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Abstract. Describing clothing appearance with semantic attributes is an appeal-
ing technique for many important applications. In this paper, we propose a fully
automated system that is capable of generating a list of nameable attributes for
clothes on human body in unconstrained images. We extract low-level features
in a pose-adaptive manner, and combine complementary features for learning at-
tribute classifiers. Mutual dependencies between the attributes are then explored
by a Conditional Random Field to further improve the predictions from inde-
pendent classifiers. We validate the performance of our system on a challenging
clothing attribute dataset, and introduce a novel application of dressing style anal-
ysis that utilizes the semantic attributes produced by our system.

1 Introduction

Over recent years, computer vision algorithms that describe objects on the semantic
level have attracted research interest. Compared to conventional vision tasks such as ob-
ject matching and categorization, learning meaningful attributes offers a more detailed
description about the objects. One example is the FaceTracer search engine [1], which
allows the user to perform face queries with a variety of descriptive facial attributes.

In this paper, we are interested in learning the visual attributes for clothing items.
As shown in Fig[l] a set of attributes is generated to describe the visual appearance
of clothing on the human body. This technique has a great impact on many emerging
applications, such as customer profile analysis for shopping recommendations. With a
collection of personal or event photos, it is possible to infer the dressing style of the per-
son or the event by analyzing the attributes of clothes, and subsequently make shopping
recommendations. The application of dressing style analysis is shown in Fig[0l

Another important application is context-aware person identification, where many
researchers have demonstrated superior performance by incorporating clothing infor-
mation as a contextual cue that complements facial features [2-4]. Indeed, within a
certain time frame (i.e., at a given event), people are unlikely to change their clothing.
By accurately describing the clothing, person identification accuracy can be improved
over conventional techniques that only rely on faces. In our study, we also found that
clothing carry significant information to infer the gender of the wearer. This observa-
tion is consistent with the prior work of [J5, 6], which exploits human body information
to predict gender. Consequently, a better gender classification system can be developed
by combining clothing information with traditional face-based gender recognition al-
gorithms.
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Fig. 1. With the estimated human pose, our attribute learning algorithm generates semantic at-
tributes for the clothing

We present a fully automatic system that learns semantic attributes for clothing on
the human upper body. We take advantage of the recent advances in human pose estima-
tion [[7], by adaptively extracting image features from different human body parts. Due
to the diversity of the clothing attributes that we wish to learn, a single type of feature is
unlikely to perform well on all attributes. Consequently, for each attribute, the predic-
tion is obtained by aggregating the classification results from several complementary
features. Last, but not the least, since the clothing attributes are naturally correlated,
we also explore the mutual dependencies between the attributes. Essentially, these mu-
tual dependencies between various clothing attributes capture the Rules of Style. For
example, neckties are rarely worn with T-shirts. To model the style rules, a conditional
random field (CRF) is employed on top of the classification predictions from individ-
ual attribute classifiers, and the final list of attributes will be produced as the inference
result of the CRF.

To evaluate the descriptive ability of our system, we have created a dataset with an-
notated images that contain clothed people in unconstrained settings. Learning clothing
attributes in unconstrained settings can be extremely difficult due to the wide variety of
clothing appearances, such as geometric and photometric distortions, partial occlusions,
and different lighting conditions. Even under such challenging conditions, our system
demonstrates very good performance. Our major contributions are as follows: 1) We
introduce a novel clothing feature extraction method that is adaptive to human pose;
2) We exploit the natural rules of fashion by learning the mutual relationship between
different clothing attributes, and show improved performance with this modeling; 3)
We propose a new application that predicts the dressing style of a person or an event by
analyzing a group of photos, and demonstrate gender classification from clothing that
advocate similar findings from other researchers [3, 6].

2 Related Work

The study of clothing appearance has become a popular topic because many tech-
niques in context-aware person identification use clothing as an important contextual
cue. Anguelov et. al. [2] constructed a Markov Random Field to incorporate clothing
and other contexts with face recognition. They extract clothing features by collecting
color and textual information from a rectangular bounding box under the detected face,
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but this approach suffers from losing clothing information by neglecting the shape and
variable pose of the human body. To overcome this problem, Gallagher and Chen [4]
proposed clothing cosegmentation from a set of images and demonstrated improved
performance on person identification. However, clothing is described only by low-level
features for the purpose of object matching, which differs from our work that learns
mid-level semantic attributes for clothes.

Very recently, attribute learning has been widely applied to many computer vision
tasks. In [|8], Ferrari and Zisserman present a probabilistic generative model to learn vi-
sual attributes such as “red”, “stripes” and “dots”. With the challenge of training mod-
els on noisy images returned from Google search, their algorithm has shown very good
performance. Farhadi et. al. [9] learn discriminative attributes and effectively categorize
objects using the compact attribute representation. Similar work has been performed by
Russakovsky and Fei-Fei [[10], by utilizing attributes and exploring transfer learning
for object classification on large-scale datasets. Also, for the task of object classifica-
tion, Parikh and Grauman [|11] build a set of attributes that is both discriminative and
nameable by displaying categorized object images to a human in the loop. In [12],
Kumar et. al. propose attribute and simile classifiers that describe face appearances,
and have demonstrated very competitive results for the application of face verification.
Siddiquie et. al. [[13] explore the co-occurrence of attributes for image ranking and re-
trieval with multi-attribute queries. One of the major challenges of attribute learning is
the lack of training data, since the acquisition of labels can be both labor-intensive and
time-consuming. To overcome this limitation, Berg et. al. [14] proposed mining both
the catalog images and their descriptive text from the Internet and perform language
processing to discover attributes. Another interesting application is to incorporate the
discovered attributes with language models to generate a sentence for an image, in a
similar manner that a human might describe an image [15, [16]. Most work in the at-
tribute learning literatures either assumes a pre-detected bounding box that contains the
object of interest, or uses the image as a whole for feature extraction. Our work is differ-
ent from previous work not simply because we perform attribute learning on clothing,
but also due to the fact that we extract features that are adaptive to unconstrained human
poses. We show that with the prior knowledge of human poses, features can be collected
in a more sensible way to make better attribute predictions.

Recently, Bourdev et. al. [6] proposed a system that describes the appearance of peo-
ple, using 9 binary attributes such as “is male”, “has T-shirt”, and “long hair”. They
used a set of parts from Poselets [[17] for extracting low-level features and perform sub-
sequent attribute learning. In comparison, we propose a system that comprehensively
describes the clothing appearance, with 23 binary attributes and 3 multi-class attributes.
We not only consider high-level attributes such as clothing categories, but also deal
with some very detailed attributes like “collar presence”, “neckline shape”, “striped”,
“spotted” and “graphics”. In addition, we explicitly exploit human poses by selectively
changing sampling positions of our model and experimentally demonstrate the benefits
of modeling pose. Further, [6] applies an additional layer of SVMs to explore the at-
tribute correlations, whereas in our system, the attribute correlations are modeled with a
CRF which benefits from computation efficiency. Besides the system of [[6] that learns
descriptive attributes for people, some limited work has been done to understand the
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clothing appearance on the semantic level. Song et. al. [18] proposed an algorithm that
predicts job occupation via human clothes and contexts, showing emerging applica-
tions by investigating clothing visual appearance. Yang and Yu [19] proposed a cloth-
ing recognition system that identifies clothing categories such as “suit” and “T-shirt”. In
contrast, our work learns a much broader range of attributes like “collar presence” and
“sleeve length”. The work that explores similar attributes to ours is [20]. However, their
system is built for images taken in a well controlled fitting room environment with con-
strained human poses in frontal view, whereas our algorithm works for unconstrained
images with varying poses. In addition, their attributes predictions use hand-designed
features, while we follow a more disciplined learning approach that more easily allows
new attributes to be added to the model.

3 Clothing Attributes and Image Data

By surveying multiple online catalogs, we produced a list of common attributes to de-
scribe clothing. As shown in Table [Il some of these attributes are binary like “collar
presence”, while some are multi-class such as “clothing category”. Although we tried
to include a full set of attributes that comprehensively describes clothing, we dropped a
few attributes like “contains logo” due to very small number of positive examples.

Clothing images and labels are required to train attribute classifiers. We have col-
lected images from Sartorialist[] and Flickr, by applying an upper body detector [21]] to
select pictures with people. Altogether, we harvested 1856 images that contain clothed
people (mostly pedestrians on the streets). Some image samples from our dataset are
shown in Fig[8l We then use Amazon Mechanical Turk (AMT) to collect ground truth
labels. When labeling a piece of clothing on the human body, the AMT workers were
asked to make a choice for each attribute. For instance, the worker may select one an-
swer from “1) no sleeve; 2) short sleeve; 3) long sleeve” for the attribute “sleeve length”.
Note that for the “gender” attribute, in order to avoid the ambiguity of judging whether
this piece of clothing is “men’s” or “women’s”, workers were explicitly told to label the
gender of the wearer. To eliminate noisy labels, every image was labeled by 6 work-
ers. Only labels that have 5 or more agreements are accepted as the ground truth. We
gathered 283,107 labels from the AMT workers, and the ground truth statistics of our
clothing attribute dataset are summarized in Table [Tl

4 Learning Clothing Attributes

The flowchart of our system is illustrated in Figl2l For an input image, human pose
estimation is performed to find the locations of the upper torso and arms. We then
extract 40 features from the torso and arm regions, and subsequently quantize them.
For each attribute, we perform SVM classification using the combined feature computed
from the weighted sum of the 40 features. Each attribute classifier outputs a probability
score that reflects the confidence of the attribute prediction. Next, a CRF is employed
to learn the stylistic relationships between various attributes. By feeding the CRF with
the probability scores from the attribute classifiers, the attribute relations are explored,
which leads to better predictions than independently using the attribute classifiers.

! http://www.thesartorialist.com
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Table 1. Statistics of the clothing attribute dataset. There are 26 attributes in total, including 23
binary-class attributes (6 for pattern, 11 for color and 6 miscellaneous attributes) and 3 multi-class
attributes (sleeve length, neckline shape and clothing category).

Clothing pattern Solid (1052 / 441), Floral (69 / 1649), Spotted (101 /1619)
(Positive / Negative) Plaid (105 / 1635), Striped (140 / 1534), Graphics (110 / 1668)
Red (93 /1651), Yellow (67 / 1677), Green (83 / 1661), Cyan (90 / 1654)

Major color Blue (150 / 1594), Purple (77 / 1667), Brown (168 / 1576), White (466 / 1278)

(Positive / Negative) - 5 (345 /1399), Black (620 / 1124), > 2 Colors (203 / 1541)
Wearing necktie Yes 211, No 1528

Collar presence Yes 895, No 567

Gender Male 762, Female 1032

Wearing scarf Yes 234, No 1432

Skin exposure High 193, Low 1497

Placket presence Yes 1159, No 624

Sleeve length No sleeve (188), Short sleeve (323), Long sleeve (1270)
Neckline shape V-shape (626), Round (465), Others (223)

Shirt (134), Sweater (88), T-shirt (108), Outerwear (220)

Clothing category Suit (232), Tank Top (62), Dress (260)

4.1 Human Pose Estimation

Thanks to the recent progress in human pose estimation [7, 22, 23], the analysis of
complex human poses has been made possible. With the knowledge of the physical
pose of the person, clothing attributes can be learned more effectively, e.g., features
from the arm regions offer a strong clue for sleeve length.

Estimating the full body pose from 2-D images still remains a challenging problem,
partly because the lower body is occasionally occluded or otherwise not visible in some
images. Consequently, we only consider the clothing items on the upper body. We apply
the work in [7] for human pose estimation and briefly review the technique here for the
completeness of the paper. Given an input image, the upper body of the person is firstly
located by using complementary results of an upper body detector [21] and Viola-Jones
face detector [24]. The bounding box of the detected upper body is then enlarged, and
the GrabCut algorithm [25] is used to segment the person from the background. Person-
specific appearance models for different body parts are estimated within the detected
upper body window. Finally, an articulated pose is formed within the segmented person
area, by using the person-specific appearance models and generic appearance models.
The outputs of the pose estimation algorithm are illustrated in FiglIl which include a
stick-man model and the posterior probability map of the six upper body regions (head,
torso, upper arms and lower arms). We threshold the posterior probability map to obtain
binary masks for the torso and arms, while ignoring the head region since it is not related
to clothing attribute learning.

4.2 Feature Extraction

Due to the large number of attributes that we wish to learn, the system is unlikely to
achieve optimal performance with a single type of feature. For example, while texture
descriptors are useful for analyzing the clothing patterns such as “striped” and “dotted”,
they are not suitable for describing clothing colors. Therefore, in our implementation
we use 4 types of base features, including SIFT [26], texture descriptors from the Max-
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Fig. 2. Flowchart of our system. Several types of features are extracted based on the human pose.
These features are combined based on their predictive power to train a classifier for each attribute.
A Conditional Random Field that captures the mutual dependencies between the attributes is
employed to make attribute predictions. The final output of the system is a list of nameable
attributes that describe the clothing appearance.

4:: !

Fig. 3. Extraction of SIFT over the torso region. For better visualization, we display fewer de-
scriptors than the actual number. The left figure shows the location, scale and orientation of the
SIFT descriptors in green circles. The right figure depicts the relative positions between the sam-
pling points (red dots), the torso region (white mask) and the torso stick (green bar).

imum Response Filters [27], color in the LAB space, and skin probabilities from our
skin detector.

As mentioned in Section [T} the features are extracted in a pose-adaptive way. The
sampling location, scale and orientation of the SIFT descriptors depend on the esti-
mated human body parts and the stick-man model. Fig Blillustrates the extraction of the
SIFT descriptors over the person’s torso region. The sampling points are arranged ac-
cording to the torso stick and the boundary of the torso. The configuration of the torso
sampling points is a 2-D array, whose size is given by the number of samples along the
stick direction times the number of samples normal to the stick direction. The scale of
the SIFT descriptor is determined by the size of the torso mask, while the orientation is
simply chosen as the direction of the torso stick. The extraction of SIFT features over
the 4 arm regions is done in a similar way, except that the descriptors are only sampled
along the arm sticks. In our implementation, we sample SIFT descriptors at 64 x 32
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Table 2. Summary of feature extraction

Feature type Region Aggregation
SIFT Torso Average pooling
Texture descriptor Left upper arm  Max pooling
Color Right upper arm

Skin probability ~ Left lower arm
Right lower arm

locations for the torso, and 32 locations along the arm stick for each of the 4 arm seg-
ments. The remaining three of our base features, namely textures descriptors, color and
skin probabilities, are computed for each pixel in the five body regions.

Once the base features are computed, they are quantized by soft K-means with 5
nearest neighbors. As a general design guideline, features with larger dimensionality
should have more quantization centroids. Therefore we allocate 1000 visual words for
SIFT, 256 centroids for texture descriptor, and 128 centroids for color and skin proba-
bility. We employed a Kd-tree for efficient feature quantization. The quantized features
are then aggregated by performing average pooling or max pooling over the torso and
arm regions. Note that the feature aggregation for torso is done by constructing a 4 x 4
spatial pyramid [28] over the torso region and then average or max pooled.

Table [2l summarizes the features that we extract. In total, we have 40 different fea-
tures from 4 feature types, computed over 5 body regions with 2 aggregation methods.

Last, but not the least, we extract one more feature that is specifically designed for
learning clothing color attributes, which we call skin-excluded color feature. Obviously,
the exposed skin color should not be used to describe clothing colors. Therefore we
mask out the skin area (generated by our skin detector) to extract the skin-excluded
color feature. As the arms may contain purely skin pixels when the person is wearing
no-sleeve clothes, it may not be feasible to aggregate skin-excluded color feature for the
arm regions. Hence we perform aggregation over the whole upper body area (torso +
4 arm segments), excluding the skin region. Also, since the maximum color responses
are subject to image noise, only average pooling is adopted. So compared to the set of
40 features described above, we only use 1 feature for learning clothing color.

4.3 Attribute Classification

We utilize Support Vector Machines (SVMs) [29] to learn attributes since they demon-
strate state-of-the-art performance for classification. For clothing color attributes like
“red” and “blue”, we simply use the skin-excluded color feature to train one SVM per
color attribute. For each of the other clothing attributes such as “wear necktie” and
“collar presence”, we have 40 different features and corresponding weak classifiers but
it is uncertain which feature offers the best classification performance for the attribute
that we are currently learning. A naive solution would be to concatenate all features
into a single feature vector and feeding to an SVM for attribute classification. How-
ever, this approach suffers from three major drawbacks: 1) the model is likely to overfit
due to the extremely high dimensional feature vector; 2) due to the high feature di-
mension, classification can be slow; and most importantly, 3) within the concatenated
feature vector, high dimensional features will dominate over low dimensional ones so
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Fig.4. A CRF model with M attribute nodes pairwise connected. F; denotes the feature for
inferring attribute ¢

the classifier performance is similar to the case when only high dimensional features are
used. Indeed, in our experiments we found that the concatenated feature vector offers
negligible improvements over the SVM that uses only the SIFT features.

Another attribute classification approach is to train a set of 40 SVMs, one for each
feature type, and pick the best performing SVM as the attribute classifier. This method
certainly works, but we are interested in achieving a even better performance with all
the available features. Using the fact that SVM is a kernel method, we form a com-
bined kernel from the 40 feature kernels by weighted summation, where the weights
correspond to the classification performance of the features. Intuitively, better feature
kernels are assigned heavier weights than weaker feature kernels. The combined kernel
is then used to train an SVM classifier for the attribute. This method is inspired by the
work in [30], where they demonstrated significant scene classification improvement by
combining features. Our experimental results in Section [3.1] also show the advantage
offered by feature combination.

4.4 Multi-attribute Inference

Due to the functionality and fashion of clothing, it is common to see correlations be-
tween clothing attributes. As an example, in our ground truth dataset there is only 1
instance when the person wears a necktie but does not have a collar. It should be noted
that the dependencies between the attributes are not symmetric, e.g., while having a
necktie strongly suggest collar presence, the presence of a collar does not indicate that
the person should wear a necktie.

We explore the mutual dependencies between attributes by applying a CRF with the
SVM margins from the previous attribute classification stage. Each attribute functions
as anode in the CRF, and the edge connecting every two attribute nodes reflects the joint
probability of these two attributes. We build a fully connected CRF with all attribute
nodes pairwise connected, as shown in Figld]

Let us consider the relation between two attributes, A; and As. F; and F5 are the
features that we use to infer A; and A, respectively. Our goal is to maximize the con-
ditional probability P(A;, As|Fy, F»):

P(Fy, F5|A1, A3)P(Aq, A3)

P(AlaAZ‘Flan) = P(F1 F2) (1)
X P(F],FQ‘Al,AQ)P(Al,AQ) (2)
= P(F1]|A;)P(F2|A2) P(Ay1, Ag) 3)
o P(A1lF1) P(Az‘Fz)P(Al,AQ) @

P(A1)  P(As)
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Fig. 5. Comparison of attribute classification under 3 scenarios

Equation [3 is consistent with our CRF model in Figldl assuming that the observed
feature F; is independent of all other features once the attribute A; is known. From
the ground truth of the training data, we can estimate the joint probability P(A;, Az)
as well as the priors P(A;) and P(As). The conditional probabilities P(A;|F;) and
P(As|F) are given by the SVM probability outputs for A; and A, respectively. We de-
fine the unary potential ¥(4;) = — log (Pg(lj;‘lgi) ) and the edge potential (A;, A;) =
—log(P(A;, Aj)). Following Equation[I] the optimal inference for (A1, A ) is achieved
by minimizing ¥ (A;)+¥(A2)+P(A1, Az), where the first two terms are the unary po-
tentials associated with the nodes, and the last term is the edge potential that describes
the relation between the attributes.

For a fully connected CRF with a set of nodes .S and a set of edges F, the optimal
graph configuration is obtained by minimizing the graph potential, given by:

DU AN+ A DY B(AL4) 5)

Ai€S (Ai,A;)EE

where ) assigns relative weights between the unary potentials and the edge potentials.
It is typically less than 1 because a fully connected CRF normally contains more edges
than nodes. The actual value of A can be optimized by cross validation. In our imple-
mentation, we use belief propagation [31] to minimize the attribute label cost.

5 Experiments

We have performed extensive evaluations of our system on the clothing attribute dataset.
In Section[5.]] we show that our pose-adaptive features offer better classification accu-
racies compared to the features extracted without a human pose model. The results from
section demonstrates that the CRF improves attribute predictions since it explores
relations between the attributes. Finally, we show some potential applications that di-
rectly utilize the output of our system.
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Fig. 6. Multi-class confusion matrices. Predictions are made using the combined feature extracted
with the pose model.

5.1 Attribute Classification

We use the chi-squared kernel for the SVM attribute classifiers since it outperforms
both the linear and the RBF kernels in our experiments. To examine the classification
accuracy, we partition the data such that each attribute has equal number of examples
in all classes. For example, we balance the data of the “wearing necktie” attribute so
that it has the same number of positive and negative examples. We use leave-1-out cross
validation to report the classification accuracy for each attribute.

Fig 3] compares the SVM performances with three types of feature inputs: 1) With
pose model, using the best feature out of our 40 features; 2) With pose model, combining
the 40 features with the method described in Section 3) No pose model, same ex-
periment settings as case 2 but with features extracted within a scaled clothing mask [4]
under the face. Note that the single best feature accuracies for the the color attributes
are not displayed in Fig[3] because color attribute classifiers only use the skin-excluded
color feature, which we regard as the “combined” feature for color attributes.

First of all, we observe that the SVM classifiers with combined features always per-
form better than those using the single best feature. This is because the combined fea-
ture utilizes the complementary information of all extracted features. More importantly,
we are interested to know whether considering human pose helps the classification of
clothing attributes. As can be seen in Figl3l pose-adaptive features offer improved per-
formance for most attributes, except a slight decrease in performance for 4 attributes
in colors and patterns. In particular, for those attributes like “sleeve length” that heav-
ily depend on human poses, we observe a significant boost in performance with pose-
adaptive features, compared to the classifier performance of using features without prior
knowledge of the human pose.

We also show the confusion matrices of the multi-class attributes in Figl6l where
the attributes are predicted using the combined feature extracted with the pose model.
The misclassification patterns of the confusion matrices are plausible. For example, “no
sleeve” is misclassified more often as “short sleeve” than “long sleeve”, and “tank top”
is more often confused with “dress” than with other clothing categories.

5.2 Exploiting Attribute Relations with CRF

We apply a CRF as described in Section[3.2] to perform multi-attribute inference. As
shown in Equation[T] the CRF uses the prior probability of each attribute, and the prior
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Fig. 7. Comparison of G-means before and after the CRF

reflects the proportion of each attribute class in the dataset. Therefore, instead of testing
the classifier performance on the balanced data, we evaluate the classification perfor-
mance on the whole clothing attribute dataset. Since this is an unbalanced classification
problem, classification accuracy is no longer a proper evaluation metric. We use the
Geometric Mean (G-mean), which is a popular evaluation metric for unbalanced data
classification. )

N N

G-mean = H R; (6)

i=1
where R; is the retrieval rate for class ¢, and N is the number of classes.

The G-means before and after applying the CRF are shown in Fig[7] It can be seen
that the CRF offers better predictions for 19 out of 26 attributes, sometimes providing
large margins of improvement. For those attributes that the CRF fails to improve the
performance, only very minor degradations are observed. Overall, better classification
performance is achieved by applying the CRF on top of our attribute classifiers. Fig[8]
shows the attribute predictions of 4 images sampled from our dataset. As can be seen
in Fig[8] the CRF corrects some conflicting attributes that are generated by independent
classifiers. More clothing attribute illustration examples can be found here B.

5.3 Applications

Dressing Style Analysis With a collection of customer photos, our system can be used
to analyze the customer’s dressing style and subsequently make shopping recommen-
dations. For each attribute, the system can tell the percentage of its occurrences in the
group of photos. Intuitively, in order for an attribute class to be regarded as a personal
style, this class has to be observed much more frequently compared to the prior of the
general public. As an example, if a customer wears plaid-patterned clothing three days
a week, then wearing plaid is probably his personal style, because the frequency that he

2 https://sites.google.com/site/eccv20l2clothingattribute/
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No scarf No scarf Wear scarf Wear scarf
Solid pattern Solid pattern Solid pattern Solid pattern
Black Gray & black Brown & black Blue & white
Short sleeve (Long sleeve) Long sleeve No sleeve (long sleeve) Long sleeve
V-shape neckline V-shape neckline V-shape neckline Round neckline
Dress (Suit) Suit Tank top (outerwear) T-shirt (Outerwear)

Fig. 8. For each image, the attribute predictions from independent classifiers are listed. Incorrect
attributes are highlighted in red. We describe the abnormal attributes generated by independent
classifiers for the above images, from left to right: man in dress, suit with high skin exposure,
no sleeves but wearing scarf, T-shirt with placket. By exploring attribute dependencies, the CRF
corrects some wrong attribute predictions. Attributes that are changed by the CRF are shown in
parentheses, and override the independent classifier result to the left.

is observed in plaid is much higher than the general public’s prior of wearing plaid (the
prior of plaid is 6.4% according to our clothing attribute dataset). In our analysis, we
regard an attribute class as a dressing style if it is 20% higher than its prior. Of course,
this threshold can be flexibly adjusted based on specific application requirements.

We perform dressing style analysis on both personal and event photos, as shown in
Figll Firstly, we analyze the dressing style of Steve Jobs, who is well known for wear-
ing his black turtlenecks. Using 35 photos of Jobs from Flickr, our system summarizes
his dressing style as “solid pattern, men’s clothing, black color, long sleeves, round
neckline, outerwear, wear scarf”’. Most of the styles predicted by our system are very
sensible. The wrong inferences of “outerwear” and “wearing scarf” are not particularly
surprising, since Steve Job’s high-collar turtlenecks share visual similarities with out-
erwears and the presence of scarfs. Similarly, our system predicts the dressing style of
Mark Zuckerberg as “gray, brown, T-shirt, outerwear”, which is in agreement with
his actual dressing style.

Apart from personal clothing style analysis, we can also analyze the dressing style for
events. We downloaded 54 western-style wedding photos from Flickr, and consider the
dressing styles for men and women using the “gender” attribute predicted by our sys-
tem. The dressing style for men at wedding is predicted as: “solid pattern, suit, long-
sleeves, V-shape neckline, wearing necktie, wear scarf, has collar, has placket”,
while the dressing style for women is “high skin exposure, no sleeves, dress, other
neckline shapes (i.e. neither v-shape nor round), white, >2 colors, floral pattern”.
Most of these predictions agree well with the dressing style of weddings, except “wear-
ing scarf” for men, and “>2 colors” and “floral pattern” for women. These abnormal
predictions can be understood, by considering the similarity between men’s scarfs and
neckties, as well as the visual confusion for including the wedding flowers in women’s
hands when describing the color and pattern of their dresses. Similar analysis was done
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Personal Dressing Style Event Dressing Styles
Steve Jobs Wedding
Solid pattern 2 Men Women
Men’s [§ Solid pattern High skin exposure
Suit No sleeves

Black

Long sleeves
Round neckline
Outerwear
Wear scarf

Long-sleeves Dress

V-shape neckline | Other neckline shapes
Wear necktie White

4 Wear scarf >2 colors

\ﬂ Has collar Floral pattern

. " Has placket

Basketball
No sleeves
High skin exposure
Other neckline shapes
Tank top

Mark Zuckerberg
Gray / brown
T-shirt / outerwear

Fig. 9. With a set of person or event photos (sample images shown above), our system infers the
dressing style of a person or an event. Most of our predicted dressing styles are quite reasonable.
The wrong predictions are highlighted in red.

to predict the clothing style of the event of basketball. Using 61 NBA photos, the bas-
ketball players’ dressing style is predicted as “no sleeves, high skin exposure, other
neckline shapes, tank top”.

Gender Classification. Although there exist clothes that are unisex style, visual ap-
pearance of clothes often carries significant information about gender. For example,
men are less likely to wear floral-patterned clothes, and women rarely wear a tie. Mo-
tivated by this observation, we are interested in combining the gender prediction from
clothing information, with traditional gender recognition algorithms that use facial fea-
tures. We adopt the publicly available gender-from-face implementation of [32], which
outputs gender probabilities by projecting aligned faces in the Fisherface space. For the
clothing-based gender classification, we use the graph potential in Equation [3] as the
penalty score for assigning gender to a testing instance. The male and female predic-
tion penalties are simply given by the CRF potentials, by assigning male or female to
the “gender” node, while keeping all other nodes unchanged. An RBF-kernel SVM is
trained to give gender predictions that combine both the gender probabilities from faces
and penalties from clothing.

We evaluate the gender classification algorithms on our clothing attribute dataset. As
shown Table[3] the combined gender classification algorithm offers a better performance

Table 3. Performance of gender classification algorithms
G-mean
Face only 0.715
Clothing only ~ 0.810
Face + clothing  0.849
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than that of using each feature alone. Interestingly, clothing-only gender recognition
outperforms face-only gender recognition.

6 Conclusions

We propose a fully automated system that describes the clothing appearance with se-
mantic attributes. Our system demonstrates superior performance on unconstrained im-
ages, by incorporating a human pose model during the feature extraction stage, as well
as by modeling the rules of clothing style by observing co-occurrences of the attributes.
We also show novel applications where our clothing attributes can be directly utilized.
In the future, we expect to observe even more improvements on our system, by employ-
ing the (almost ground truth) human pose estimated by Kinect sensors [23].
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