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Abstract. Real-world videos often contain dynamic backgrounds and evolving
people activities, especially for those web videos generated by users in uncon-
strained scenarios. This paper proposes a new visual representation, namely scene
aligned pooling, for the task of event recognition in complex videos. Based on the
observation that a video clip is often composed with shots of different scenes, the
key idea of scene aligned pooling is to decompose any video features into con-
current scene components, and to construct classification models adaptive to dif-
ferent scenes. The experiments on two large scale real-world datasets including
the TRECVID Multimedia Event Detection 2011 and the Human Motion Recog-
nition Databases (HMDB) show that our new visual representation can consis-
tently improve various kinds of visual features such as different low-level color
and texture features, or middle-level histogram of local descriptors such as SIFT,
or space-time interest points, and high level semantic model features, by a signif-
icant margin. For example, we improve the-state-of-the-art accuracy on HMDB
dataset by 20% in terms of accuracy.

1 Introduction

The problem of video event recognition is attracting more and more attention in recent
years. This is largely due to two reasons: On one hand, the popularity of video cam-
eras makes it possible for a consumer to record or compose video clips easily. On the
other hand, the emergence of social media websites including Youtube, Facebook has
aggregated a large amount of online video corpus, which plays a major role in attracting
Web users. For example, Youtube hosts more than 100 million videos and serves 1 bil-
lion video requests per day. Such a large amount of video data has never been available
until today. How to understand the contents of these videos has become an important
challenge for computer vision research.

The problem of video event recognition is the key to many applications, including
personalized video recommendation, social event mining, and large scale video library
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Fig. 1. Complex videos are usually composed of different scenes. (a) Key frames in a video of
wedding ceremony (b) Key frames in a video of parkour activities.

indexing. The definition of “event” generalizes previous studies of simple human ac-
tions in a constrained environment [1] [2], or highly distinguishable professional ac-
tivities in Olympic game or TV channels [3] [4]. In this paper, an event can be either
a complicated human activity (e.g., kiss, parade, making a sandwich), or composite
multimedia semantics (e.g., birthday party, wedding ceremony). Compared with simple
human actions, the events in these complex videos are more attractive, since Web users
enjoy those videos with rich semantics but feel bored about simple ones. A real world
video often contains heterogeneous backgrounds and different viewpoints, and cap-
tures diversified contents or evolving human activities. Fig. 1 illustrates some exemplar
videos of complex event (e.g., wedding ceremony and parkour), which are obviously
more complicated than simple actions like running or walking.

To study the problem of event recognition in complex videos, we observe that a
video clip is composed with shots of different scenes. In this paper we refer “scene” to
fine-grained characteristics of video environmental semantics. Both psychological and
biological evidences [5] [6] revealed that human vision can easily distinguish different
scenes and the results of scene recognition can further help general image understand-
ing. Motivated by these psychological theories, we believe scene information is a good
cue to understand complex video events.

The key idea of our method is to use scene information to guide the pooling operation
of video features. Traditional pooling is an operation of averaging the feature vectors
within a spatial neighborhood of images [7]. In this paper, we aggregate video features
into concurrent scene components, and then develop scene-dependent modules for the
classification task. Since our new model is designed to capture the visual information
in concurrent scenes, we name this new model as Scene Aligned Pooling (SAP). The
advantages of our scene aligned pooling are four-folds: (1) This new visual represen-
tation naturally captures diverse video contents and dynamic semantics based on scene
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structure. (2) SAP can be applied to various visual features and improve their perfor-
mance. (3) SAP represents videos as feature vectors of fixed dimensions, and the model
is free from the concerns of video length or assumptions on temporal evolvement. (4)
We employ a soft weighting strategy named concurrent vector quantization for pooling
different scene components, which is not only robust to noise but also able to handle
the scenario with overlapped scenes.

2 Related Works

A real world video always conveys rich information, and it is a challenging task to cap-
ture such rich information for video event analysis. Existing studies [1] [2] [8] [3] con-
sider human actions in specified scenarios or well-controlled environment. However,
there have been not enough studies on recognizing unconstrained video or user gen-
erated video from online websites. Compared with traditional human action datasets,
these real world videos are more difficult to handle since they contain longer video
sequences and diversified scenes. Moreover, when those real world videos contain non-
static cluttered background, the popularly used motion-dependent features [9] [10] will
not work well since there are a lot of false detections due to the background motion.

Since video event classification is still in its early stage, it is desirable to learn from
successful image classification techniques. As argued in [11], a lot of recent progresses
in image recognition can be viewed as a combination of alternating series of coding
and spatial pooling steps. Average pooling [7] tries to average feature vectors within a
spatial neighborhood. Bag-of-words model can be viewed as a special case of average
pooling. Max pooling is found to be useful for sparse coding features [12]. Jégou et
al.developed a new image descriptor called VLAD by pooling local descriptors [13].
Lazebnik et al.proposed spatial pyramid matching (SPM) kernel [14], which can be
viewed as a pooling method based on the spatial layout of images. This idea is recently
generalized in [15], which enlarges the spatial bins with feature space clustering. The
difference between this paper and previous image pooling methods is three-fold: (1)
[15] uses either hard VQ or sparse coding, which usually requires a large size of code-
book. This submission chooses only codebook size =16, using the weights of harmonic
average. (2) [15] only pools the coding weights or quantized indices, while we pool the
feature vectors. (3) [15] uses either max pooling or average pooling, while we compute
the weighted average.

Our work is also motivated by the studies in scene recognition. A number of studies
[16] [17] [14] have been carried out to classify natural scenes. Later studies explore vari-
ous applications of scene recognition. Russell et al.[18] employed scene representation
for object retrieval. Many research studies show empirical success in learning image
representation within similar scenes [19] [18]. Li and Fei-Fei [20] and later Marszalek
et al.[21] combine scene classifiers to benefit the task of object recognition or activ-
ity recognition. However, these approaches treat scene classifiers as an independent
component, and require a lot of scene labels to train the scene classifiers. Unlike their
method, this paper employs scenes as the pooling context, and only use scene features
without the requirement of scene labels.
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3 Scene Aligned Pooling

3.1 Model

A video is comprised of a sequence of frames. Following the extensive research in
image recognition, we can represent frames with various feature vectors, including color
histogram, LBP, texture, or SIFT histogram. Consider a video X = [x1, · · · , xTx],
where 1 ≤ t ≤ Tx stands for the index of frames or key frames, xt corresponds to a
feature vector. Note that the number of frames is not consistent across different videos.

According to the representer theorem [22], the classifier will be represented by kernel
distances K(X,Y ) between two videos X and Y . Since X and Y may contain different
number of frames, traditional methods usually compute the kernel by averaging the
frame features

K(X,Y ) = κ(
1

ρx

Tx∑

t=1

xt,
1

ρy

Ty∑

t=1

yt), (1)

where κ is a kernel function between two vectors, xt and yt are the frame level feature
vectors, ρx and ρy are the normalization factors. For example, we can choose ρx =

||∑Tx
t=1 xt||.

Eq (1) is widely used with different features. In recently years, many systems use bag
of words model for video recognition, which fundamentally is to average the histogram
features across different frames. The limitation of eq (1) is that it overlooks the diversity
of video contents. The learned classification model treats all the frames using the same
mechanism. If a video event contains non-uniformed backgrounds, averaging the frame
features will inevitably blur the discriminant features and hence reduce the recognition
performance.

In this paper, we consider the scenario where a video contains K scenes. Let st be
the random variable for scene type of frame t, where 1 ≤ st ≤ K . Note pk(xt) =
P (st = k|xt) satisfies the constraint

∑
k p

k(xt) = 1. With pk(xt) we can redefine the
kernel distance between two videos

K(X,Y ) =

K∑

k=1

κ(
1

ρkx

Tx∑

t=1

pk(xt)xt,
1

ρky

Ty∑

t=1

pk(yt)yt). (2)

To make the representation clearer, we introduce a new variable named scene compo-
nent which combines the outputs of all video frames by

sk =

Tx∑

t=1

pk(xt)xt, rk =

Ty∑

t=1

pk(yt)yt. (3)

The kernel becomes

K(X,Y ) =

K∑

k=1

κ(
1

||sk||s
k,

1

||rk||r
k). (4)

This new representation aligned videos of different length by K types of scenes, and we
call this method Scene Aligned Pooling (SAP). It is easy to see that the average pooling
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Fig. 2. An practical viewpoint for SAP model

is a special case of SAP with K = 1. The motivation of SAP is to employ multiple
scenes to represent the diversified video contents.

It is interesting to compare our formulation with Lazebnik et al.’s Spatial Pyramid
Matching (SPM) [14]. In summary, SAP composes kernels over the domain of semantic
scenes, while Lazebnik’s SPM builds kernels over spatial grids. However, there are
significant differences between SPM and SAP. SAP works in a semantic scene domain
with no clear boundaries. SPM works in spatial domain where we can use grids to
explicitly separate one image into several parts. As a result, we do not explore the
pyramid structures in SAP due to the ambiguous boundaries in video domain. Instead,
we choose concurrent vectorization to perform soft weighted assignment, while SPM is
based on hard assignments. Table 1 summarizes the differences between SAP and SPM.

Table 1. Comparing SAP with Spatial Pyramid Matching

Subject Domain Grid Assignment
SAP video scene × soft

SPM[14] image spatial � hard

To provide more insights for the SAP model, we consider the linear classifier corre-
sponding to (4). The linear classifier can be represented as

H(X) =

Tx∑

t=1

K∑

k=1

pk(xt)w
T
k xt =

K∑

k=1

wT
k s

k (5)

It is easy to see that SAP leads to different models for different scene components and
combine the estimations from multiple scenes into the final model. Fig. 2 illustrates the
idea for SAP classifier.
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The biggest advantage of scene component representation is that it makes the training
easier. We can first concatenate all the K scene components as a long vector,

S = [s1, s2, · · · , sK ]

and learn a linear function H(S) = wTS + b. In practice, we enforce l2normalization
before training by S = [ 1

||s1||2 s
1, 1

||s2||2 s
2, · · · , 1

||sK ||2 s
K ]. In this way, we obtain the

long linear coefficients as a whole. Due to the recent advances in linear model training
[23], it has become pretty efficient to learn linear SVMs from high dimensional large
scale data, so that training using scene component will not be difficult.

3.2 Implementation

To implement the computation of scene component sk =
∑T

t=1 p
k(xt)xt, in fact what

we need to do is to map each frame feature xt into different scenes

xt → [p1txt, p
2
txt, · · · , pKt xt], (6)

with the constraint
∑

k p
k
t = 1. From eqs (3) and (6) we can easily see that our new

model is a pooling method. The unique characteristic of our method is that our pooling
weights pkt are based on scene semantics. That is why we call our method “scene aligned
pooling”. We will explain how to compute pkt in the following.

Our method of modeling pkt is very easy to implement. Following the previous stud-
ies [16] [18] [24], we use GIST features to represent the scene. Some may argue that we
might use the same feature as frame feature vector x to compute the scene, however, as
we shown later, the pooling weights are computed based on Euclidean distance, which
is not reliable for sparse histogram features like SIFT. As our scene modeling feature,
GIST is easy to compute and especially good at describing scenes [16]. Given all the
training data, we compute the GIST features and cluster them into K centers using un-
supervised K-means. The K center is represented as g1c , g

2
c , · · · , gKc . To compute the

pooling weight pk(xt), we extract the GIST feature vector gt for every frame t. The
pooling weight is based on the comparison of {gkc } and gt.

The naive way to compute the pooling weight is by vector quantization (VQ), which
forces all but one pk(xt) to be zero. However, VQ is well-known to be sensitive to
noises. Moreover, the hard assignment of VQ cannot capture the overlapping nature
of evolving video scenes and hence works poorly. VQ is designed to minimize the
quantization error. SupposeG is the set of GIST features, this paper considers a different
criteria by

C =
∑

g∈G

HA(g) =
∑

g∈G

(
1

K

K∑

k=1

1

||g − gkc ||

)−1

,

where HA denotes the harmonic average proposed by Zhang et al.[25]. To study the
minimization condition, we let ∂

∂mk
C2 = 0, which leads to

gkc =
∑

g∈G

wk
gg, w.t. wk

g ∝ 1

||g − gkc ||3
.
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Fig. 3. Differences between concurrent VQ and VQ. Left: an exemplar of d1t , ·, dKt (K = 6 in this
toy example). Right: the weights from vector quantization and concurrent vector quantization.

To be consistent to the contribution of gt for harmonic average, we choose our pooling
weights as

dtk = ||gt − gkc ||

pkt =
1/(dkt )

3

∑K
l=1 1/(d

l
t)

3
, (7)

It is not difficult to see that our pooling weights satisfy the constraint
∑

k p
k
t = 1.

Also our pooling weights relies on only GIST feature, with no relations with the event
label y. This means we will use the same pooling strategy independent with events.
We call the method in eq. (7) as concurrent VQ. Compared with traditional VQ, our
new pooling method penalizes the impact of large outliers, and assigns more weights
to the center with small distance. Fig. 3 employs a toy example to show the difference
between eq. (7) and traditional VQ. In this toy example, the sample is close to three
centers (k = 2, 5, 6), which can be viewed as a picture with three overlapping scenes.
Vector quantization will only pick up k = 5, while forcing all the weights to the other
centers as zero. In contrast, our new method selects all these three centers with big
weights, and hence can handle the scenario of overlapping scenes easily. Moreover, the
computation of eq (7) shows that the pooling weights in our method are based on the
Euclidian distance dkt . For a lot of sparse histogram feature (such as SIFT histogram),
their Euclidean distance is not reliable so that they are not as good choices as GIST.

In this paper, we choose an unsupervised way to model scenes. The reasons why
unsupervised learning is preferred are as follows: First, unsupervised learning can save
the extra labeling efforts. In our model, the goal is not to recognize the exact scene
category but to do pooling according to scene context, so supervised learning is not
necessary. Moreover, we will explain later that some video frames are associated with
overlapping scenes.

In this paper, we use two kinds of κ as kernel function: linear kernel and intersection
kernel. When we use linear kernel, we employ liblinear [26] with its default parameter.
When we use intersection kernel, we use nonlinear SVM because there is no extra
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parameter to compute intersection kernel, and the intersection kernel can be computed
very efficiently.

One advantage of our scene aligned pooling method is that it can be combined with
various features. For example, many low level features have been designed in the image
recognition research to represent a single image. To combine these features with scene
aligned pooling, we can first identify the scene for each frame, and then aggregate
the frame-level representations according to these scenes. For space-time interest point
features [10], we can still use scene aligned pooling by aggregating the histogram for
short term clips. We can also generalize this approach to multi-modal features, if both
visual and audio features are synchronized.

Next we briefly discuss how to select K , the number of scenes. There is no general
agreement on how many scenes exist, considering the ambiguity and great complexity
contained in real world. Fei-Fei and Perona [17] employed 13 scenes in their exper-
iment, which is later enlarged to 15 scenes by Lazebnik et al.[14]. The largest scene
collection is recently contributed by Xiao et al.[24], which reported a recognition aver-
age precision of 34.5% for total 397 scene categories. [24] also conducts an interesting
user study, by inviting 7 participants to write down all scene categories they experienced
in more than two hundred hours. In this experiments, the participants report 52 different
scene categories. In our experiments, we test the performances with different K . Fig. 4
compares results of pooling color histogram features on TRECVID 2011 dataset. We
will explain the dataset later in the experiment section. We can see that the performance
is similar with K = 16, 64, 128. In following section, we will use K = 16 for all the
experiments, for efficiency.

Fig. 4. Comparing the effects of different scene numbers on TRECVID 2011 Dryrun dataset

Algorithm 1 summarizes the workflow of our SAP algorithm.

4 Experiments

In recent years, there has been a proliferation of Web-shared videos, with approxi-
mately 48 hours of video uploaded on Youtube every minute, and over 700 billion
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Algorithm 1. Scene Aligned Pooling Algorithm
Input: : A video with the set of frame feature vectors {xt}, 1 ≤ t ≤ T . A codebook with K

centers of GIST feature gkc , 1 ≤ k ≤ K.
Extract GIST descriptor gt for every frame t.
Compute the pooling weight pk(xt) using eq. (7).
Compute scene component sk using eq. (3).
Normalize sk and concatenate them into a long vector S.
Train linear SVM or intersection-kernel SVM using S.

videos watched in 2010. In our experiments, we select datasets most similar to real
world online videos: TRECVID Multimedia Event Detection (MED) 2011 corpus
(http://www.nist.gov/itl/iad/mig/med11.cfm) and the Brown Human Motion Recogni-
tion Database(http://serre-lab.clps.brown.edu/resources/HMDB/) (HMDB).

4.1 TRECVID MED Datasets

Trecvid MED 2011 is the largest fully annotated dataset specifically designed to model
complex video events. There are about 370 hours of clips in the Event-Kit and Trans-
parent Development (DEV-T) collections, and another 1,200 hours of video clips in
the Opaque Development (DEV-O) collection. All these videos are free of editing, ac-
companied with non-professional recording and variety of illumination, camera motion,
and cluttered background. The video duration is similar to the real Youtube video, and
the average duration is about 2 to 3 minutes. The evaluation of MED is separated in
two test sets: the mid size dryrun evaluation and the large final evaluation set. In the
dryrun evaluation, 5 events are considered: attempting a board trick, feeding an animal,
landing a fish, wedding ceremony, working on a woodworking project, for which labels
are provided for both the training and testing sets. The final evaluation stage, on the
other hand, considers 10 new events: birthday party, changing a vehicle tire, flash mob
gathering, getting a vehicle unstuck, grooming an animal, making a sandwich, parade,
parkour, repairing an appliance, and working on a sewing project. Each event is a com-
bination of one or multiple people, scenes and actions. In the following we will discuss
the performance of SAP for various features in both dryrun and final evaluation stage.

In this paper, we employ average precision (AP) measure to evaluate the performance
on MED datasets. The reason why we choose average precision is because it is a pop-
ular measure in computer vision field and more importantly it is easier to compare the
performance of video retrieval using average precision. Suppose the scores are ranked
in descending order, the AP of the ranked list is computed by AP =

∑n
i=1 p(i)�r(i),,

where p(i) is the precision at i-th position in the ranked list, and r(i) is the recall at i-th
position. �r(i) is the change in recall from item i− 1 and i.

Since the dryrun evaluation is of a relatively small scale, we will try the effectiveness
of SAP for different features. We tried the following features: edge histogram (edge-
hist), color histogram (colorhist), SIFT histogram (SIFT). The details of implementing
these features are described in [27]. We compare three pooling methods: max pooling,
average pooling, and our SAP. From Table 2 we can see that max pooling works poorly
in video recognition. The average pooling works much better than max pooling for
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video recognition. In the following, we will use average pooling as the default baseline,
since it is the standard technique in the field. In our experiments, SAP works consis-
tently best among all the pooling methods for all the features. The improvement over
mean AP can be as significantly as (0.92 − 0.39)/0.39 = 135% for edge histogram,
131% for color histogram, 10% for local binary pattern (LBP), 18% for SIFT features.

Table 2. Comparison of different pooling methods on MED dryrun

Feature Pooling Average Precision
E1 E2 E3 E4 E5 Mean

edgehist Max .027 .024 .051 .024 .016 .029
Ave .045 .015 .079 .020 .036 .039
SAP .195 .028 .136 .057 .048 .092

colorhist Max .023 .024 .036 .078 .028 .038
Ave .105 .027 .062 .039 .024 .051
SAP .259 .030 .129 .128 .042 .118

LBP Max .022 .018 .038 .021 .020 .024
Ave .057 .030 .045 .033 .019 .037
SAP .067 .028 .046 .041 .020 .041

SIFT Max .042 .013 .191 .013 .019 .056
Ave .155 .039 .261 .311 .152 .184
SAP .166 .044 .252 .432 .190 .217

We also did a few comparison with other pooling techniques. the effects of our con-
current vector quantization and its degenerated case (hard scene assignment). As shown
in Table 3, our soft scene assignment strategy is much better than the hard assignment.
The only exception is in event 2 (feed an animal), for which neither VQ nor our method
does a good job due to the high irregularity and diversity in animal appearance and
feeding activities. We also try to use SIFT histogram to compute pk(xt), however, the
pooling results are very poor since the Euclidian distance of sparse histogram features
are not reliable. Another experiment we consider is whether directly combining scene
feature and SIFT can improve the result. We extract both GIST and SIFT features for
each video frame, and use average pooling to train the classifier. As shown in Table 4,
GIST feature is not a good representation for event recognition, so that it bears very low
recognition performance. Since GIST feature performs much worse than SIFT, it makes
the naive fusion result worse than that of using SIFT only. However, our SAP does not
fuse the two features directly but to use scene information as a context to guide the
pooling process. As a result, SAP is a much better choice than the naive fusion strategy.

After we finish the dryrun evaluation, we also apply the proposed method on the final
evaluation dataset. Since TRECVID has not publicly released the labels for the DEV-O
set, we use an internal test set split. The internal test consists of 40 positive video clips
per event (400 videos in total) and 5,231 negative videos. The remaining 7,252 videos
are used for training. From the dryrun dataset we know that SIFT outperforms many
other low-level features so we are especially interested in the performance of average
pooling and scene aligned pooling using SIFT feature. As shown in Fig. 5, SAP can
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Table 3. Comparing average precision of concurrent vector quantization with vector quantization
(soft vs. hard scene assignment) using SIFT feature

E1 E2 E3 E4 E5 Mean
Our Scene aligned pooling .166 .044 .252 .432 .190 .217
Pooling using VQ on GIST .159 .055 .221, .263 .071 .154

Pooling using VQ on SIFT histogram .089 .033 0.091 .084 .051 .077

Table 4. Comparison with naive fusion of scene feature with SIFT

Feature Average Precision
E1 E2 E3 E4 E5

GIST .074 .017 .030 .033 .018
SIFT .155 .039 .261 .311 .152

GIST + SIFT .150 .040 .211 .256 .143
SAP + SIFT .166 .044 .252 .432 .190

significantly improve the average precision in all the ten events. By using SAP, the
mean of ap scores can be improved from 0.183 to 0.212.

Fig. 5. Results of nonlinear SVM using SAP

Finally, we consider a special feature called semantic model vectors. Our semantic
model vector is an intermediate level semantic representation, by evaluating 780 con-
cept classifiers for each frames. The 780 classifiers are trained separately using thou-
sands of labeled web photos. The semantic model vector is complementary to low level
features and can be useful in many retrieval and annotation tasks [28] [29]. Our SAP
can also significantly improve the semantic model vector. As shown in Fig. 6, SAP
improves the performance in 9 of 10 events.

After obtaining the results using different features, we can do a late fusion to get
the final classification model. This paper does not focus on fusion techniques but our
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Fig. 6. Results of using SAP for semantic features

simple fusion model can arrive at 0.50 average precision in the dryrun evaluation and
0.45 in the final evaluation (internal test data split).

4.2 HMDB dataset

Very recently, Kuehne et al.[30] describe an effort of designing a large video database
containing 51 distinct action categories, named the Human Motion DataBase (HMDB),
which tries to better capture the richness and complexity of human actions. They argued
that the UCF Sports dataset [3] is designed for specific titles on YouTube, in which
the actions are usually unambiguous and highly distinguishable from shape cues alone
(e.g., the raw positions of the joints or the silhouette extracted from single frames).
They collected a new motion dataset, which contains 51 distinct action categories, with
at least 101 clips for each category. The final dataset includes a total of 6,766 video
clips extracted from a wide range of sources. Each clip was validated by at least two
human observers to ensure consistency. Kuehne et al.[30] also studied the biological
motion perception and recognition technique [31] based on this new dataset.

The HMDB dataset is very challenging. From the reports in [30], the the state-of-the-
art’s performance is about 23%. It is very interesting to apply our SAP model to this
challenging dataset. We use STIP features [10] provided in the dataset webpage, and ex-
tract scene features for video frames at every 0.5 seconds. Since the STIP features are
only sparsely distributed among video frames, to improve performance we condense the
STIP features from nearby half-second video frames when computing on specific target
keyframe. The STIP histogram are aggregated together for every 0.5-second clips, and
then pooled using SAP model. We compare the performance of SAP with those of STIP
histogram, and Kuehne’s biological motion system C2. Table 5 compares the recogni-
tion accuracy of our SAP with STIP histogram and C2 models. Our model significantly
improve the best performance from 23.18% to 27.84%, as a relative 20% increase of
accuracy.
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Table 5. Comparison with the results on HMDB

Model Accuracy
STIP histogram 21.96%

C2 23.18%
SAP + STIP 27.84%

5 Conclusion and Future Work

In this paper, we have discussed a new pooling method named scene aligned pooling
(SAP). We show that SAP can consistently improve different features (color histogram,
SIFT, semantic model vectors) for complex video classification. SAP also significantly
improves the state-of-the-art performance on HMDB datasets.

Our future work will focus on generalizing the classification model to more video
recognition and annotation tasks. More results will be available on
http://researcher.ibm.com/person/us-liangliang.cao.
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