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Abstract. Despite the success of spatio-temporal visual features, they
are hand-designed and aggregate image or flow gradients using a pre-
specified, uniform set of orientation bins. Kernel descriptors [1] general-
ize such orientation histograms by defining match kernels over image
patches, and have shown superior performance for visual object and
scene recognition. In our work, we make two contributions: first, we ex-
tend kernel descriptors to the spatio-temporal domain to model salient
flow, gradient and texture patterns in video. Further, we apply our ker-
nel descriptors to extract features from different color channels. Second,
we present a fast algorithm for kernel descriptor computation of O(1)
complexity for each pixel in each video patch, producing two orders of
magnitude speedup over conventional kernel descriptors and other pop-
ular motion features. Our evaluation results on TRECVID MED 2011
dataset indicate that the proposed multi-channel shape-flow kernel de-
scriptors outperform several other features including SIFT, SURF, STIP
and Color SIFT.

Keywords: Kernel Descriptor, Multi-channel, Low Level Feature, Video
Event Detection, TRECVID.

1 Introduction

The widespread availability of cheap hand-held cameras and video sharing web-
sites such as YouTube has resulted in massive amounts of video content online.
The ability to rapidly analyze and summarize content from such videos entails a
wide range of applications. Significant effort has been made in recent literature
to develop such techniques [2][3][4][5]. However, the sheer volume of such con-
tent as well as the challenges in analyzing videos introduce significant scalability
challenges in applying successful bag-of-words approaches [6] used in image re-
trieval.

Features such as STIP [7] and HoG3D [§] that extend image level features
to the spatio-temporal domain have shown promise in recognizing actions from
unstructured videos [§][9]. These features discretize the gradient or optical flow
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orientations into a d-dimensional indicator vector 6(z)=[d1(%),. ..,04(2)] with

5:(z) = {1 1) =it (1)

0 otherwise

Despite their success, these features are hand designed and do not utilize full in-
formation available in measuring patch similarity. In recent work, several efforts
have been made to develop principled approaches to design and learn such low-
level features. In [I0], a convolutional GRBM method was proposed to extract
spatio-temporal features using a multi-stage architecture. In [I], a convolutional
independent subspace analysis (ISA) network was proposed to extract patch level
features from pixel attributes.

These deep learning approaches are in effect mapping pixel attributes into
patch level features using a hierarchical architecture. In [12], a two layer hi-
erarchical sparse coding scheme is used for learning image representations at
the pixel level. The orientation histogram in () in effect uses a pre-defined d-
dimensional codebook that divides the 6 space into uniform bins, and uses hard
quantization for projecting pixel gradients. In contrast [12] allows data driven
learning of pixel level dictionaries, and the pixel features are projected to the
learnt dictionary using sparse coding to get a vector W(z)=(w1(z),. .., wa(z)).
After pooling such pixel level projections within local regions, the first layer
codes are passed to the second layer for jointly encoding signals in the region.
The orientation histograms and hierarchical sparse coding in effect define the
following kernel for measuring the similarity between two patches P and Q:

K(P,Q)=Fy(P) Fr(@Q) =>_ > m( )B(2) " B(2) (2)

z€P 2'€Q
where
- Fp(P)= Zzep m(z)P(z ) is the patch sum
- m(z)=m(2)/\/>.cp m(2)? + €4 is the normalized gradient magnitude with

€g 2 small constant, and
- &(z)=0d(z) for HoG and &(z)=W (z) for hierarchical sparse coding.

The kernel descriptors proposed in [I] generalize these approaches by replacing
the product ®(z)T®(2') in equation (@) with a match kernel k(z,2’) and allows
us to induce arbitrary feature spaces @(z) (including infinite dimensional) from
pixel level attributes. This provides a powerful framework for designing rich
low-level features and has shown state-of-the-art results for image and object
recognition [I][L3].

A crucial limitation of kernel descriptors is that kernel computations are costly
and hence it is slow to extract them from densely sampled video patches. In our
work, we present a fast algorithm for kernel descriptor computation that takes
O(1) operations per pixel in each patch, based on pre-computed kernel values.
This speeds up the kernel descriptor features under consideration, to levels that
are comparable with D-SIFT[14] and color SIFT[I5], and two orders of mag-
nitude faster than STIP[I6] and HoG3DIg|. In contrast, the kernel descriptor
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computation in [I] is 4x and 10xslower than SIFT, for gradient and LBP based
kernel descriptors respectively. Furthermore, we apply kernel descriptors to ex-
tract gradient, flow and texture based features for video analysis. We test our
approach on a large database of internet videos used in the TRECVID MED
2011 evaluations, and compare the proposed kernel descriptors with a large set
of image and motion based features. Our flow based kernel descriptors are up
to two orders of magnitude faster than STIP and HoG3D, and also produce sig-
nificant performance improvements. Further, using features from multiple color
planes produces small but consistent gains.

The rest of the paper is organized as follows - we provide an overview of kernel
descriptors in section [2 describe video specific features we extract in our exper-
iments in section Bl present a fast feature computation algorithm in section [4]
describe feature representation and early and late fusion techniques we use in
section Bl and present experimental results in section [6l

2 Kernel Descriptors

Kernel descriptors [I] provide a unified framework for turning pixel level at-
tributes such as gradients into patch level features, by highlighting the kernel
view of orientation histogram features such as SIFT and HoG. Feature extraction
using kernel descriptors involves three steps: (1) designing kernels for matching
patches using pixel attributes; (2) learning a compact set of basis vectors using
kernel principal component analysis (KPCA); (3) constructing kernel descriptors
by projecting the infinite-dimensional feature vectors induced by pixel attributes
to the learned basis vectors.

Following the notations in [I], the gradient match kernel K ,44(P, Q) measures
the similarity between patches P and ) based on the pixel gradient attribute:

Kgrad(P,Q) = Z Z (é é )k‘p(z,z’) (3)

zEP 2/ €Q

where z denotes the 2D position of a pixel in an image patch normalized to [0,1]
and 6, is the normalized gradient vector defined as:

0. = [sin(0(z)), cos(0(2))] (4)

The position kernel k, and orientation kernel k, are defined using Gaussian
kernels as:

kyp(z,2) = e w7117

9(2)—6 5
k:o(GZ,éZ,) — o ll0()=6()I1? (5)

Based on the patch similarity kernel defined in equation (B]), kernel descriptors
extract compact low-dimensional features by sampling sufficient basis vectors
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uniformly and densely from each pixel attribute’s support region, and then learn-
ing compact basis vectors using KPCA. Thus, the gradient kernel descriptor for
a patch P will have the form:

3
£
E
\
2
.
—
M
%z

(2), zi)kyp (2, yg)} (6)

where {xz} ©, and {yj} 7, are uniformly sampled from the corresponding sup-
port regions and d, and d, are the sizes of the basis vectors for the orientation
and position kernels respectively. Similarly, a match kernel based on local binary
pattern (LBP)[I7] is defined in [I] as:

Fipp(P ZZ@ {Z 2k (b(z),x )kp<z,yj)} (7)

i=1 j=1 zeP

where 3( z)/ \/ > .cp 8(2)? + € is the standard deviation of the pixel values
in the 3><3 nelghborhood of z, 63 is a small constant and b(z) is the 8-dimensional
LBP vector at z as defined in [I7]. The set of all possible 28=256 LBP vectors
is chosen as the basis vector set and k; is defined using an RBF kernel similar
to [l

The coefficients afj are learned through kernel principal component analysis
as follows:

Kijst = ko(xi, 2j)kp(ys, Yt)
K.=K-1yK-Kly +1yKly (8)
K.of = Mot

where K is the kernel matrix, K. is the centered kernel matrix, and 15 denotes
a N x N matrix with each element taking value 1/N. Thus, a' correspond to the
eigenvectors of the centered kernel matrix K.

3 Multi-channel Gradient Flow Kernel Descriptors

We extract kernel descriptors using image and optical flow gradients from a dense
grid of spatio-temporal patches. In our experiments we consider the following six
features.

Grayscale Gradient Descriptors (Gray KDES-G): These features are ex-
tracted from the gradients L, and L, computed along the = and y directions,
on gray scale image frames sampled from a video. We extract kernel descriptors
based on equation (@) for each patch.

Grayscale Flow Descriptors (Gray KDES-F): These features are extracted
from the optical flow fields F, and F}, computed from adjacent frames in different
temporal locations of the video. F, and Fj, are then used to estimate orientations
0 at different pixel locations for computing the gradient kernel descriptors.



Multi-channel KDES for Robust Video Event Detection and Retrieval 305

Neighborhood Binary Pattern

LBP = CS-LBP =
s(n0 —nc)2° +| [s(n0—n4)2° +
s(n1-nc)2'+| |s(n1-n5)2"+
s(n2-nc)22+| |s(n2-n6)2% +
s(n3-nc)2’+| |s(n3-n7)2°

s(nd4 - nc)2* +
s(n5 - nc)2° +
s(n6 - nc)2° +
s(n7 - nc)2’

Fig. 1. Schematic comparing LBP and CS-LBP [I§]

Grayscale Gradient+Flow Descriptors (Gray KDES-FG): These fea-
tures combine gradient and flow information, by concatenating the Gray KDES-
G and Gray KDES-F descriptors at each video patch.

Grayscale LBP Descriptors (Gray KDES-L): We extracted LBP features
[17] from the intensity values of grayscale frames and used them within the ker-
nel descriptor framework as described in [1J).

Grayscale Center Surround LBP Descriptors (Gray KDES-CL): The
number of basis vectors for the joint LBP-position kernel in equation () is
256x25=6400. Applying KPCA on the joint set results in too many compo-
nents that slows down feature extraction, while using a fixed, small number of
components (such as 200 in [I]) results in poor approximation of the space. In
our work we used a variant of LBP called center-symmetric LBP (CS-LBP)[L§]
that extracts a 4-dimensional binary vector from a pixel’s neighborhood (See
Figure [Il). This space has 16x25=400 dimensions and KPCA produces better
approximation of the space with fewer principal components.

Color Gradient Descriptors (Color KDES-G): We first split the frame im-
ages sampled from video to constituent color planes. In our experiments we used
the (R,G,B) planes, but we can use other color channels too. We then extract
KDES-G features from the gradients computed on each plane. For each patch,
we concatenate the KDES-G features from the different color planes.

Color Flow Descriptors (Color KDES-F): We compute these features from
the optical flow fields computed in each color plane and then concatenate the
KDES-F features from different color planes for each video patch.

Color Gradient+Flow Descriptors (Color KDES-FG): For these features
we concatenate the Color KDES-G and Color KDES-F features for each video
patch.

Color LBP Descriptors (Color KDES-L): These features extract KDES-L
features from each of the (R,G,B) channels.

Color Center Surround LBP Descriptors (Color KDES-CL): These fea-
tures are similar to Gray KDES-CL, but are extracted from each of the (R,G,B)
channels.

For our experiments, we uniformly sample every 50 frames from each video, and
compute the descriptors from patches of size 16x16x1, 25x25x1 and 31x31x1
on an evenly spaced grid of 8 pixels.
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4 Fast Computation of Kernel Descriptors

The major bottleneck in computing kernel descriptors is in evaluating the kernel
function kok, in equation (B). The naive approach of computing the product
for each (z;,y;) would cost dod, kernel computations. We can minimize the
number of calls to costly kernel computation functions by computing the two
kernel values separately at cost d,+dp, but computation of the sum in equation
(@) still costs O(d,d,) for each pixel z€P. In this section we will describe our
approach to compute the kernel sum at each pixel in O(1) time.

Let K, and K, be the kernel matrices defined over the orientation and position
basis vectors respectively:

Ko,ij - ko(xiaxj) Kp,st - kp(ysayt) (9)

Let K, . and K, . denote the corresponding centered orientation and position
kernel matrices. Then from the definitions in (8) and (@) we have

K, .®K,.a =\a (10)

where ® denotes the Kronecker product. Since the kernel matrices K, . and K,
are symmetric positive definite, we have

Ko,c ® Kp,c = [U;I,—cSo,cUo,C] ® [U;Icsp,cUp,C]

! ()
= [Uo,c ® Up,c] [So,c & Sp,c] [Uo,c & Up,c]

This indicates that the eigenvectors of K, . ® K, . can be computed from the
Kronecker product of the eigenvectors of K, . and K, . and the eigenvalues of
K, ® K, . are the product of the eigenvalues of K, . and K, ..

This factorization was used in [I3] for fast computation of the eigenvectors
of the Kronecker product of kernel matrices. We utilize the same factorization
in the sum in equation (@) for fast computation of the kernel descriptors. Here
each eigenvector af in equation (8) can be written as the Kronecker product
of corresponding orientation and position eigenvectors af = af®a!, and each

p’
coefficient af; in (@) can be represented by the product af, ;o ;. Substituting in

0,8,
() we have:

do

dP
Foraa(P) =) ag 05, {Z m(2)ko(0(2), zi)kp (2, yj)} (12)

i=1 j=1 z€P
Rearranging, we get
do dp
Fyoa(P) =) m(z) {Z aZ,iko(é(Z)’xi)} > ap k(2,95 (13)
zeP i=1 j=1

With this factorization, we can compute the inner sums over x; and y; sepa-
rately at cost d,+d, per pixel, in each patch P. We can achieve further speed
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up by pre-computing the inner sums for a large number of orientation and posi-
tion values and storing them in look-up tables T} and T pt respectively, for each
KPCA component t. Given an orientation 6(z) and position z, we can simply
retrieve from 7! and T;, the values corresponding to the nearest pre-computed
orientation and position:

Fhoa(P) =Y m(2)T5(0(2))T5(2) (14)

zeP

This takes O(1) for each pixel z in patch P. In our experiments, we use 25 basis
vectors x; for the orientation, and sample the position basis vectors using a 5x5
grid. Thus the fast kernel descriptor computation in (I4]) produces a 625x speed-
up over the naive computation in (@) and 50x speedup over the factorized sum
computation in (I3)). We pre-compute orientation sums for n,=1000 6(z) values
in the range [0,27], n;=16 possible values for CS-LBP vectors and n,=1000
points for z€[0, 1]x[0, 1].

5 Feature Representation and Fusion

We use the popular bag-of-words framework to represent the information from
different feature descriptors. This is done in two steps - in the first coding step
the descriptors are projected to a pre-trained codebook of descriptor vectors,
and then in the pooling step the projections are aggregated to a fixed length
feature vector. We use both spatial [19] and spatio-temporal [7] pooling. From
these features, we further employ kernel based fusion and score level fusion to
achieve more robust performance.

5.1 Coding and Pooling Strategies

Formally, we present a video by a set of low-level descriptors, x;, where ¢€{1..N}
is the set of locations. Let M denote the different spatial/spatio-temporal regions
of interest, and IV, denote the number of descriptors extracted within region
m. Let f and g denote the coding and pooling operators respectively. Then, the
vector z representing the entire video is obtained by sequentially coding and
pooling over all regions and concatenating;:

Q; = f(.%‘z), i=1..N (15)
h,, :9({ai}ieN,ﬂ)a m=1,..,M (16)
2" = [hT..hT) (17)

Coding: For the coding step, we first learn a codebook using k-means or a
similar unsupervised clustering algorithm from a sample set of feature vectors.
In hard quantization, we assign each feature vector x; to the nearest codeword
from the codebook as

a; € {0, 1}K, ajj =16 j=arg irg}r% [|z; — ckH2 (18)
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where ¢ is the k*" codeword. In soft quantization [20], the assignment of the
feature vectors to codewords is distributed as

_exp(=Bllzi — )
Sy exp (—Bla — ci?)

where 8 controls the soft assignment. In our experiments we find soft quantiza-
tion to consistently outperform hard quantization.

Pooling: The two most popular pooling strategies are average and max. In av-
erage pooling, we take the average of the «; assigned to different codewords for
different feature vectors as h = 1/N Zf\il o;. In max pooling, we take the max-
imum of the o;’s as h = max;—1. y «;. In our work, we find average pooling to
consistently outperform max pooling for video retrieval. Further spatial pooling
with 1x142x2+1x3 partition of the (x,y) space has consistently superior per-
formance for all the features considered. This is similar to previous results that
show improvements with spatial [19] and spatio-temporal [7] feature pooling.

(19)

Qi j

5.2 Kernel-Based Feature Fusion

We combine multiple features in an early fusion framework by using p-norm
Multiple Kernel Learning (MKL)[21], with p>1. For each feature, we first com-

_ (@i—yi)?
pute exponential y? kernels, defined by K(x,y) = e 2i Wit for each pair
of samples x and y in the training set. Then, given a set of kernels {K}} for
individual features, we learn a linear combination K = Zk di K, of the base

kernels. The primal of this problem can be formulated as

. 1 . A e
Wb E20,20 2 zk:Wka +CY &+ 5 (zk: s

s.t. yi(z VdewWhoi(zi) +b) > 1 - & (20)
%

The convex form of (20) is obtained by substituting wy, for v/dwy. To solve (20)
efficiently, we use Sequential Minimal Optimization (SMO) [22]. This is possible
by first computing the Lagrangian

1 A 2
L=, ZWZWk/dk + Z(C’ - Bi)&i + 5 (Zdﬁ)?
k k
=D ailyi(Y whon(ai) +b) —1+&] (21)
i k
and then computing the [,-MKL dual as

1 2
— t. t Y g
D gleaz(l e 8)\( Ek (o' Hp)?) (22)
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where J + 1 =1, A={a|0<a<01,1Va =0}, Hy = YE;Y, and Y is
a diagonal matrix with labels on the diagonal. The kernel weights can then be
computed as

dy = 21>\ (Z(atHka)q> Y (o Hpo) » (23)

k

Since the dual objective [22) is differentiable with respect to «, the SMO algo-
rithm can be applied by selecting two variables at a time and optimizing until
convergence.

5.3 Score Level Late Fusion

We adopted a weighted average fusion strategy that assigns video specific weights
based on each system’s detection threshold. This is based on the intuition that
a system has low confidence when its score for a particular video is close to
the detection threshold, and high confidence when the scores are significantly
different from the threshold. Given the confidence score p; from system 7 for a
particular video, the weight for that system and video is computed as:

Thi—pi ¢ . )

0 = {piﬂ%’hi if p; <Th; (24)

' Th, else
where Th; is the detection threshold. The final score P for a video is computed
as P =), wip;/ Y, w;. In our experiments, this approach consistently improved
performance over any individual system.

6 Experimental Results

For our experiments, we used the dataset released as part of the TRECVID MED
11 evaluations (http://www.nist.gov/itl/iad /mig/med11.cfm). This set includes
event kits containing ~100-200 videos for each of the 10 test events of interest,
and the DEV-T set containing 10723 background videos. The 10 events of in-
terest include the following - birthday party (BP), changing a vehicle tire (CT),
flash mob gathering (FM), getting a vehicle unstuck (GV), grooming an animal
(GA), making a sandwich (MS), parade (PA), parkour (PK), repairing an ap-
pliance (RA), working on a sewing project (WS). Figure 2 shows sample frames
from each of the events of interest.

A key challenge in web video retrieval is the large imbalance in the avail-
able training data for positive and negative examples. In our experiments on
the TRECVID MEDI11 dataset, the ratio of positive to negative examples is
about 1:49. Since the MKL optimization function in equation (20) optimizes for
accuracy, the solution often converges to the trivial classifier that declares all
examples as negative, which has 98% accuracy in our case. To address this, we
train models for combining multiple features by performing an extensive grid
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search over C' and p. At each parameter setting, we perform a k-fold valida-
tion on the available training data and estimate a threshold that minimizes the
Normalized Detection Cost (NDC) score that is defined as:

f= Hil"lhn {’wMDPMD(Th) + ’wFAPFA(Th)}, PMD(Th) < 0.75 (25)

where Th is the detection threshold, Py;p(Th) and Prpa(Th) are the missed
detection and false alarm rates at the detection threshold, and wy;p, wra are
the relative weights for missed detections and false alarms. For the TRECVID
MED dataset, different systems are compared with wy;p = 1.0, wpa = 12.49. A
similar training regime can also be used to minimize other metrics such as the
area under curve (AUC), and mean average precision (MAP).

We compared the performance of KDES (Kernel Descriptor) features with a
large set of image, color and flow based features. For image gradient based fea-
tures, we compared with SURF[23], SIFT[24], D-SIFT[14], and CHoG[25]. For
color features, we considered RGB-SIFT and C-SIFT[15]. For motion based fea-
tures, we compared with STIP[7], HoGHoF3DIg] and ISA[IT]. Table [l compares
the performance of the KDES features with different state-of-the-art features,
for each of 10 events of interest. The proposed KDES features are the single best
features for 7 of the 10 classes.

The Gray KDES-FG features that extract pixel level flow and gradient in-
formation similar to STIP and HoGHoF3D significantly outperform these fea-
tures, and are also 2 orders of magnitude faster. Further, KDES-FG also outper-
forms the ISA features, which learn spatio-temporal patch features from pixel
attributes using deep learning. The color KDES-G features outperform the RGB-
SIFT and C-SIFT features that also extract gradient patterns from different
color planes. The grayscale KDES-G features perform similarly to D-SIFT at
approximately the same speed. The KDES-L features have weaker performance,
primarily due to the small number of principal components chosen during KPCA
out of the 6400 dimensional basis vector space. However, the KDES-CL features
based on the more compact CS-LBP features produce comparable performance
to KDES-G features. We see improved performance with KDES features over
a range of missed detection and false alarm rate operating points on the DET

Fig. 2. Example video frames from each of the 10 test events



Multi-channel KDES for Robust Video Event Detection and Retrieval 311

Table 1. Comparative Performance of KDES Features (using NDC score), and speed
(fps) measured on 640x 360 pixel resolution video, for each patch size at which features
are extracted

BP CT FM GV GA MS PA PK RA WS Mean Speed

SURF 23] 0.98 0.77 0.44 0.85 1.04 1.34 0.87 0.82 0.81 0.79 0.91 0.600
SIFT[24] 1.07 0.90 0.51 0.95 0.91 1.57 0.89 0.79 0.73 0.93 0.93 0.530
D-SIFT[14] 0.84 0.82 0.45 0.82 0.98 1.30 0.91 0.78 0.73 0.67 0.83 0.250
CHoG25] 1.01 092 0.43 0.91 1.39 1.57 0.91 0.87 0.76 0.97 0.97 0.177
RGB-SIFT[15] 0.80 0.81 0.40 0.85 1.09 1.51 0.91 0.75 0.75 0.80 0.87 0.019
C-SIFT[15] 0.90 1.02 0.44 0.88 1.16 1.11 0.92 0.79 0.67 0.83 0.87 0.019

STIP[T7] 1.16 1.14 0.48 1.06 1.18 1.27 0.84 0.77 0.64 0.54 0.91 0.008
HoGHoF3D[8] 1.09 1.14 0.48 1.30 1.14 1.43 0.92 0.76 0.58 0.76 0.96 0.002
ISA[1T] 1.42 1.04 0.64 0.99 1.18 1.40 0.99 1.02 0.64 1.17 1.05 0.001

Gray KDES-F 1.11 0.94 0.45 1.05 1.15 1.41 0.86 0.89 0.66 0.71 0.92 0.230
Gray KDES-G 0.90 0.90 0.41 0.78 0.90 1.25 0.92 0.76 0.67 0.76 0.83 0.240
Gray KDES-FG 0.88 0.88 0.39 0.83 0.96 1.07 0.93 0.72 0.62 0.64 0.79 0.120
Gray KDES-L  0.88 1.02 0.47 1.08 1.35 1.39 0.93 0.84 0.80 0.84 0.96 0.180
Gray KDES-CL 0.90 0.89 0.38 0.85 0.91 1.36 0.89 0.80 0.71 0.68 0.84 0.180
Color KDES-F 1.20 0.99 0.45 1.15 0.96 1.22 0.95 0.83 0.54 0.84 0.91 0.072
Color KDES-G 0.80 0.85 0.41 0.73 0.83 1.41 0.93 0.76 0.69 0.66 0.81 0.084
Color KDES-FG 0.78 0.86 0.40 0.80 0.95 1.2 0.87 0.73 0.66 0.66 0.79 0.036
Color KDES-L 0.96 0.97 0.44 0.98 1.21 1.23 1.05 0.88 0.71 0.73 0.92 0.060
Color KDES-CL 0.89 0.89 0.36 0.89 0.96 1.43 0.88 0.83 0.67 0.62 0.84 0.060

curve. This is illustrated in figures [l and @l for two of the events considered. The
processing speed is also comparable with conventional features (Shown in the
last column of Table [I]).

Fusion Experiments: We next experimented with different combinations of
KDES features. We combined the KDES-F and KDES-G that extract pixel level
information from flow and gradient patterns, and with KDES-FG that extracts
pixel level information jointly from flow and gradients. We also tested the perfor-
mance of including KDES-CL features for fusion. We considered feature fusion
using both early fusion (MKL) and score level fusion. Table 2lsummarizes the re-
sults of our fusion experiments. KDES-F+KDES-G fusion produces comparable
performance to KDES-FG. Combining all the features produces better perfor-
mance for both grayscale and color features. In addition, combining grayscale

Table 2. Comparison of different fusion strategies of KDES features (using NDC score)

Individual KDES Features MKL Score Fusion
F G FG CL F+G F+G+ F+G+ F+4+G F+G+ F+GH+
FG FG+CL FG FG+CL

Gray  0.9238 0.8262 0.7927 0.8362 0.8238 0.7852 0.7871 0.7758 0.7554 0.7623
Color  0.9123 0.8077 0.7908 0.8413 0.7809 0.7860 0.7863 0.7822 0.7490 0.7459
Combined 0.7787 0.7904 0.7379 0.7374
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Fig. 3. DET curves comparing image features for classes “Grooming an animal” and
“Repair an appliance”

Table 3. Fusion of KDES features with standard features

Feature Combination NDC
D-SIFT+RGB-SIFT+STIP4+HoGHoF3D  0.7539
All Individual KDES 0.7374
All Individual KDES+D-SIFT+RGB-SIFT+ 0.7148
STIP+HoGHoF3D
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Fig. 4. DET curves comparing motion features for classes “Grooming an animal” and
“Repair an appliance”
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and color features produces further gains indicating presence of complementary
information in the two types of features. Further, score level fusion generally
yields better performance than MKL for the different combinations considered.

Next, we combined our KDES features with a set of standard features. We
chose D-SIFT, RGB-SIFT, STIP and HoGHoF3D since they extract informa-
tion similar to Gray KDES-G, Color KDES-G and Gray KDES-FG features.
Table Bl compares the performance of different combinations. The KDES feature
combination outperforms the D-SIFT+RGB-SIFT+STIP+HoGHoF3D system,
while combining all the KDES and standard features produces additional gains,
indicating presence of complementary information from the KDES features on
top of the standard feature set.

7 Conclusion

We present a set of features that extend kernel descriptors for analyzing videos,
and present an efficient algorithm for rapid computation of such features in videos.
Together, this allows us to define a rich set of pixel level spatio-temporal fea-
tures for robust video analysis. We rigorously analyzed their performance on large
benchmark video event detection dataset used in the TRECVID MED 2011 evalu-
ations. Our results indicate that kernel descriptors significantly outperform popu-
lar motion features such as STTP, HoOGHoF 3D and the recently developed ISA fea-
tures. Furthermore, incorporating color information produces small performance
improvements at the cost of increased computation. In the future, within the ker-
nel descriptor framework, we aim to explore a larger set of pixel attributes as well
as develop hierarchical architectures for learning video level features.
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