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Abstract. This paper presents an example-based method to interpret
a 3D shape from a single image depicting that shape. A major difficulty
in applying an example-based approach to shape interpretation is the
combinatorial explosion of shape possibilities that occur at occluding
contours. Our key technical contribution is a new shape patch repre-
sentation and corresponding pairwise compatibility terms that allow for
flexible matching of overlapping patches, avoiding the combinatorial ex-
plosion by allowing patches to explain only the parts of the image they
best fit. We infer the best set of localized shape patches over a graph of
keypoints at multiple scales to produce a discontinuous shape represen-
tation we term a shape collage. To reconstruct a smooth result, we fit a
surface to the collage using the predicted confidence of each shape patch.
We demonstrate the method on shapes depicted in line drawing, diffuse
and glossy shading, and textured styles.

1 Introduction

A long-standing goal of computer vision is to recover 3D shape from a single
image. Early researchers developed techniques for specific domains such as line
drawings of polyhedral objects [1], shape-from-shading for Lambertian objects
[2], and shape-from-texture for simple textured objects [3]. While based on solid
mathematical and physical foundations, these techniques have proven difficult
to generalize beyond limited cases: even the seemingly simple line drawing and
shaded images of Figure 1 confound all existing techniques.

Recently, machine learning methods (e.g., [4, 5]) have been proposed to allow
generalization by learning the relationship between shape and training images.
However, the flexibility and computational resources required for learning-based
vision depend critically on the choice of shape representation. Occlusion bound-
aries, for example, lie between uncorrelated regions and cause a combinatorial
explosion in possibilities if not explicitly included in the representation.

In this paper, we describe a fully data-driven approach that reconstructs an
input shape by piecing together patches from a training set. We make this ap-
proach practical by using a new, irregular, multi-scale representation we term a
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Fig. 1. A line drawing and diffuse rendering of a 3D shape (left) are interpreted
as normal maps by our system (right). Each rendering produces a different plausible
interpretation. Our system uses compatibility between local depth layers to interpret
self-occlusion (blue box) and near-occlusion (red box).

shape collage, coupled with a new patch representation and compatibility mea-
surement between patches that addresses the combinatorial explosion at occlu-
sion boundaries and generalizes patches across scale, rotation, and translation.
Given compatibility between patches, we use belief propagation to produce the
most likely collage and then fit a smooth surface to produce the final shape
interpretation (Figure 1).

We demonstrate our approach on synthetic renderings of blobby shapes in a
range of rendering styles, including line drawings and glossy, textured images.
Interpreting line drawings of curved shapes has been a long-standing unsolved
problem in computer vision [6, 7]. Much progress has been made for drawings
and wire frame representations of 3D shapes with flat facets (e.g., [8]), but
progress on the interpretation of generic line drawings has stalled. Interpretation
of shaded renderings has been addressed more frequently in the computer vision
community, but is still not a solved problem [2].

Our contributions are in the design of the shape patches and the measurement
of compatibility between them, the irregular, multi-scale relationships between
patches, and the selection of a diverse set of shape candidates for each patch.
Besides shape, our representation can also estimate factors such as the visual
style of the input.

1.1 Related Work

The shape-from-a-single-image problem is perhaps the oldest in computer vision,
dating at least to Roberts [1]. Because of the difficulty of the problem, it has
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over time been divided into subproblems such as shape-from-shading (see [2] for
a recent survey), shape-from-line-drawing (e.g., [6–8]), and shape-from-texture
(e.g., [3]). These parametric methods have difficulty capturing many of the cases
that occur in the visual world, while learning-based methods can successfully
capture such visual complexity. Saxena, et al [5], use a learning-based approach
to find a parametric model of a 3D scene and also explicitly treat occlusion
boundaries. While their system can process complex input due to its learned
model, their parametric scene description is tailored for boxy shapes such as
buildings and does not contain features other than shape. By contrast, our rich,
example-based model extends to smooth shapes and can predict visual style as
well as shape.

For line drawing recognition, Saund [9] applied belief propagation in a Markov
Random Field (MRF) to label contours and edges of pre-parsed sketch images,
although without any explicit representation of shape. Ouyang and Davis [10]
combined learned local evidence for symbol sketches with MRF inference for
sketch recogntion, focussing on chemical sketches.

Our work is a spiritual successor to the work of Freeman, et al [11], “learning
low-level vision.” That system uses a network of multi-scale patches and a set
of candidates at each patch to infer the most likely explanation for the stimulus
image. Hassner and Basri [4] also use a patch-based approach to reconstruct
depth, while adding the ability to synthesize new exemplar images on-the-fly.
Unlike both systems, we use an irregular network of patches centered on interest
points in the image, and directly tackle the problem of occlusion boundaries.
Because our training data is synthetic we could also create new exemplars on-
the-fly, but have not explored that option in this work.

Example-based image priors were also used by Fitzgibbon et al [12] in the
context of image interpolation between measurements from multiple cameras.
The benefits of learning from large, synthetically generated datasets were shown
emphatically in the recent work of Shotton et al [13].

2 Overview

Our approach finds interest points in the image, selects candidate interpretations
for each point, then defines a Markov random field tailored to those interests and
performs inference to determine the most likely shape configuration (Figure 2).

Shape is represented by patches that contain the rendered appearance of the
patch, a normal map, a depth map, a map of occluding contours, and an owner-
ship mask that defines for which pixels the patch provides a shape explanation
(Figure 3). Patches are placed and oriented using image keypoints computed
at multiple scales. As described in Section 3, we found that current approaches
for detecting keypoints do not provide a good set of points for stimuli such as
line drawings, and designed our own method based on disk sampling of an in-
terest map. We propose a simple set of multi-scale graph relationships for these
keypoints.

The local appearance at each keypoint determines the selection of candidate
patches (Section 4). There may be thousands of possible matches for the more
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Fig. 2. The major steps of our approach. First, keypoints are extracted at multiple
scales (1), then neighboring keypoints in both image space and scale are connected
(2). Separately, a set of candidate shapes is selected for each keypoint based on local
appearance (3), and the compatibility of each candidate is evaluated against the can-
didates at each connected keypoint (4). Loopy belief propagation is used to find the
most likely candidates, which form a shape collage (5). Finally, a smooth surface is fit
to the collage (6).

Fig. 3. Our shape patch representation. Given a square, oriented training patch (left,
red box) the normal map is extracted and rotated to match the keypoint orientation.
The depth map and occluding contours are also stored along with an ownership mask.

common patches, far more than our inference algorithm can support. It is critical
to choose a diverse-enough subset of candidates, for which we use similarity of
local shape descriptors.

The patch candidates are scored based on similarity of local appearance, nor-
mal and depth layer compatibility with adjacent patches, and prior probability
(Section 5). The most likely shape collage given these scores is found using loopy
belief propagation and a thin-plate spline surface is fit to this shape collage.

3 Keypoints and Graph

The first step of shape interpretation is to extract interest-driven keypoints at
multiple scales and connect them into a graph. Each keypoint will become the
center of a patch. A keypoint has four parameters: image position, scale, and ori-
entation. All four are found by the detection stage and remain fixed throughout
the interpretation process.
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Fig. 4. Keypoint detection at three scales (blur at 16, 32, 64 pixels, image: 3002 pixels).
Left of pair: level of “interest” in the image, computed by the trace of the structure
tensor. Right of pair: original image with keypoints overlaid. Keypoints are placed to
cut out the “most interesting” pixel until a threshold is reached.

Our criteria for a keypoint detector are: coverage, all the “interesting” parts of
the image should be covered by at least one keypoint; sparsity, keypoints should
not be redundant; and repeatability, similar image patches should have a similar
distribution of keypoints.

Standard methods such as Harris corner detection [14] and SIFT [15] are not
directly suitable for our needs. Corner detection, for example, fails the coverage
criterion, since we want keypoints along all linear features in addition to corners.
The SIFT keypoint detector also fails the coverage criterion: some “interesting”
image features do not correspond to maxima of the blob detector in scale space,
and so do not produce a SIFT keypoint.

By contrast, a naive method such as a regular or randomized grid fails the
repeatability criterion. Repeatability is important for two reasons: it reduces the
number of required training examples, and increases the effectiveness of local
appearance matching (Section 5) by aligning image and patch features.

3.1 Detection

Our approach to keypoint detection is to compute an interest map over the
image, then iteratively place keypoints at the highest point of this map that is
not already near another keypoint. Intuitively, this approach uses a cookie-cutter
to greedily stamp out keypoints at the most interesting points in the image.

The interest map I(p) is defined as the sum of the eigenvalues (i.e., the trace)
of the 2x2 structure tensor of the test image. Prior to computing the structure
tensor, the image is blurred to the desired level of scale. For a keypoint of radius
r, the blur is defined as a Gaussian of σ = r/3.

The stamp shape for a keypoint at p is a radially symmetric function of the
distance s from p, with a smooth rolloff:

stampp(s) =

{
I(p) : s < 0.25r

I(p)G(s − 0.25r) : s > 0.25r
(1)

where G is a Gaussian of σ = r/3. The stamp function is subtracted from the
interest map for each keypoint. Detection stops when the maximum remaining
value in the interest map falls below a 1% of the original maximum value.
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The orientation of a keypoint is found using the SIFT orientation detector,
which defines orientation using the histogram of gradients inside the keypoint
radius [15].

This detection method satisfies our three criteria: the iterative procedure en-
sures that the keypoints are comprehensive and cover all interesting areas in the
image. The stamp function ensures that the keypoints are sparse. The keypoint
selection is repeatable since the trace of the structure tensor is rotation and
translation invariant.

3.2 Graph Connections

We treat each keypoint as a vertex in an MRF graph. The edges of the graph are
defined by the positions and scales of the keypoints. The edge weights correspond
to the compatibility between shape patches. To compute compatibility, we need
sufficient overlap between patches. We therefore only connect two keypoints if

‖p1 − p2‖ < (r1 + r2) ∗ 0.8 (2)

where pi are the keypoint positions and ri are the radii.
Additionally, two keypoints are only connected if they are close enough in

scale. In general, large scale patches will fit the test image more coarsely than
small scale patches. The tolerable margin of error for large patches may be wider
than an entire patch at a small scale, making the compatibility score between
very large and very small patches useless. Therefore, we only connect patches
where

| log2 r1 − log2 r2| <= 1 (3)

or in other words, where the radii differ by a power of two or less.

4 Selecting Shape Candidates

We formulate shape interpretation as a discrete labeling problem on the keypoint
graph, where the labels correspond to candidate shape patches.

Ideally, every patch in the training set would be a candidate at every vertex
in our graph. However, it is computationally intractable to include all ∼ 106

training patches at each vertex. We must carefully prune a subset of the training
set for each vertex in our graph. Proper selection of this subset is critical to
successful interpretation because it defines the space of possible shapes that the
MRF inference can explore.

Our approach is as follows. Given a keypoint and its associated test image
patch, we first select the subset of the training patches that are similar in appear-
ance to the test patch. This subset may still include several thousand candidates,
especially for common or ambiguous patches. Out of this large subset of candi-
dates, we choose a constant, small number of patches with diverse shapes. This
approach reduces the number of labels to a manageable number while maintain-
ing a sufficiently wide space of candidate shapes.
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4.1 Matching Appearance

Our appearance matching is based on comparison of standard 128-dimension
SIFT descriptors to provide invariance to scale and rotation. The SIFT descrip-
tor is computed at the scale and orientation of the keypoint. A training descriptor
is said to match the test descriptor if the Euclidean distance between the de-
scriptors is less than a fixed threshold t, where t = 150 in our experiments. Each
descriptor dimension varied from 0− 255.

4.2 Choosing Diverse Shapes

After the appearance matching step, we have a set of candidates that look “close
enough.” We want the most diverse set of shapes that lie in this subset.

When creating the training set, we compute a shape descriptor for each patch
by resampling the normal map to 32x32 pixels, applying PCA to find to dominant
directions of variation in the 322D space, then keeping the principal components
that account for 95% of the variance. This produces descriptors with 20 − 30
components, depending on the training set.

At interpretation time, we pick a diverse subset of k candidates from the “close
enough” set of N candidates. We pick the first candidate uniformly at random
from the set of N . For the nth pick, we choose the candidate with the maximum
minimum distance in descriptor space from the previous n−1 selections. In other
words, we choose the candidate farthest away from the closest previous pick.

4.3 Null Candidates

In some cases the candidate selection process fails to find any shape patches
suitable for a given keypoint. To handle these cases, we include a null or dummy
label at each keypoint that provides no shape explanation but allows the in-
ference to “bail out” if it cannot find an acceptable solution. The penalty for
choosing this label should intuitively be the maximum error we are willing to
tolerate in the interpretation. A negative aspect of allowing null candidates is
that the shape interpretation can become disconnected. To keep the shape in
one piece, we disallow null candidates for the finest scale keypoints.

5 Occlusion-Aware Compatibility Scoring

Once a set of candidates is selected for each keypoint, we compute the likelihoods
of each candidate and the compatibilites between candidates to set up the MRF
inference step. Each candidate is scored by appearance match with the test image
and the shape compatibility with the candidates at each neighboring keypoint.
Shape compatibility scoring is involved because each patch may explain only part
of its assigned area, and the context of the test image can affect the compatibility
of two candidates even when their ownership masks do not overlap.

Consider Figure 5a: in order to avoid a combinatorial explosion in the neces-
sary size of the training set, it must be possible for two separate shape patches
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Fig. 5. Depth layer labeling. Left: test image with challenging areas outlined. Mid-
dle: contours of test image (black) define regions in the overlap area and a graph of
connections between them. Right: the depth map of each candidate shape is used to
assign an ordinal layer to each overlap region. The compatibility of the candidates is
the compatibility of the graph labelings weighted by the size of the overlap regions.
In (a), the two shapes are compatible because the overlap graph allows for a gap; (b),
the two shapes are incompatible because they compete to label both sides of the single
contour; (c), the large scale patch has a single depth layer in the entire patch, but two
layers inside the overlap region; (d), at the T-junction the two labelings are slightly
incompatible, but the incompatible labeling has small weight.

to explain two nearby contours. Simultaneously, two separate patches should not
claim opposite sides of the same contour (Figure 5b). The imperfect alignment
of shape patches to image features makes exact matching of pixels unreliable.
Instead, we propose a scoring mechanism based on the regions of the test image
inside the overlap area (Figure 5, middle and right).

5.1 Overlap Regions and Graph

The regions of the overlap area O between two patches are found by applying
image segmentation to the test image pixels restricted to the overlap area. As
detailed below, our scoring metric is robust to oversegmentation and we only
need a very basic segmentation algorithm. We currently edge detect, binarize,
then flood fill (bwlabel in MATLAB) the overlap area to find regions.

Once we have regions Oi of the overlap area we construct a graph with a
node for each Oi and edges between Oi that abut in the test image (Figure 5,
middle). We say a candidate patch “owns” a node in this graph if more than
50% of the corresponding region’s pixels are covered by the patch’s ownership
mask. Labeling is only compared between nodes that are either owned by both
patches or that border nodes owned by both patches.

Each candidate patch assigns a labeling to Oi by constructing a local depth
layer representation inside the overlap area. The local depth layers are con-
structed as follows: the depth map of the patch is masked by the overlap area
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and divided into regions Ri by the patch’s occluding contours. The depth values
inside each Ri are averaged, then the average values are sorted. The index j of
Rj in the sorted list is the local depth layer. Each Oi takes the mean of the local
depth layer pixels inside its region, rounded to the nearest integer.

5.2 Depth Layer Compatibility

Because the depth layer representation is ordinal, not metric, scoring the com-
patibility of two patches requires a fitting operation performed on the overlap
regions Oi, as follows.

First we select a subset of the overlap regions Oi in which to compute com-
patibility. For depth layers, the important regions are those either owned by a
shape patch or adjacent to an owned region, and other regions in the graph may
be ignored (e.g., Figure 5a). Let OAi be the regions owned by or bordering a
region owned by patch A, and OBi be the same for patch B. Then the subset
of interest is:

Ôi = OAi ∩OBi (4)

Next we define the label sets Âi and B̂i using the layer labels assigned by
the two candidates to Ôi, but compressed so that they have no gaps (i.e., [1 3]
becomes [1 2]).

Finally, we perform a linear fit of Âi against B̂i and vice versa. Define b as the
label set to fit against and a as the other set. Define w as the vector of weights
corresponding to the relative areas of Ôi. Then we solve

[aw,w]x = b (5)

for the two-element parameter vector x in the least-squares sense. The best fit
labels â are found by multiplying through with x. The score of the fitting is then

Sab =

i∑
1..n

|âi − bi|wi (6)

The final compatibility score is the max of the fitting scores in both directions.

5.3 Normal Map Compatibility

Normal map compatibility is defined as the mean L1 distance between the 3D
normals of each patch. Because the ownership masks (areas where normals are
defined) of the two patches will not in general align perfectly, we only compute
the normal map compatibility inside the overlap regions Oi that are directly
owned by both patches. Pixels inside an owned region but outside the ownership
mask receive a value of (0, 0, 0) for purposes of comparison.



674 F. Cole et al.

5.4 Local Appearance Score

Scoring local appearance is straightforward. The basic idea is to define the score
as the average difference in pixel value between the test image and the candidate
patch, for pixels where ownership is nonzero. However, naive masking has the
undesirable effect of benefiting patches with vanishingly small masks, since they
have fewer chances to make errors. We compromise by computing the average
error as usual, but rolling off to a constant “not explained” error if the area of
the ownership mask is too small (< 15% of the patch area).

In addition, the average difference of pixel values is very vulnerable to slight
misalignments in the matching patches, and misalignment of patches is the rule
rather than the exception. To make our metric robust to (slight) misalignment,
we first blur both the test and candidate patches with a Gaussian of σ = r/3,
where r is the radius of the patch. See [16] for details of the rolloff and blur.

5.5 Prior Probability Score

The candidate selection process ensures that a diverse set of shapes are present
at each keypoint. It is important to give greater weight to the more common
shape candidates than the unusual ones to avoid inferring a possible – but very
implausible – shape. Given a set of candidate patches C, we compute the prior
probability of a patch Pi using kernel density estimation on the training set
patches near Pi in shape descriptor space. The density is estimated by filtering
the space of descriptors with an N -dimensional Gaussian with σ = r/9, where r
is the distance between the farthest two patches in C. The density provides an
unnormalized probability pi, which we convert to a likelihood score:

li = −log(
pi∑j

1..|C| pj
) (7)

This prior estimate is simple but considerably improves the quality of results,
especially for ambiguous stimuli such as line drawings.

6 Implementation and Results

Our approach produces an estimate of the surface normal at each point and an
estimate of the rendering style of the test image. We present results on synthetic
data rendered in six styles: line drawings with occluding and suggestive con-
tours [17], diffuse shading with frontal illumination, glossy shading with frontal
illumination, isotropic solid texture with no lighting, texture with diffuse shad-
ing, and texture with glossy shading.

6.1 Training and Test Set

The training data for our approach consists of many synthetic renderings of
abstract blobs. The blobs are constructed by finding isosurfaces of filtered, 3D
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(d)(c)(b)(a)

Fig. 6. Examples of normal map estimation for varying rendering styles. Top: ground
truth normal map. (a,b,c): line drawing, diffuse and glossy shading with solid material,
with interpreted normal map. (d): same as (c) but with texture only, diffuse and glossy
shading with texture. Bottom: normal interpolation from shape boundaries.

white noise. We generate these shapes procedurally so that we can produce an
arbitrary amount of training data. For each shape (and set of random camera
positions), we render a depth map, a normal map, an image containing occlusion
boundaries, and one image for each of the six rendering styles.

The training set itself is constructed by detecting keypoints in each rendered
image (see Section 3) at four scale levels: radius 16, 32, 64, and 128 pixels. The
input images were 300x300 pixels. We use a training set of N = 96 shapes,
k = 20 cameras per shape, and 100-200 keypoints per rendered image, and six
styles for a total of approximately 1.2m patches. The entire training set is <1GB,
a modest size compared to other data-driven vision systems (e.g., [18]).

The test set is 10 shapes with the same blobby characteristics as the training
set shapes. All shapes and renderings are available in [16].

6.2 Shape Interpretation

Given a full set of candidate patches and likelihood scores between them, finding
the most probable shape collage is a straightforward MRF inference task. We
use min-sum loopy belief propagation for this purpose.

To produce a complete surface from the most likely shape collage, we fit a
thin-plate spline to the most likely patches, taking care to allow the spline to split
at occluding contours. An example collage and fit surface is shown in Figure 2.
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To measure and visualize our results, we mask out background pixels using
ground truth. Additional details of our inference and fitting steps may be found
in [16].

6.3 Normal Map Estimation

The principal goal of our method is to estimate a normal map for the stimulus
image. Figure 6 shows example normal maps computed by our system. Table 1
shows the average errors for our test set against ground truth.

For a baseline comparison we propose the following simple method, similar to
that proposed by Tappen [19]: clamp the normals to ground truth values at the
occluding contour, and smoothly interpolate the normals in the interior of the
shape. This method produces smooth blobs (Figure 6, bottom). Note that while
the interpolation method is very simple, it still is given ground truth normals at
shape boundaries, whereas our method is not.

Overall our method produces accurate interpretations of the simuli, with aver-
age angular error between 20◦ and 26◦ for the shaded and textured stimuli, and
32◦ for line drawings (Table 1). In some cases, particularly the line drawings, the
input stimulus is ambiguous, and our system proposes a plausible interpretation
that is different from the original shape (e.g., Figure 6c). We also tested with
training sets containing only patches of the same style as the input and found a
small improvement in accuracy.

The running time for a single stimulus is approximately 20 minutes on a
modern, multicore PC. The implementation is written entirely in MATLAB.

6.4 Style Prediction

The inferred patches can also be used trivially to approximate the stimulus image
and thus make an estimate of the rendering style (Figure 7). We simply take the
original appearance of each training patch and average it with the appearance
of its neighbors. To make an estimate of the stimulus style, we simply find the
style used by the majority of the selected shape patches. In our experiments the
styles are sufficiently distinct that this estimate is very accurate.

Table 1. Average per image RMS error in degrees for normal estimates for each style,
trained with all styles and only with the target style. Boundary interpolation does not
vary between styles. Front-facing error is deflection from a front-facing normal.

line diffuse glossy only tex. tex. + diff. tex. + gloss all

Training set w/ all styles 32 20 26 23 21 23 24
Train. set w/ only target style 30 20 25 23 21 23 24
Boundary interpolation - - - - - - 39
Front-facing - - - - - - 46
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Fig. 7. Reconstructing the stimulus from patch appearance. Reconstructed patches are
usually faithful to the original rendering, though are sometimes confused (boxed). The
set of styles used for reconstruction gives an estimate of the stimulus style.

6.5 Discussion

So far we have experimented with synthetic datasets. The renderings were cho-
sen to span a range of styles that challenge parametric interpretation systems.
Suggestive contours, for example, have been shown to mimic lines drawn by
artists [20], but are often disconnected and noisy. Disconnected lines violate the
major assumption of shape-from-line systems (e.g., [6]) that the line drawing
be a complete, connected graph. The glossy, textured stimuli violate the Lam-
bertian assumptions of even recent work on shape-from-shading (e.g., [21]). Our
system can interpret all six styles with no modification and a single training set.

There are several limitations to the current method that must be overcome
in order to process real-world stimuli. Most importantly, we need a rich train-
ing set of photographs and associated 3D shape. Such data may become more
commonplace as 3D acquisition hardware becomes more robust and easy to use.
Also, realistic computer graphics renderings may provide an accurate enough
approximation of real photographs to provide training data (similar to [22]).

Some aspects of the algorithm itself would also require extension. The appear-
ance matching step (Section 4.1), for example, matches based on the appearance
of the entire patch. This approach works well when the background is empty,
such as our stimuli, but can become confused by noise or distracting elements.
An extended method could match appearance based on the ownership masks
of training set patches. The appearance scoring metric (Section 5.4) would also
need to be adapted to more general stimuli.

7 Conclusion

We have presented an approach to infer a normal map from a single image of a 3D
shape. The treatment of occlusion between patches and the irregular, interest-
driven patch placement that we introduce dramatically reduce the complexity
of example-based shape interpretation, allowing our method to interpret images
with multiple layers of depth and self-occlusion using a moderately sized training
set. Because it is data-driven, our method can interpret ambiguous stimuli such
as sparse line drawings and complex stimuli such as glossy, textured surfaces,
and it uses the same machinery in all cases. To our knowledge, this property is
unique among current vision systems.
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