ) = (θ−θ0)TH(θ−
θ0), i.e., θ is required to be close to a constant vector θ0. Here H is a positive
semidefinite matrix whose elements represent the weights assigned to elements
of θ.

With the above consideration, the energy function (1) takes the following
form:

E(P, θ) =
∑
i,j

pij∥yj − J(xi)θ∥2 + (θ − θ0)
TH(θ − θ0) (2)

The correspondence matrix P satisfies the two way normalization constraint:

P1n = 1m, 1TmP ≤ 1n, P ≥ 0 (3)
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Here we require P1n = 1m, i.e., every point in X has a counterpart in Y . This
assumption is essential in simplifying formulas (see Eq. (4) and (5)) in the sequel.
This assumption is commonly used in point matching literature [3].

E is apparently a convex quadratic function of θ. Therefore, by letting ∂E
∂θ =

0, we can get the optimal solution of θ as:

θ̂ = (JTJ +H)−1
[
JT (P ⊗ Id)Y +Hθ0

]
(4)

where J ,
[
JT (x1), . . . , J

T (xm)
]T

and Y ,
[
yT1 , . . . , y

T
n

]T
. Symbol ⊗ denotes

the Kronecker product operator.
By substituting (4) into (2), the variable θ is eliminated and we arrive at an

energy function only in P :

E(P ) =1TmPZ −
[
Y T (P ⊗ Id)

TJ + θT0 H
]
(JTJ +H)−1

·
[
JT (P ⊗ Id)Y +Hθ0

]
+ θT0 Hθ0 (5)

where Z ,
[
∥y1∥22, . . . , ∥yn∥22

]T
. By eliminating the constant terms in (5), we

get an equivalent optimization problem where the energy function is:

E′(P ) =1TmPZ − 2θT0 H(JTJ +H)−1JT (P ⊗ Id)Y

− Y T (P ⊗ Id)
TJ(JTJ +H)−1JT (P ⊗ Id)Y (6)

Let the Cholesky factorization [12] of the positive definite matrix (JTJ +H)−1

be
UTU = (JTJ +H)−1 (7)

where U is an upper triangular matrix. Then we have

E′(P ) = 1TmPZ − 2θT0 H(JTJ +H)−1JT (P ⊗ Id)Y − ∥UJT (P ⊗ Id)Y ∥22 (8)

It’s apparent that E′ is a concave quadratic function of P . We have the following
proposition.

Proposition 1. There exists an optimal integer solution of E′.

Proof. The constraint on P in Eq. (3) satisfies the total unimodularity property
[13], hence the vertices of the polytope (i.e., bounded polyhedron) determined
by Eq. (3) will be integer valued. It’s well known that the minimum solution
of a concave function over a polytope can be obtained at its vertices. Therefore
there exists an optimal integer solution of E′.

Based on the above Proposition 1, the output of our method will be binary
point correspondences if simplex-like optimization algorithms are adopted, as in
contrast to [14] where post-processing is needed to convert point correspondences
to binary values. For the convenience of discussion in the sequel, we define the
vectorization of matrix P as the concatenation of its rows:

vec(P ) = [p11, . . . , p1n, p21, . . . , p2n, . . . , pm1, . . . , pmn]
T
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Let p = vec(P ), E′ becomes

E′(p) =
{
1Tm ⊗ ZT − 2

[(
θT0 H(JTJ +H)−1JT

)
⊗ Y T

]
W

}
p

− ∥
[
(UJT )⊗ Y T

]
Wp∥22 (9)

Here the mnd×mn matrix W , Im ⊗
[
In ⊗ e1d, . . . , In ⊗ edd

]T
satisfies vec(P ⊗

Id) = Wvec(P ), where eid is a d−dimensional column vector with the ith element
being 1 and the rest elements being 0s. W is a large but sparse matrix and can
be implemented using function peye in Matlab.

4 Optimization of the Energy Function

It is well known that a quadratic function can be converted into a separable
form via linear transformation. It is also known that the convex envelope (i.e.,
the tightest convex underestimator) of a separable function over a rectangle is
the sum of the convex envelope of each component of the function over the cor-
responding interval [8]. Based on these facts, the normal rectangular algorithm
[8], which is specifically designed to minimize separable functions, is adopted in
this paper to minimize the energy function (9). To this end, we first transform
(9) into a separable form via eigen decomposition, and then derive the convex
envelope of the resulting function over a rectangular region. We finally use the
B&B technique [8] for optimization.

4.1 Eigen Decomposition

A quadratic function can be transformed into a separable function by a linear
transformation of its variables, and the choice of the linear transformation is
based on the eigen decomposition of the quadratic part of the function. There-
fore, in this subsection, we focus on the eigen decomposition of the quadratic
part of (9).

Let us define the #θ×mn matrix A =
[
(UJT )⊗ Y T

]
W , where #θ denotes

the dimensionality of θ. Then the quadratic part of (9) is −pTATAp. Since ATA
has dimension mn×mn, which is very high, directly applying eigen decomposi-
tion to ATA is impractical. In the following, we propose an efficient way of finding
the nonzero eigenvalues and eigenvectors of ATA. Let the QR factorization of
AT be:

QR = AT

where R is an upper triangular matrix. The columns of Q are mutually orthog-
onal and have a unity norm.

It’s apparent that

ATA = QRRTQT

Denote the eigenvalues and eigenvectors of RRT as λi and uR
i , i = 1, · · · ,#θ,

respectively. Then the nonzero eigenvalues and eigenvectors of ATA are λi and
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ui = QuR
i , i = 1, · · · ,#θ, respectively. Therefore we can get the separable form

of the quadratic part of (9) as:

−∥Ap∥22 = −
#θ∑
i=1

λi(u
T
i p)

2 (10)

4.2 Convex Envelope of the Energy Function over a Rectangle

With Eq. (10), E′ now takes the following separable form:

E′(p) = bT p−
#θ∑
i=1

λi(u
T
i p)

2 (11)

where b , 1Tm ⊗ ZT − 2
[(
θT0 H(JTJ +H)−1JT

)
⊗ Y T

]
W .

For a separable function over a rectangle, its convex envelope can be readily
obtained based on the following proposition [8]:

Proposition 2. The convex envelope of a separable function
∑l

i=1 fi(ti) over
a rectangle M = {ti|ri ≤ ti ≤ si, i = 1 . . . , l} equals the sum of the convex
envelopes of components fi(ti) over intervals [ri, si], i = 1, . . . , l.

It’s apparent that the convex envelope of f(t) = −t2 over an interval [r, s] is
an affine function that agrees with f at the endpoints of this interval: fM (t) =
−(r + s)t+ rs, as illustrated in Fig. 1. Based on this fact and the above propo-
sition, we can get the convex envelope of function (11) over a rectangle M =
{p|ri ≤ uT

i p ≤ si, i = 1, . . . ,#θ} as

E′
M (p) = bT p−

#θ∑
i=1

λi(ri + si)u
T
i p+

#θ∑
i=1

λirisi (12)

Fig. 1. The convex envelope (dashed line) of function −t2 (solid line) over an interval
[r, s].

4.3 Bisection of a Rectangle

We use the B&B algorithm [8] to find the global ϵ−optimal solution of E′, i.e.,
a solution with function value no larger than ϵ from the global optimal value of
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E′. In the branching phase, a rectangle M = {p|ri ≤ uT
i p ≤ si, i = 1, . . . ,#θ}

is partitioned into two subrectangles. There are two issues to be addressed: 1)
deciding the dimension along which to split the rectangle, and 2) along a chosen
dimension where to split the rectangle. We use the bisection scheme [8] to solve
these issues for its simplicity and effectiveness. For bisection, the second issue is
addressed by choosing the midpoint as the splitting location, and the first issue
is addressed based on the following fact: the difference between f(t) = −t2 and
its convex envelope fM (t) = −(r + s)t+ rs over an interval [r, s] satisfies:

max{f(t)− fM (t), r ≤ t ≤ s} = 1

4
(s− r)2

Based on this fact, we can see that the dimension along which to split a rect-
angle should be chosen as j ∈ argmaxi

1
4λi(si − ri)

2. Given the optimal split-
ting dimension j, bisection results in two subrectangles: M1 = {p ∈ M |uT

j p ≤
1
2 (rj + sj)} and M2 = {p ∈ M |uT

j p ≥ 1
2 (rj + sj)}. It can be proved [8] that

bisection leads to a B&B algorithm which is convergent.

4.4 Algorithm

We use the normal rectangular algorithm [8], a B&B approach specifically de-
signed for separable functions, to optimize (11). During initialization, the bound-
ing rectangle (i.e., the smallest rectangle containing the solution space) is com-
puted. Then in each iteration of the algorithm, the rectangle yielding the lowest
lower bound among all the rectangles is further subdivided so as to improve
the global lower bound of the problem. Meanwhile, the upper bound is updated
by evaluating the energy function with solutions of the linear programs used to
compute the lower bound. The pseudo-code of the algorithm is summarized as
follows.

Initialization

Select tolerance error ϵ > 0.
Solve the 2#θ linear programs

min
p∈D

uT
i p, max

p∈D
uT
i p

to obtain the basic optimal solutions p0i, p̄0i and the optimal values ηi, η̄i. Here
D denotes the solution space of p, as determined by Eq. (3). Clearly, D ⊂M0 =
{p|ηi ≤ uT

i p ≤ η̄i, i = 1, . . . ,#θ}. Set M1 = N1 = {M0}, where M1 is the
collection of all rectangles and N1 is the collection of active rectangles. Let
p0 = argmin{E′(p0i), E′(p̄0i), i = 1, . . . ,#θ}.

Iteration k = 1, 2, . . .

1. For each rectangle M ∈ Nk, construct the convex envelope E′
M (p) according

to Eq. (12), and solve the linear program

minE′
M (p)

s.t. p ∈ D ∩M
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to obtain a basic optimal solution ω(M) and the optimal value β(M). β(M)
is the lower bound for region D ∩M .

2. Let pk equal to the best among all feasible solutions so far encountered:
pk−1 and all ω(M),M ∈ Nk. Delete all rectangles M ∈ Mk such that
β(M) ≥ E′(pk)− ϵ. Let Rk be the remaining collection of rectangles.

3. If Rk = ∅, terminate: pk is the global ϵ−minimal solution. Otherwise, go to
Step 4.

4. Select the rectangle to be divided: Mk = {p|rki ≤ uT
i p ≤ ski , i = 1, . . . ,#θ} ∈

argmin{β(M)|M ∈ Rk}.
5. Let ik ∈ argmaxi{ 14λi(s

k
i − rki )

2}. Divide Mk along dimension ik to get two
subrectangles Mk1 and Mk2.

6. Let Nk+1 = {Mk1,Mk2}, Mk+1 = (Rk\{Mk}) ∪Nk+1. Set k ← k + 1 and
return to Step 1.

Since the time complexity of the B&B algorithm is exponential in the worst
case, the worst case time complexity of our algorithm is also exponential.

5 Experimental Results

We implement all the competing methods in Matlab R2010 on a PC with 2.4GHz
CPU. Since all the competing methods output point correspondences, we use the
correspondences computed by a method to find the best affine transformation
between the two point sets, and define the error as the mean of the Euclidean
distances between the affinely transformed model points and their ground truth
data points. To get a complete picture of the performance of our method, in the
following experiments we consider two cases for our method: θ is not regularized
(i.e., H = 0) and θ is regularized. In the former case, our method becomes invari-
ant to the corresponding transformation. The Matlab source code of this paper
is available at: http://www4.comp.polyu.edu.hk/~cslzhang/code.htm.

5.1 Case One: θ is not Regularized

When θ is not regularized, with the increase of #θ, more degree of transfor-
mation freedom is allowed, and the matching results become less predictable.
Our experimental results showed that for 2-D point matching, similarity trans-
formation is a good trade-off between transformation flexibility and predictabil-
ity of the matching results. For 2-D similarity transformation with parameters

θ =
[
a, b, c, d

]T
, where [c, d]T is translation and a = s cos(ϕ), b = s sin(ϕ) with s

being scale and ϕ being rotation angle, the Jacobian matrix is

J(xi) =

[
x1
i −x2

i 1 0
x2
i x1

i 0 1

]
(13)

Assuming that the data point set is unit sized, we set the tolerance error
ϵ = 1. Since the worst case complexity of our algorithm is exponential, we set the
maximum search depth as 3 to make a good trade-off between running time and
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matching accuracy. We compare our method with 4 state-of-the-art methods: the
unified graphical (UG) method [15] where similarity transformation is chosen,
the fan-shaped triangulation (FST) method [16], the Viterbi algorithm (VA)
based method [17] and the linear programming (LP) based method [14]. These
methods can guarantee globally optimal or sub-optimal (for LP) solutions and
some of them (UG and FST) are also rotation invariant, making them good
candidates for comparison. For LP, we use shape context [18] as the feature
descriptor. Since VA and LP are not rotation invariant, we render them rotation
invariant by evaluating them on 8 evenly quantized angles and choosing the
result with the minimum cost.

Experiments on the Chui-Rangarajan Synthesized Data Sets Synthetic
data are often used to quantitatively evaluate specific aspects of an algorithm.
In this subsection, we use the Chui-Rangarajan synthesized data sets [3] to test
the 5 competing methods’ robustness against non-rigid deformation, noise in
position and outliers. In each test, the model shape is subject to first random
rotation and then one of the above distortions to generate a data point set. The
model shapes (a tropical fish and a Chinese character) and examples of data
point sets in the 3 categories of tests are shown in Fig. 2.

Fig. 2. For every 4 columns, from left to right: the model point set and examples of
data point set in the deformation, noise and outlier tests, respectively.

The matching errors of the methods are shown in Fig. 3. It can be seen that
for the deformation and noise tests, our method outperforms other methods,
demonstrating its robustness to deformation and noise. For the outlier test, our
method performs in average compared with other methods for the fish test while
slightly worse than other methods for the Chinese character test. Part of the
reason is that all the other methods except for UG employ the shape context
feature descriptor for matching, which can much increase their robustness to
outliers. In comparison, our method and UG only use the information of point
positions for matching.

The average running time of the 5 competing methods are listed in Table 1.
The proposed method is the slowest among them. This is because linear pro-
gramming needs to be performed at each iteration of our method. Nonetheless,
the high running time is the price for the global optimality of the proposed
scheme. It can also be seen that the running time of our method is acceptable
when the number of points is not big. When the number of points becomes large
(e.g., in the case of outliers), the running time of our method increases much.
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Fig. 3. Matching errors by the 5 competing methods on the Chui-Rangarajan synthe-
sized data sets. The error bars indicate the standard deviation of the error over 100
random trials.

Table 1. Average running time (in seconds)

Deformation Noise Outliers

our method 23.4567 23.9379 162.6343

UG 10.6118 10.4448 157.1455

FST 7.8901 8.8471 46.3078

VA 4.0145 4.0323 14.3741

LP 19.5272 18.4779 31.3505

Experiments on Image Sequences We then test the 5 competing meth-
ods by using the CMU hotel and house sequences (CMU Image Database:
http://vasc.ri.cmu.edu/idb/html/motion/) and two other image sequences
from [19]. Similar to the experimental set up in [20], for each image sequence,
we select 30 feature points and manually track them over the image sequence to
generate a sequence of point sets. For two images separated by different sequence
gap, the associated pair of point sets are used for matching, as illustrated in the
1st and 3rd columns of Fig. 4 and Fig. 5, respectively. The matching accuracy
(fraction of correct correspondences) by the competing methods are shown in
the 2nd and 4th columns of Fig. 4 and Fig. 5, respectively. It can be seen that
our method has higher matching accuracy than other methods. In particular, it
achieves almost 100% accuracy on the CMU sequence tests over a wide range
of frame intervals. For the other 2 sequences, our method outperforms other
methods by a large margin (see Fig. 5).
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Fig. 4. 1st and 3rd columns: examples of input image pair and ground truth point
correspondences; 2nd and 4th columns: average matching accuracy by the 5 competing
methods. The error bars indicate the standard deviation of the error.
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Fig. 5. 1st and 3rd columns: examples of input image pair and ground truth point
correspondences; 2nd and 4th columns: average matching accuracy by the 5 competing
methods. The error bars indicate the standard deviation of the error.

5.2 Case Two: θ is Regularized

When θ is regularized, our method becomes transformation variant, but the
benefit is that our method’s matching accuracy and robustness to disturbances
can be improved.

We use affine transformation in our method as it is the simplest non-rigid
transformation and the number of parameters is small (note that our method’s
running time depends on the number of transformation parameters). For 2-D

affine transformation with parameters θ =
[
a, b, c, d, e, f

]T
, where [a, b, c, d]T is

the linear part of the transformation and [e, f ]T is translation, the Jacobian
matrix is

J(xi) =

[
x1
i x2

i 0 0 1 0
0 0 x1

i x2
i 0 1

]
(14)

We choose the weighting matrix asH = diag([1 1 1 1 0 0]), i.e., we only regularize
the linear part of the transformation. We choose θ0 = [1 0 0 1 0 0]T , i.e., the
linear part of the transformation should be close to the identity transformation
(please refer to Eq. (2)).

The tolerance error is set as ϵ = 0.06m, i.e., proportional to the number
of model points. We compare our method with 3 methods: RPM [3], CPD [4]
and the local neighborhood structure preserving (LNSP) method [21]. These 3
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methods are very popular and represent state-of-the-art. Affine transformation
is used for RPM and CPD.

First, we use the Chui-Rangarajan synthesized data sets to test the 4 com-
peting methods’ robustness against non-rigid deformation and noise (outlier is
not tested; instead, it is replaced by a more challenging clutter test in the fol-
lowing). The experimental set up is similar to that in section 5.1 except that
there is no rotation between two point sets. Performances of the 4 methods are
shown in Fig. 6. It can be seen that our method has the lowest error among all
the methods.
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Fig. 6. Matching errors by the 4 competing methods on the Chui-Rangarajan synthe-
sized data sets. The error bars indicate the standard deviation of the error over 100
random trials.

Second, we test the robustness of the 4 methods against clutter. The exper-
imental set up is as follows. For a shape which is represented as a point set,
we first obtain its shortest Hamiltonian cycle by solving a traveling salesman
problem. Then a segment of the cycle starting at a random point and with dif-
ferent length is chosen as the model point set (the remaining points correspond
to clutter). The moderately non-rigidly deformed version of the original shape
is chosen as the data point set. The two shapes, the tropical fish and the Chi-
nese character, as shown in the 1st and 5th columns of Fig. 2, are used in the
experiments. Examples of model and data point sets are shown in the top row
of Fig. 7.

Performances of the 4 methods are shown in Fig. 8. It can be seen that our
method is less sensitive to clutter and its error keeps almost unchanged when
clutter becomes severe. In contrast, for other methods the errors increase quickly
with the increase of the severity of clutter. This demonstrates the robustness of
our method against clutter. Examples of matching results by our method and
RPM are shown in the bottom row of Fig. 7.

6 Conclusion

We proposed a new approach to minimizing the energy function of the classical
RPM method. After eliminating the transformation variable, we reduced the
energy function to a concave quadratic program, which can be efficiently solved
by large scale concave optimization techniques. Our method can guarantee the
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Fig. 7. Top row: examples of model (1st and 3rd columns) and data (2nd and 4th
columns) point sets used in the clutter tests. Bottom row: examples of matching results
by our method (1st and 3rd columns) and RPM (2nd and 4th columns), where the
affinely transformed model points are shown as red ∗ and point correspondences are
indicated by black line segments.
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Fig. 8. Matching errors by the 4 competing methods on the test of clutter. The error
bars indicate the standard deviation of the error over 100 random trials.

global optimality of the solution, and does not need to regularize deformation
for simple transformations such as similarity transform. Our method also scales
well with problem size due to the special structure of its optimization problem.
Extensive experimental results demonstrated that the proposed method has high
matching accuracy and high robustness to disturbances, such as clutter, in com-
parison with state-of-the-art methods.
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