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Abstract. Riemannian geometry allows for the generalization of statistics de-
signed for Euclidean vector spaces to Riemannian manifolds. It has recently
gained popularity within computer vision as many relevant parameter spaces have
such a Riemannian manifold structure. Approaches which exploit this have been
shown to exhibit improved efficiency and accuracy. The Riemannian logarithmic
and exponential mappings are at the core of these approaches.

In this contribution we review recently proposed Riemannian mappings for
essential matrices and prove that they lead to sub-optimal manifold statistics.
We introduce correct Riemannian mappings by utilizing a multiple-geodesic ap-
proach and show experimentally that they provide optimal statistics.

1 Introduction

Statistical inference on a set of samples is at the basis of many computer vision algo-
rithms. These algorithms typically require a metric to be expressed in the parameter
space in which the samples reside. The most often used metrics are the Euclidean dis-
tance or one of its generalizations such as the Mahalanobis distance. All are based on
the usual dot product between vectors and assume that the parameter space is a Eu-
clidean vector space. Recent work in computer vision has pointed out that many param-
eter spaces are differentiable manifolds, i.e. they are differentiable subsets of Euclidean
spaces. Neglecting the manifold structure of parameter spaces within statistics typically
leads to reduced accuracy and efficiency, as one is optimizing over, and measuring dis-
tances through, irrelevant degrees of freedom.

Improved accuracy and efficiency can be obtained by restricting computations to the
meaningful degrees of freedom, i.e. those of the manifold. This can be achieved by ex-
ploiting the paradigm of manifold statistics based on metric charts. A metric chart is a
local linearization (or flattening) of the manifold for one particular point on the mani-
fold, called the charting point, such that distances over the manifold with respect to this
point can be computed using the Euclidean distance formula in this chart. Algorithms
using metric charts to compute statistical properties of samples residing on manifolds
are also referred to as intrinsic statistical algorithms and usually are iterative in nature.
Crucial to this approach are charting functions which define the metric charts for each
point on a particular manifold. They can be used to transfer samples residing in the man-
ifold to the metric charts and back. Riemannian geometry provides the theory and tools
to develop such charting functions (where they are called logarithmic and exponential
mappings) and is discussed in Sec.

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part II, LNCS 7573, pp. 531£544] 2012.
(© Springer-Verlag Berlin Heidelberg 2012



532 G. Dubbelman, L. Dorst, and H. Pijls

The use of Riemannian geometry to disclose statistical information on manifolds can
be traced back to [1]. This methodology has recently received considerable attention
from the computer vision research community. For a theoretical overview see [2, [3]
and the references therein. An example of a statistical algorithm that was generalized to
certain manifolds is mean-shift [4, |3]. In [6] it was used for robust pose estimation, in
[7] for robust essential matrix estimation and in [8] for simultaneous multiple motion
estimation. In [9] a Riemannian approach was taken to estimate the dimension and
entropy of shape spaces, particularly the shape space of handwritten digits. Riemannian
geometry has also been used to estimate statistical properties of diffusion tensor data
[10,[11]. In [12] Riemannian geometry was used to estimate properties from image point
configurations. A Riemannian clustering approach was proposed in [13] and applied to
2D motion segmentation and to diffusion tensor segmentation. In [14] a Riemannian
clustering approach was proposed for pedestrian detection from image data.

This work focuses on epipolar configurations, i.e. scale-free Euclidean motions,
which are encoded by essential matrices. In Sec. 3| we develop our charting functions
for essential matrices by using methods from Riemannian geometry. They are inspired
by mappings proposed earlier in [[15, |16, [17]. As is explained in Sec.2land in Sec.[3the
mappings in [[15, 16, [17] are designed for manifold optimization (estimating essential
matrices from image point correspondences) and cannot be used as is within manifold
statistics. This was already pointed out in [5, (7] which introduced alternative mappings.
In Sec. it is proven that the mappings in [55, [7] are, strictly speaking, mathemati-
cally incorrect and in Sec. Bl it is shown that they result in sub-optimal statistics. This
stands in contrast to our mappings for which it is shown that they lead to optimal statis-
tics. Although our focus is mostly theoretical, the broader relevance of our findings is
demonstrated by showing that state-of-the-art robust estimators based on the RANSAC
[18, 119, 20] paradigm can potentially benefit from incorporating our mappings. Our
conclusion are summarized in Sec.

2 Riemannian Geometry and Manifold Statistics

Manifold statistics conceptually requires a distance metric for every point pair on the
manifold. In Riemannian geometry the distance d(p, u) between two points p and u
residing on a differentiable manifold M is defined as the length of the shortest curve
over the manifold connecting the two points, i.e.

d(p,u) = 3161;113(7)7 (1)
where I is the set of all possible curves residing on the manifold joining p and u and
[5(7) is the length of one such curve between these two points. Under this definition
d( , ) is a metric [21/] and obeys to all its axioms, i.e. positive definiteness, identity of
indiscernibles, symmetry and the triangle inequality. Curves which provided paths of
least distance over manifolds are often called geodesics.

Just as in Euclidean spaces, the length of a curve v in M is the integral of all the
local contributions of all points on the curve. Let the curve ~y pass through the point p at
~(0) and pass through the point u at (1), then the length of the curve segment between
p and u is defined as



Manifold Statistics for Essential Matrices 533

dy dv
0= [ o >
Each local contribution (d

s dt 1+ )~(¢) is computed by the Riemannian metric ( , ) which
is an inner product defined on tangent vectors of M. A differentiable manifold equipped
with a Riemannian metric is called a Riemannian manifold. As the Riemannian metric
can vary over the manifold, the subscript 'y( ) denotes the point on the curve at which
the Riemannian metric is computed and ¢ 1 is the tangent vector of the curve at this
point. Note that the locally defined Riemannian metric should not be confused with the
globally defined Riemannian distance d(p, u).

Fortunately, we need not work with these equations as for certain manifolds, includ-
ing that of essential matrices, the globally defined metric d(p, u) can be computed effi-
ciently through a construct known as the Riemannian logarithmic map. The Riemannian
logarithmic map Log,,(u) = u takes the point u on the manifold to the tangent space
at p, i.e. T, M, producing the tangent vector u. T, M is the collection of all tangent
vectors of the manifold at p, we denote its elements in gothic font. The Riemannian
logarithmic map does so such that

d(p,u) = |/Log, () TLog, () = [Jul|, 3)

i.e. the distance over the manifold can be computed as the Euclidean length of the
tangent vector u produced by Log, (u). It is clear that the tangent spaces constructed by
the logarithmic map are the metric charts of Sec.[Il Note that only for specific manifolds
Eq.[Blholds globally for all u, given p. In general, it only holds for u sufficiently close
to p on the manifold.

The Riemannian logarithmic map is differentiable and invertible. Its inverse, the Rie-
mannian exponential map, takes the tangent vector u defined in the tangent space (or
metric chart) at p back to the manifold such that Loggy,, () (—u) =p.

By using the direct product between Riemannian manifolds one can combine existing
manifolds into new manifolds. Under the direct product points on the manifold M =
M1 x Ms are ordered pairs of points on M; and points on Mo, i.e. p = (pP1,Pp2)
with p1 € M; and p2 € Mas. The exponential and logarithmic mappings of the direct
product manifold are simply the combination of the individual mappings of each sub-
manifold, i.e.

Logp(u) = (Logpl (u1), Log,, (uz2)) and
Exp, (1) = (Exp,, (u1), Expy, (u2)).
Every property of the sub-manifolds M; and M are automatically transferred to the
direct product manifold M. The intrinsic distance between p and u over the direct
product manifold M is defined as

d(p,u) = \/d(p1,u)? + d(ps, u2)?
= \/ILogy, (un)]|? + [Logy, (u)]>”

“)

&)

it is the square root of the sum of the squared lengths of the individual minimal length
curves. Such a definition is called a multiple geodesics or a product metric approach
[21),122] and automatically obeys the axioms for metrics.
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When the mappings of Eq.[dl are available for all combinations of p and u of interest
to the statistical algorithm, the Riemannian logarithmic map can be used to generalize
statistical algorithms based on the Euclidean distance formula. This generalization is
performed by applying the substitution

(u— p)TZ_l(u -p) — Logp(u)TZ_lLogp(u), (6)

to a statistical objective function. It assures that all statistical calculations are performed
in the metric charts of the manifold and therefore are constrained to the actual degrees
of freedom of this manifold. The manifold statistical objective functions in [2, 3, |4, 5,
@, [7] are all expressed similarly in terms of a logarithmic map, whereas the manifold
optimization methods in [15, |16, [17] only require the exponential map. The required
logarithmic mappings for essential matrices are also not provided in [/15,116,|17].

3 Riemann Mappings for Essential Matrices

The essential matrix E [23] is a 3 x 3 matrix which algebraically describes the epipolar
geometry between two calibrated cameras. Let x and x’ be the homogeneous normal-
ized projections of the same world point on the imaging planes of the first and the
second camera respectively. The essential matrix is then defined algebraically as the
matrix that satisfies

x'TEx =0 @)

for all such correspondences x and x’.

The epipolar geometry of a normalized camera setup is defined by the translation
t and rotation R between the two cameras. Given this translation and rotation a geo-
metric composition of the essential matrix is E = [t], R, realizing that it can only be
determined up to a global scale ambiguity from corresponding image points. The nine
values in E have five degrees of freedom, 3 for rotation and 2 for translation modulo
global scale. Due to this scale ambiguity the length of the translation vector can be
normalized to have unit length ||t|| = 1 without loss of information. The normalized
essential matrix is therefore defined as

E=[t], R, with|t|=1. @)

X
This definition allows us to specify the parameter space of normalized essential matrices
as the direct product space S? x SO(3) [16, 17]. Both S? and SO(3) are well known
Riemannian manifolds and so is their direct product space S? x SO(3). We call points
on S% x SO(3) epipolar configurations. The challenge of this parametrization is that
S% x SO(3) is a four-fold covering of the space of essential matrices, every essential
matrix maps to four epipolar configurations. This is a well known ambiguity which is
of less concern to manifold optimization than it is to manifold statistics.

Manifold optimization methods like those in [13, [16, [17] are only concerned with
estimating a single essential matrix at a time. For any particular essential matrix one
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can randomly pick any of its four epipolar configurations and start optimizing from
there. The challenge is to parametrize S? x SO(3) (at each iteration of the optimizer)
such that it cannot jump between epipolar configurations which all are related to the
same essential matrix and hence all have the same summed squared error (sse).

In manifold statistics we typically have an empirical distribution consisting of sev-
eral hundred essential matrices. When each of them is randomly mapped to one of its
four epipolar configurations, almost all statistical information of the distribution is lost.
This is demonstrated in Sec. .1l One creates a situation where the distance between
two essential matrices depends purely on a random choice and is no longer related to
the epipolar configurations that they encode. The challenge for manifold statistics is
therefore to make a consistent choice when mapping each essential matrix to a point on
S% x SO(3). As pointed out in [, 7] the mappings in [15, 16, 17] do themselves not
provide mechanism to perform this mapping consistently for multiple essential matrices
as is required.

3.1 The Normalized Essential Manifold S? x SO(3)

We start with the normalized essential manifold S x SO(3) of [16,[17]. In this direct
product space the sphere S? is related to normalized translations, which we will call di-
rections, and SO(3) is related to rotations in 3D. When considering the unit quaternion
representation of rotations, then it is clear that rotational sub-space SO(3) has the shape
of a unit hyper-sphere S3.

Each essential matrix must be taken to a unique point on this manifold S? x S3 in a
differentiable and invertible fashion. This requires resolving the four-fold ambiguity and
can be performed efficiently by enforcing the positive depth constraint [24]. In contrast
to the remarks in [3, [7] we found that this can be done efficiently and robustly, we
come back to this in Sec. 4l The image data and the positive depth constraint together
with Eq.[8] provide an invertible and differentiable mapping between essential matrices
and points in S x S3. Conceptually speaking, the knowledge that the observed image
data is a projection of a Euclidean space allows for ‘lifting’ the essential matrix from a
projective entity to an epipolar configuration. The ability to do so is the main difference
between a computer vision approach, where image data is always available, and a pure
mathematical approach like [[15].

Each essential matrix E can be represented uniquely by a seven dimensional vector
E=(d,q) = (ds,dy.d, ¢, ¢, g5, qr) " with d € S? (modeling directions) and q € S®
(modeling rotations by unit quaternions). Due to the fact that ||d|| = 1 and ||q|| = 1
there are only five degrees of freedom as desired. Using a multiple geodesic approach
on S2 x S3 results in the Riemannian logarithmic and exponential mappings

¢2 = Logg, (E2) = (Logg, (d2), Logy, (q2))  and
E; = Expg, (¢2) = (Expq, (02), Expg, (42))-

The Riemannian distance between two essential matrices can then be computed with
|Logg, (E2)||. These mappings are all that is required to generalize statistical algo-
rithms according to the substitution of Eq.[6l Our contribution is providing explicit and
efficient functions for these mappings.

®
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For S3 we choose the quaternion identity (1,0,0,0) " as the origin. For this choice
the Riemannian exponential map wrt. the origin is

(cos([[all) , sin(l[all) q,) » lall #0
q=Exp(q) = { Ilall ) (10)
D=1(1,0,0,0 lall =0
For S? we take (1,0,0) T as the origin which gives
(cos([[o)), sin([[2l]) 5) » @I #0
d = Exp(d) = { ol . (1
© o0 . fpl=0

These mappings are well known [25] and very similar to that of [16, [17] except that we
choose to use S? (unit quaternions) instead of of SO(3) (rotation matrices).

In contrast to [[15,116,|17] we also require the logarithmic mappings of S? and S2. At
the origin of S* with q = (q, ¢i, gj, qx) " it is provided by

(gi,95,9%)
arccos(q) i q#1 {arccos(q) -7, ¢<0
=L = “(‘Jza‘bﬂ ) th S =

q og(q) {(07 0. 0) k S with arccos(q) arccos(q) L 0<gq
(12)

and at the origin of S? with d = (d,, dy, d,)" itis

(dy,d>)
arccos(d, v , d 1
d = Log(d) = { (de) Ngpitl” > 4 - (13)
b b r

Note that arccos assures that antipodal quaternions q and —q are mapped to the same
point in the tangent space such that d(q, —q) = 0. This is required as S? is a double
cover of SO(3), i.e. q and —q both represent the same rotation. Apart from arccos,
these mappings are again well known [25].

The next step is to express these mappings wrt. general points on the manifolds S*
and S? and not only wrt. to their origins. For S this can be performed by exploiting
the Lie group structure of unit quaternions [3]. The general logarithmic and exponential
mappings for S? are defined by:

q2 = Log,, (q2) = Log(q; ' xq2) and
a (14)
q2 = Expg, (92) = q1 * Exp(q2).

The Special Case S?: It is well known that S? does not allow for a Lie group struc-
ture [26] which makes obtaining the general mappings significantly more challenging.
Correct manifold statistics requires that all tangent space bases of all points on S?, ex-
cept that of the antipodal of (1,0,0) " which is (—1,0,0) ", are smoothly aligned with
the tangent space basis at (1,0,0) " such that minimal length curves originating from
(1,0,0) T are geodesics (i.e. it requires a torsion-free metric alignment related to the
Levi-Civita connection[21] of S?). This is because manifold statistics must simultane-
ously handle multiple empirical distributions on S? consisting out of multiple points
and therefore requires a globally consistent approach to relate all tangent space bases
and all minimal length curves of all these points to each other.



Manifold Statistics for Essential Matrices 537

In manifold optimization this is not required as it is concerned with the exponen-
tial map of one point at a time. As such, ,] can use a Gram-Schmidth process to
define the bases of tangent spaces at each iteration. Their approach does not provide
the required alignment of tangent space bases, does not provide a general logarithmic
map such that LOgExpdl(az)(*DZ) = d; with d(dy,d2) = ||Logg, (d2)|| and therefore
cannot be used as is for manifold statistics. The same holds for the approach in [IE].

Our main theoretical contribution is that we provide a product structure on S? such
that its general Riemannian mappings can be expressed as

0 = Logg, (d2) = Log(d; ' d2) and (15)

d2 = EXpd1 (32) = d1 *EXp(DQ).
Our product structure coincides with the torsion-free metric alignment of S? at e, see
Fig.[Il Similarly to the quaternion product, its purpose is to provide an invertible map
between geodesics originating from general points on S? to geodesics originating at e
by parallel tmnsport[ﬁ]. The existence of such a product structure is often contributed
to a Lie group structure which S? does not allow [26]. Still we show that S? has many
useful Lie-group-like properties similar to that of the Lie group of unit quaternions. Our
product structure for S? is provided in Theorem 1.

(a) (b)

Fig. 1. The alignment of tangent space bases on S? enforced by our product with e = (1,0, O)T.
Only at —e = (—1, 0, 0) it has a discontinuity for all other points it is smooth. A minimal length
curve through e is plotted in magenta. Note that it does not change direction with respect to the
tangent space bases of all points except that of —e, i.e. the antipodal and cut locus of e. Therefore,
it is a geodesics everywhere except at —e. The same holds for any other geodesic starting at e.

Theorem 1: The product x between general points d; € S? and dy € S? is
* 82 X 82 —)Sz, dl *d2 :Rd1Rd2(1a070)T (16)

where Rqg = I whend = (1,0,0)" and Rq = —I whend = (—1,0,0)" and for all
otherd € 2, d ¢ {(1,0,0)T,(~1,0,0)"},

Ra = I+ sin(64) [ra], + (1 — cos(fa)) [ral> a7

with
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(Oa 7dz> dy)T
rq=
V& + &

The identity element e belonging to this product is (1,0,0) " and inversion of an el-
ement d is provided by d=! = Rgle. We define the product to be left associative,
ie.dy xdg xd3 = (d; *da) *xds.

and 0q = arccos(dy). (18)

Proof: First note that we defined Rq such that d = Rqe for all d € S2. The axiom of
closure is satisfied as both rotation matrices and +I map points on S? onto S2. The ax-
iom of identity follows from d x e = Rqle = Rqe = d and e xd = IRgqe = d.
The axiom of invertibility is guaranteed by d x d~! = Rngle = le = e and
d !xd=Rj'Rae =le =e. O

The profound relation between minimal length curves starting at e, the exponential map
at e and our product structure is best illustrated by Theorem 2.

Theorem 2: The product structure of Theorem 1 is related to the exponential map of

S? at e, which traces out minimal length curves with Exp(#d), by the Taylor series of
the exponential function, i.e.

where d € TeM and 0 < ||9]].

0

(cos([lall).sin([l2ll), 5

) (19)

3@

Proof: In order to evaluate 9", with n € {0, Z*}, the product structure must be ex-
pressed on tangent vectors in 9 € TeM for which 0 < ||9]|. We can do so by defining
themap S : TeM — S2, S(0) = (0, Hg\l)' For n = 0 the power is then defined by

9% = e and for 0 < n it is defined by 9" = |[2[|(2" ! x S()). The powers of order 1
and higher evaluate to
A T U i I T L
2 = [R50, ,5) 3= —[ol%e, o7 = —[pI(0, 3, ),

(20)

In geometric terms, every power 0" rotates (0, Hg\l) over its geodesic, which starts at e

and goes through (0, Hgl\ ), with angle (";1) 7. From the equalities in Eq. 2Qlit follows
that
= ZZO_O " HDH _ loy? llo)l* llo|l® o)

_ 0 0

=e+0— g (0 0) + Ty e+ Ty (055 — T e~

2 4 6 3 °

= (1— I\g\!l HZ\Il _ Hzl!\ + . e+ (o - Hg\ll + \|°5|!‘ —...)(0, Hg\l)

= cos(|[o]))e +sin [o]|(0, ;3 )

= (cos(||DH)7Sin(||aH)\|g|\)~ .
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Similar proofs are well known for the unit circle and for unit quaternions and many
other useful Lie groups [27]. We have extended this to include the non-Lie-group S2.
The deeper mathematical foundations (i.e. the Levi-Civita connection [21] of S?) related
to our product on S? are beyond the scope of this text. Our purpose here is to prove that
such a product exists and that it has useful applications to manifold statistics.

3.2 Alternative Approach

Alternative Riemannian mappings for essential matrices were proposed earlier in [J5, 7]
within the context of manifold statistics. In this section we prove that their Riemannian
mappings are incorrect as they are ambiguous, i.e. they do not map essential matrices
which represent the same epipolar configuration to a unique point on the manifold.
Performing a singular value decomposition on an essential matrix results in E =
UXV . The first two singular values of ¥ are identical elements of Rt and the last one
is zero [24]. Since an essential matrix is a projective entity, it is not affected by scaling,
hence ¥ can be set to ¥; = diag{1,1,0}. When det(U) = det(V) = 1 the four possi-
ble epipolar configurations on S? x SO(3) belonging to the essential matrix E = ULV "
are (+uz, UWVT), (+u3, UWTVT), (—u3,UWVT) and (—u3, UW'V") where

0 —10

W = [(1) 0 ﬂ and ug is the last column of U[24]. As pointed out in [24] perform-

ing a rotation around the z-axis by an angle v, denoted as R (), does not change the
essential matrix. Furthermore, due to its projective nature the essential matrices E and
—E both relate to the same epipolar configurations. This equivalence relation is denoted
as E =g —E. For the SVD of E we thus have the equality

UR.(7) %1 (VR.(y+kn)" = (-1D)F U, VT =y +£E, (22)

with £ € Z. This shows that there is a more general equivalence class of essential
matrices, denoted as R ., which all encode the same epipolar configuration. The claim
in [3, [7] is that they can map all elements of R, to a single point on a Riemannian
manifold without using image data or the positive-depth constraint. We now prove that
their claim is incorrect pointing out an unavoidable ambiguity in their mappings.

Consider that when computing the SVD there is an arbitrariness in the choice for the
basis vectors being used. For a 3 x 3 matrix there are 8 such choices. The choice being
made often depends on considerations driven by numerical stability but it could just as
well be random. This arbitrary choice results in the following equality

E=UBX(V(+B))" = +UXV' =y +E (23)

where B = diag{+1, +1, £1}.In [24] it is implicitly assumed that det(U) = det(V) =
1i.e. U and V are both elements of SO(3). Due to B both U and V are merely orthog-
onal transformations, i.e. they are combinations of rotations and reflections. Since the
last singular value of X is zero, the last column of both U and V can be multiplied by
—1 such that their determinants become positive without changing the essential matrix.
This ensures that U and V become elements of SO(3) and ensures that retrieving the
correct epipolar configuration by using the positive-depth constraint is unaffected by B.
This is not true for the approach in [5, [7].
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The task in [5,/7] is to take the essential matrix Eq (with SVD Uadiag{1,1,0}V3), to
a unique point in the tangent space of E; (with SVD U;diag{1, 1,0}V ). The general
form of their logarithmic map is

Logg, (E2) = (Log(U] Uy), Log(V{ V2)) = (u,v) (24)

where Log on the right side of the equality denotes the Riemannian logarithmic map on
SO(3) and (u, v) € s0(3) x s0(3). The exponential map of the SM method is defined as

Expg, ((u,v)) = (U1Exp(u), ViExp(v)) (25)

where Exp on the right side of the equality denotes the Riemannian exponential map
on s0(3). This is conceptually similar to a multiple geodesic approach of two copies
of SO(3). The challenge is that both E; and E, are general elements of their own
equivalence classes but the logarithmic map must return the same tangent vector for
all combinations consistently.

In [3,17] the equivalence class R is resolved by enforcing logg, (E2) to have the
form [ug, Uy, 2, Vg, Uy, —2]T. It does so by an initialization procedure followed by it-
eratively updating the development point according to E; = expg, ([0, 0, 6,0, 0, 6]) for
some §. This basically applies z-axis rotations which assure that all essential matrices in
R are mapped to a single point. The resulting tangent vector [z, uy, 2, Vg, Uy, —2] 7
has the same number of degrees of freedom as an essential matrix, i.e. five, and therefore
provides a minimal representation. This representation is not unique however.

The focus is on B related to choice of basis when computing the SVD. If the claim in
[5,7] is correct, then every choice for B must result in the same point on their manifold.
By ensuring a positive unit determinant of U and V the four choices for B related to
reflections, i.e. diag{—1,—1, —1},diag{—1,1, 1},diag{1, —1, 1} and diag{1, 1, —1},
are mapped to diag{—1, —1,1}, diag{—1,1, -1}, diag{1, —1, —1} and diag{1,1,1}
respectively. Note that the identity I = diag{1,1,1} and diag{—1,—1,1} are both
elements of R, and can therefore be resolved to I. The remaining two elements of B,
ie. diag{l,—1,—1} = R,(£n) and diag{—1,1, -1} = R, (+£m), relate to rotations
by an angle 47 around respectively the x-axis and y-axis. They are not elements of
R.. Indeed, R, (£7) R,(£7m) = Ry (£m) and therefore the initialization procedure
in [5, [7] should ideally be able to map both to a single element, e.g. R, (+m) (but
[3, (7] provide no control over which one). When nevertheless assuming that R, (=)
is mapped to R, (£7) consistently, then there are still two choices for B. They are: I
and R, (£m). They clearly do not differ by a z-axis rotation. Therefore, both will be
mapped to tangents of the form [ug, uy, 2, Vg, Uy, —z]T but these tangent vectors will
not be equal. Hence, there remains at least a twofold ambiguity in the approach of [3, 7].

Instead of trying to resolve the four-fold ambiguity algebraically as in [5, [7], we
exploit the positive-depth constraint before applying our mappings.

4 Experimental Evaluation

Our novel Riemannian mappings and those in [5, 7] are evaluated by incorporating them
into two intrinsic statistical algorithms. One algorithm computes the intrinsic mean [3]
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the other computes the dominant mode by using intrinsic mean-shift [4, |5, |6, [7, 18].
When reporting results of our mappings we use the prefix Our and for the mappings in
[15,7] we use the prefix SM (Subbarao and Meer). The mappings in [15, 16, [17] are not
evaluated as they cannot be used as is for manifold statistics.

4.1 Maximum Likelihood Lower Bound

Artificial image data is generated by projecting 3D world points onto two camera
planes. The poses between the cameras are randomly generated with translation direc-
tions uniformly distributed over the unit sphere, translation distance varying uniformly
between 1 m and 10 m and rotation yaw, pitch and roll parameters distributed uni-
formly in the interval +-45°. Gaussian image noise with ¢ = 0.2 pixel is added to the
projections. Essential matrices are estimated on minimal subsets, i.e. of size 5 point
correspondences.

FigPla,d) depicts the results (on a logarithmic scale) of computing the intrinsic mean
on an increasing number of essential matrices. For this experiment the essential matrices
are obtained using an ML estimator which minimizes reprojection errors.

" Mean abs. error in tra. direction Mean abs. error in tra. direction Mean abs. error in tra. direction
10° 0.8, 0.8,
= N8-point(all) = N8-point(all) = N8-point(all)
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Fig. 2. Result averaged over 500 poses. Errors in translation direction are visualized in the top
row and rotational errors in the bottom row. See Sec.H.1]for details.

It can clearly be seen that when using our mappings, the accuracy asymptotically
reaches the ML lower bound, i.e. the accuracy of an ML estimator on all image points.
For reference, the accuracy of the normalized 8-point algorithm on all image points is
also shown. When using the mappings of [3, 7], the mean does not produce a useable
result. This is because all essential matrices, which only differ by a small random per-
turbation from the ground truth, are mapped to two clusters far apart from each other
instead of to one. This is due to the two-fold ambiguity in their mappings. Comput-
ing the mean on these two clusters will result in a point in between the two clusters
which does not correspond to the ground truth. This experiment clearly illustrates our
theoretical findings of Sec.[3.21
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Max. subset Tra. dir. Rot.

Cov-RANSAC 14 0.39°  0.13°

| LO-RANSAC  all inliers 0.27°  0.08°

Our mean-shift 5 1.21° 043°

- PSS SM mean-shift 5 1.47°  0.77°

(2) (b) (©) (d) Our topl0-mean 5 0.26° 0.07°
SM topl0-mean 5 24.9° 284°

Fig.3. Example image pairs from the Table 1. Absolute error averaged over 10
benchmark images provided by 28] runs on 44 benchmark images of 28]

The experimental evaluation in 5, 7] did not reveal this because the statistical algo-
rithm used in [E ﬁ] is mean-shift. In Figl2(b,e) we therefore show the result obtained
when using mean-shift. When using the mappings in [5, [7] accuracy converges but
results are still factors less accurate than when using our mappings. This is because
mean-shift with the mappings in [B, ﬁ] converges to the mode of the most dominant of
two clusters and ignores the other cluster. It will therefore not use all available statisti-
cal information, though it will produce a result. Also note that its error on two essential
matrices is larger than that of a single essential matrix. This is because for two essential
matrices, there can be no dominant cluster. Our mappings do not exhibit this behavior.

In Fig[Dlc.f) we show the result of our method when using a linear estimator (5-point
algorithm) to generate the essential matrices. Again we see that the mean converges to
satisfactory accuracy. Its rotational estimate even becomes more accurate than that of
the normalized 8-point algorithm on all image points. Resolving the four-fold ambiguity
is taken care of within our ML estimator, but for the 5-point algorithm we have to
do it explicitly before applying our Riemannian mappings. We do this efficiently by
immediately rejecting a configuration as soon as one point from the minimal subset is
behind a camera. We found that there is practically no difference in the computation
time between this approach and the iterative approach of 15,71

4.2 Robust Pose Clustering and RANSAC

We now show the practical relevance of our theoretical work by comparing against dom-
inant state-of-the-art robust estimators, i.e. Cov-RANSAC and LO—RANSAC[IE].
We evaluate on 44 benchmark images of [@], see Fig. Bl which are accompanied by
ground-truth pose information. All approaches use ML estimators for improved accu-
racy and extensive parameters sweeps are performed to assure that their accuracy is not
limited by sub-optimal parameter settings.

The satisfactory accuracy of Cov-RANSAC and LO-RANSAC averaged over ten
runs (i.e. 440 image pairs) is depicted in the top two rows of Table [Il Note the favor-
able accuracy of LO-RANSAC as it computes inner ML estimates on all inliers. This
however counterbalances its reduction in the number of iterations which causes this
LO-RANSAC approach to be around 1.5 times slower than regular RANSAC while
our Cov-RANCAC implementation is around 2.5 times faster. The outlier percentage
of the data sets estimated by these methods is 70%. The next two rows in Table [T are
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of mean-shift applied to models obtained from regular RANSAC as in [5,[7]. These er-
rors are factors higher than those of the state-of-the-art RANSAC methods. However, it
can again be observed that when using our Riemannian mappings, improved accuracy
is obtained. While mean-shift clearly has great practical relevance, it is no match for
Cov-RANSAC and LO-RANSAC in this experimental context.

The final two rows in Table[Ilshow the accuracy when computing the intrinsic mean
on the top-10 ranking RANSAC models, which is a RANSAC-manifold hybrid method.
It can be observed that when using our Riemannian mappings this obtains optimal ac-
curacy for both directional and rotational estimates. This is because there are typically
models estimated on points which are on the boundary of being inliers but are not real
outliers either. These models can be identified based on their relative high number of
inliers and computing their intrinsic mean can be as accurate as an ML estimate on the
union of their subsets. This was demonstrated in Fig2la,d,c,f). The hybrid approach has
practically the same computation time as regular RANSAC. When using the mappings
in [3, 7] to compute the mean, no satisfactory accuracy is obtained.

The purpose of this experiment is to illustrate the advantage of using our mappings
in a realistic setting. Their purpose is explicitly not to provide a comparison against all
state-of-the-art RANSAC methods.

5 Conclusions

We have provided correct Riemannian logarithmic and exponential mappings for es-
sential matrices. They allow the generalization of statistical algorithms designed for
Euclidean vector spaces to the manifold of essential matrices. Mapping functions pro-
posed earlier were proven to be incorrect. Using them within statistical calculation leads
to sub-optimal or even erroneous results. Our theoretical findings are shown to be rel-
evant to whoever is interested in developing robust statistical algorithms for essential
matrices.
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