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Abstract. We focus on the problem of graph matching that is fundamental in
computer vision and machine learning. Many state-of-the-arts frequently for-
mulate it as integer quadratic programming, which incorporates both unary and
second-order terms. This formulation is in general NP-hard thus obtaining an ex-
act solution is computationally intractable. Therefore most algorithms seek the
approximate optimum by relaxing techniques. This paper commences with the
finding of the “circular” character of solution chain obtained by the iterative Gra-
dient Assignment (via Hungarian method) in the discrete domain, and proposes
a method for guiding the solver converging to a fixed point, resulting a conver-
gent algorithm for graph matching in discrete domain. Furthermore, we extend
the algorithms to their counterparts in continuous domain, proving the classical
graduated assignment algorithm will converge to a double-circular solution chain,
and the proposed Soft Constrained Graduated Assignment (SCGA) method will
converge to a fixed (discrete) point, both under wild conditions. Competitive per-
formances are reported in both synthetic and real experiments.

1 Introduction and Problem Formulation

In computer vision and machine learning, many tasks that require finding correspon-
dences between two node sets can be formulated as graph matching such that the rela-
tions between nodes can be preserved as much as possible. Although extensive research
[1] has been done for decades, graph matching is still challenging mainly due to two
reasons: 1) In general, the objective function is non-convex and prone to local optimum;
2) the solution needs to satisfy combinatorial constraints. The graph matching problem
are widely formulated as integer quadratic programming (IQP), by considering both
unary and second-order terms reflecting the local similarities together with the pair-
wise relations. Concretely, given two graphs GL(V L, EL, AL) and GR(V R, ER, AR),
where V denotes nodes, E, edges and A, attributes, there is an affinity matrix defined
as Mia;jb that measures the affinity with the candidate edge pair (vLi , v

L
j ) vs. (vRa , v

R
b ).
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And the diagonal term Mia;ia describes the unary affinity of a node match (vLi , v
R
a ).

By introducing a permutation matrix x ∈ {0, 1}nl×nR whereby xia = 1 if node V L
i

matches node V R
a (and xia = 0 otherwise), it leads to the following formulation:

x∗ = argx max(xT Mx) s.t. Ax = 1 x ∈ {0, 1} (1)

here x is deformed into vectorized version, constraints Ax = 1 refer to the one-to-one
matching from GL to GR such that one feature from one image can be matched to at
most one other feature from the other image. The difficulty depends on the structure of
matrix M, in general it is NP-hard and no polynomial algorithm exists.

2 Algorithm and Theories

We commence with a simple gradient based method - Gradient Assignment (GA): given
a initial value x0, relax the objective from the quadratic assignment xkMxk to a linear
assignment in an iterative fashion: xk+1Mxk, whereby the Hungarian method [8] (de-
noted by Hd in the sequel) is performed to obtain the discrete solution in each iteration:
xk+1= Hd(Mxk). We will show it induces a “circular” solution sequence given that the
returned solution from Hungarian method is unique - as described in Assumption 1:

Assumption 1 (Δmin)

∀i; ∀j, k, j �= k; (pj − pk)
T Mpi �= 0 (2)

pi, pj , pk are vectorized permutation matrix. Δmin equals the smallest difference among
nonzero results of Equ.2: Δmin = minpj ,pk,pi,j �=k |(pj − pk)

T Mpi|
Theorem 1. If Assumption 1 holds, after k finite number of iterations, the gradient
assignment (GA) method will converge to a sequence {pi, pi+1, pi...} or {pi, pi, pi...}.

Proof: For an ascending solution path induced by Hungarian method: pT
i+1Mpi =

pT
i Mpi+1 ≤ pT

i+2Mpi+1 ≤ ... ≤ pT
i+k+1Mpi+k = pT

i+1Mpi: 1) there must exist a k
satisfying pi+k = pi due to that the finite permutation space can be covered by a large
enough k; 2) Assumption 1 ensures equal scores denote identical solutions.

This “circular” property is unwanted due to the relaxation largely deviates the original
objective xT Mx when xk−1 and xk are not close. Thus we are motivated to add a con-
straint term ‖xk − xk−1‖ < δ, in the spirit of encouraging converging to a fixed point.
Using L2 norm, one can obtain the following formulation:

max
xk+1

xTk+1(M + λI)xk − λxT
k+1xk+1 − λxT

k xk (3)

We drop the quadratic terms for three reasons: a) the new quadratic terms increase the
difficulty for optimizing; b) x∗T x∗ = n holds for one-to-one matching as considered in
this paper; c) the resultant quadratic-free formulation will not change the optimal solu-
tion against the original objective since the deviated score associated with the diagonal
λI plays an equal role to all matching candidates:

max
xk+1

xTk+1(M + λ ∗ I)xk (4)
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Using Equ. 4 the Constrained Gradient Assignment (CGA) algorithm is proposed in
Alg. 1. It always measures the current solution via the original affinity matrix M0 (the
updted Mk is only used for the Hungarian method’s input to obtain a new solution) and
select the best along the whole path. Theorem 2 explores its convergence property.

Algorithm 1. Constrained Gradient Assignment (CGA)

Initial: λ = λ∗; k = 0; x0 = [ 1
n2 , ...,

1
n2 ]

T ; x∗ = x∗
−1 = x0; M = M0; score = 0

2: repeat
(xk+1 = Hd(Mxk));

4: if (xT
k+1M0xk+1 >score) then

score = xT
k+1M0xk+1; x∗ = xk+1; x∗

−1 = xk;
6: end if

if (xk+1 == xk) then
8: return: x∗;

else if (xk+1 == xk−1) then
10: xk+1 = x∗; xk = x∗

−1; M = M + λI;
end if

12: k++;
until k exceeds max iteration: return x∗;

Theorem 2. CGA converges to a fixed point provided on Assumption 1(Δmin) holds.

Proof: As stated in Theorem 1, when Assumption 1(Δmin) holds, for a fixed M, the
GA algorithm must converge in the form of pk+1 = pk−1. Meanwhile, M is updated as
M = M + λI. After a finite number of rounds, M would be converted to a symmetric
positive definite matrix (M is symmetric). If CGA converges before this positive definite
matrix, the proof completes, else M can be decomposed into M = MdecM

T
dec. Without

loss of generality, assume the iteration sequence converges to {pi, pi+1, pi...}. Thus we
can reach:

pT
i+1Mpi = Hd(Mpi)

T Mpi ≥ pT
i Mpi (5)

pT
i Mpi+1 = Hd(Mpi+1)

T Mpi+1 ≥ pT
i+1Mpi+1

And by summing up the two above inequations we have:

2〈MT
decpi+1,MT

decpi〉 ≥ 〈MT
decpi+1,MT

decpi+1〉+ 〈MT
decpi,MT

decpi〉 (6)

Equation holds i.f.f. pT
i+1Mpi+1=pT

i+1Mpi=pT
i Mpi, using Assumption 1: pi=pi+1.

CGA is sensitive to initial point and sometimes would trap to an unsatisfied point
shortly. To address this issue, on one hand, by observing the affinity matrix may be
distorted after finishing CGA, in order to extend the solution chain, we can frame an
outer loop whereby the current iteration (CGA)’s output is the input to the next itera-
tion where CGA is also performed. And the outer loop will stop if the solution with
respect to the original objective cannot be improved by the new iteration - we call this
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outer loop CGA algorithm as LCGA. On the other hand, the Hungarian method con-
fined in the discrete domain misses many optimums, which could otherwise have been
explored by a “soft” counterpart in the continuous domain. Thus we leverage the tool of
“softmax” [6] (instead of the Hungarian method) that has been applied in the classical
Graduate Assignment algorithm (GAGM) [2], and extend CGA to its “soft” version:
Soft Constrained Graduate Assignment (SCGA) described in Alg.2. The algorithmic

Algorithm 2. Soften Constrained Gradient Assignment (SCGA)

Initial: β = β0; λ = λ∗; k = 0; x0 = [ 1
n2 , ...,

1
n2 ]

T ; x∗ = x∗
−1 = Hd(Mx0); M = M0;

score = 0; ε = ε0
repeat

xk+1 = SoftMax (Mxk);
4: increase β;

if (Hd(Mxk)
T M0Hd(Mxk) ≥ score) then

score = Hd(Mxk)
T M0Hd(Mxk); x∗ = xk; x∗

−1 = xk−1;
end if

8: if (‖xk+1 − xk‖ < ε) then
return: Hd(Mx∗)

end if
if (‖xk+1 − xk−1‖ < ε) then

12: xk+1 = x∗; xk = x∗
−1; M = M + λI;

end if
k++;

until k exceeds max iteration: return x∗;

procedure of Alg.2 is empirically established based on GAGM and CGA, yet we are
more interested in the underlying question: will the continuous methods (SCGA/GAGM)
have similar converge property as their discrete counterparts (CGA/GA)? Affirmative
answer is given in Theorem 3 and Corollary 1 and Corollary 2 provided on Assumption
1 in addition with Assumption 2 hold, which is described in below:

Assumption 2. (sj, Tj , Δ) Let T = 1
β where β is the parameter in SoftMax. During

the iterations, there exist sj , Tj , Δ satisfying 1:

∀i �= j + 1; (pj+1 − pi)
T Msj ≥ Δ (7)

Tj

Δ
αnN2 logN <

Δmin

2
(8)

0 < Δ ≤ Δmin − 2
Tj

Δ
αnN2 logN (9)

1 Δmin is defined in Assumption 1, N = n2 where n is the number of nodes in one graph,
Δ and α are defined in Lemma 4 while sj and pj are defined in Equ.10 and Equ.11 in the
appendix respectively.



On the Convergence of Graph Matching: Graduated Assignment Revisited 825

Theorem 3. If Assumption 1(Δmin) and Assumption 2 (sj , Tj, Δ) hold, using the con-
tinuous solution chain {sj} as defined in Equ. 10, the induced discrete solution chain
{pj} defined by Equ. 11 will asymptotically (if only j is big enough) satisfy

sj+1 = pj+1, and {pj} will satisfy the definition of the Hungarian method: pj+k+1 �
Hd(Mpj+k).

Theorem 3 directly leads two important resultant corollaries:

Corollary 1. During the iteration, if there exists sj s.t. Assumption 1(Δmin) and As-
sumption 2 (sj , Tj, Δ) hold, then GAGM will converge to a double-circular solution
chain.

Corollary 2. During the iteration, if there exists sj s.t. Assumption 1(Δmin) and As-
sumption 2 (sj , Tj , Δ) hold, then SCGA will converge to a fixed discrete point.

Proof details can be found in the appendix.

3 Related Work

Early work by Christmas, Kittler and Petrou [9] and Wilson and Hancock [10] showed
how relaxation labeling could be used to the graph matching problem by modeling
the probabilistic distribution of matching errors. Drawing on ideas from these con-
nectionist literature, Gold and Rangarajan [2] developed a relaxation scheme based
on soft-assign, which gradually updates the derivative of the relaxed IQP i.e. Gradu-
ate Assignment (GAGM) [2]. Leordeanu and Hebert [3] present a spectral matching
(SM) method which computes the leading eigenvector of symmetric nonnegative affin-
ity. The constraint are entirely dropped and they only consider the integer constraints
in the final discretization step. Later, spectral graph matching with affine constraints
was developed [11] (SMAC). In addition, [11] suggests a preprocessing on the input
matrix, by normalizing it into a doubly stochastic matrix. More recently, Cho et al. [4]
apply random walk and introduce a reweighting jump scheme to incorporate mapping
constraints. None of these aforementioned approaches are concerned with the original
integer constraints during optimization while they assume the final continuous solution
can lead to an optimal feasible solution after discretization. Contrary to this idea, an
iterative matching method (IPFP) is proposed by Leordeanu et al. [5]. In their method,
the optimized solution xk in each iteration is continuous, yet they keep the discrete
one bk induced by xk if it suffices the optimal condition. When the iteration ends, the
solution is selected among the stored discrete set instead from the binarization of the
continues solution in the final iteration. This paper addresses the general learning-free
graph matching problem. In terms of convergence study as most emphasized in this pa-
per, Rangarajan et al [7] show that GAGM will converge to a discrete point provided
the affinity matrix is positive definite, while having no clear answer for general cases.
This paper clarifies that for the general graph matching problem, GAGM will converge
to a circular solution chain, and progressively making additive to the diagonal of the
affinity matrix will result in an algorithm that is deemed to converge to a fixed discrete
point after a finite number of iterations, under mild conditions. Motivated by this theo-
retical finding, we further carefully design the mechanism for when and how much the
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addition is performed during iterations. In general, the proposed methods prolong the
searching path in both discrete and continuous domain, avoiding early trap to unwanted
point. Moreover, the proposed mechanism keeps the “relaxed” solver off deviating from
the original objective function thus improves the solution quality.

4 Experiments and Discussion

Choice of Step Size and Max Iterations: We keep the CGA/SCGA’s max iterations as
500, and LCGA’s as 10. As the maximum value of input affinity matrix M is 1, from
Gershgorin circle theorem, we know when the diagonal element of M increase to N ,
the matrix become positive definite, thus the step size of λ is N

500 .
Experiments on both synthetic and real image are designed to evaluate the proposed

algorithms (SCGA, LCGA) on various graph matching tasks against state-of-the-art
methods: SM [3], GAGM [2], IPFP [5], RRWM [4]. For RRWM and IPFP, the publicly
available codes by [4] were used, and SM, GAGM were implemented by self. The
experimental methodology and design details are quite similar with the protocol in [4]
for fair comparison. All methods were implemented using MATLAB and tested on a
2.67G HZ PC. For each trial, the same affinity matrix was shared as the input and
Hungarian algorithm was commonly used at final discretization step for all methods.
Each quantitative result in the synthetic experiments was acquired from averages of
20 random trials. Due to the common character of LCGA and IPFP that can refine
other approaches’ output as their input, we tested them independently, as well as in
conjunction with others as a post-processing step. When tested as standalone, LCGA
and IPFP are always initialized with a flat, uniform solution. Control parameters of
GAGM, RRWM was based on authors’ papers and tuned for better performance. For
SCGA, we set the same β as [4] and λ, k as discussed before in all experiments.

Synthetic Random Graph: We follow exactly the same experimental protocol of [2,
4, 11]. For each matching trial, two graphs are constructed, reference graph GL with
nL = nin nodes and the perturbed graph GR with nR = nin + nout. The perturbed
graph GR is created by permuting nodes order of nin and adding Gaussian noises.The
affinity matrix M is constructed by Mia,jb = exp(−‖dLij − dRab‖/σs) where σs is set to
0.15 as the same value in [4]. The performances of each method are measured in both
accuracy and scores as defined in [4]. Based on the aforementioned settings, we con-
duct two sub-experiments to verify the robustness against deformation and outlier. In
the deformation test, we change the deformation noise parameter ε from 0 to 0.4 with
the interval 0.05, to compare with RRWM on a larger baseline, we set inlier number nin

to 50 and 60. In outlier noise experiment, the number of outliers nout varies from 0 to
20 by increments of 2, while fix nin to 50. The experimental results are plotted in Fig.
1. As observed from the deformation test, SCGA outperforms in accuracy while LCGA
and RRWM are comparable. And LCGA achieves a higher score given increased noise.
These phenomenon may imply a continuous technique like SoftMax is a key factor
against large noises. In contrast, a looping scheme like LCGA pays more attention to
objective score. In case of small noise, the proposed two methods are both very fast,
yet becoming relative slow in the existence of larger noise. Considering efficiency, all
algorithms are stopped when the iteration exceeds a fixed threshold. In outlier test, both



On the Convergence of Graph Matching: Graduated Assignment Revisited 827

SCGA and LCGA outperform others in accuracy and score, and in score test LCGA
is better again. It suggests that LCGA is suitable when noise is small as in this case
a better score always means a better match. We also tested our LCGA with its corre-
sponding simple version CGA and Gradient Assignment (GA). The results in Fig. 1
verify the efficacy of gradually adding constrains and outer looping. Note CGA shows
good performance and relative low time cost.
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Fig. 1. Evaluation on synthetic random graphs. Two top rows: Deformation and outlier evaluation
among GAGM, LCGA, IPFP, SCGA, RRWM, SM; Two bottom rows: Deformation and outlier
evaluation among GA, CGA, LCGA.

Performance of Being a Post Step: As shown in Fig. 2, in this test we use IPFP and
LCGA as a post processor using the results from RRWM, SM, SCGA and GAGM
as their initial input, called RRWM-IPFP and so on. Solid line means LCGA for post
processing while Dashes denotes IPFP. We find LCGA outperforms IPFP in all methods
except for SM, which is worth our future study. Aware SCGA-IPFP and SCGA-LCGA
are comparable and achieve the best results, as similar as in the outlier test.
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Fig. 2. Performance evaluation of using LCGA and IPFP as a post processor optimizing with the
result from other algorithms as their initial input

Real Image: In the second image experiment, as the same with [4, 12], 30 image pairs
from Caltech-101 and MSRC datasets are selected from which feature points are ex-
tracted by MSER detector and SIFT descriptor. We followed the setup from [4, 12]
exactly. The complexity of this experiment is due to the large intra-category variations
in shape and large number of outliers, posing the challenge regarding noise and outlier.
Some comparative examples are shown in Fig. 3, and the average performance compar-
ison on the dataset is summarized in Table 1, the results show LCGA outperform others,
especially in score while SCGA is comparable with the state-of-the-art algorithms. We
also compare our algorithm with IPFP as being post step in this test, the result is sim-
ilar to synthetic experiment, both methods can elevate the performance, especially in
score. LCGA is slightly better than IPFP in most cases except SM. Both SCGA-IPFP
and SCGA-LCGA achieve competitive results in accuracy and score.

Table 1. Evaluation of various matching algorithms. (+IPFP) and (+LCGA) denote perform post
IPFP and LCGA using other methods’ output as their input.

Method GAGM LCGA IPFP SCGA RRWM SM
Accuracy(%) 72.45 75.84 73.6 71.2 73.61 62.58

Score(%) 91.06 98.69 94.63 92.21 93.01 79.63
Time(S) 0.23 0.38 0.12 0.36 0.31 0.03

Accuracy(+IPFP) 75.82 74.78 76.28 71.32
Accuracy(+LCGA) 75.88 75.12 74.94 62.58

Score(+IPFP) 99.51 99.15 97.23 92.45
Score(+LCGA) 99.87 99.78 97.84 79.62
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GAGM(31/45, 92.85) IPFP(31/45, 101.55) LRGA(30/45, 102.58)

RRWM(24/45, 97.50) SRGA(32/45, 92.12) SM(23/45, 86.22)

GAGM(8/8, 6.07) IPFP(6/8, 5.38) LRGA(8/8, 6.12)

RRWM(0/8, 5.41) SRGA(8/8, 6.07) SM(0/8, 4.56)

Fig. 3. Evaluation on real images, in the bracket: method name, accuracy, and score

Conclusion: We have proposed a novel framework and induced algorithms for graph
matching, whose convergence are also proved. The experiments show that it outper-
forms the state-of-the-art methods in the presence of outliers and deformation,
especially when the number of graph node is large. The comparison reveals that the
matching accuracy and convergence rate in the challenging situations largely depends
on the effective exploitation of the matching constraints in the searching space.
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Appendix: Proof Details of Theorem 3

First we introduce some preliminaries to facilitate later proving process: Let the initial
value for SCGA be s0, and define the solution chain {sj}, {pj} as:

sj+1 � SoftMax(Msj) (10)

pj+1 � Hd(Msj) (11)

The proof of GA and CGA are both based on Assumption 1(Δmin), though Assumption
1(Δmin) seems strong while our following analysis shows that it is built on an even
more weaker precondition as shown in the following:

∀e ∈ M, exist s, k ∈ Z s.t. e = s× 10−k (12)

Equ.12 suggests any element e in matrix M can be measured in a bounded precision by
k. From a theoretical perspective, it excludes the irrational and circulator; yet from a
practical perspective based on current computer architecture, all the elements are trun-
cated in a bounded precision. Thus in practice, Equ.12 always holds.

We then show a technique by which Assumption 1(Δmin) would always hold, and
in turn the convergence properties of GA and CGA are ensured.

Lemma 1. If Assumption 1(Δmin) does not hold, one can add specks to M such that
satisfies the presumption Equ.12 and induces the establishment of Assumption 1(Δmin)
and keep pT Mp almost unchanged (the slight distortion to M will not change the op-
timum property of the original score). Furthermore, such distortion is constructible.

Proof: Assume the precision of M’s elements is 10−k (Equ.12). And the number of
the elements in M is N2. One can add specks on M: 10−k−1−K ∗ 2−1,10−k−1−K ∗
2−2,...,10−k−1−K ∗ 2−N2

to obtain the new matrix Mnew. Thus for ∀i; ∀j, k, j �= k,
each element in pj −pk is from the discrete set {−1, 0, 1} and each item in pi is {0, 1}.
As a result, (pj − pk)

T Mpi is the linear combination of the elements of original M
plus the additional specks. When (pj − pk)

T Mpi = 0 holds for the original M, we
can see that the new Mnew is nonequal to zero due to the additional specks whose
corresponding (pj − pk)

T (Mnew − M)pi (linear combination) cannot be zero in that
each basis is 2−L, L ∈ N2 while the coefficients are {−1, 0, 1}. Furthermore, when k is
big enough, the precision of (pj−pk)

T (Mnew−M)pi is less than the original function,
so the original result that is nonequal to zero is still nonzero after this modification.
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Using Lemma 1 and Theorem 1, Theorem 2 ensure the convergence for GA, CGA
respectively. In what follows, we will present the proof flow details of the convergence
of SCGA and GAGM as stated in the main text.

Lemma 2. (sj , T ) Given a fixed β, or T = 1/β. SoftMax(Msj) must be converged to
the solution sj+1, whose matrix form is doubly stochastic.

Lemma 3. (T ) Given a fixedT , let pj+1 = Hd(Msj), we have: pT
j+1Msj−TN logN ≤

sTj+1Msj ≤ pTj+1Msj where N = n2 and n is the number of graph node.

Lemma 4. (sj , T,Δ) Given Msj , if there exists a unique best solution: pj+1=Hd(Msj)
returned by the Hungarian method, let pi be the second best one (discrete), and let
Δ=|(pj+1 − pi)

T Msj | then we have:

max
i

|pij+1 − sij+1| ≤
TN logN

Δ
(13)

where pi
j+1 denotes the ith element in the vectorized permutation matrix pj+1.

Lemma 2, Lemma 3, Lemma 4 have been proven by Kosowsky and Yuille in [13]. And
one can find Assumption 2 (sj , Tj, Δ) derives the establishment of Lemma 4 (sj , Tj, Δ).

Lemma 5. (sj , Tj , Δ) If Assumption 1 (Δmin), Assumption 2(sj , Tj , Δ) hold then

∀i, |pTi Mpj+1 − pT
i Msj+1| ≤ Tj

Δ
αnN2 logN (14)

Proof: Obviously Lemma 4 (sj , Tj, Δ) holds.

|pT
i Mpj+1 − pT

i Msj+1| = |pT
i M(pj+1 − sj+1)| ≤ pT

i αE
Tj

Δ
C =

Tj

Δ
αnN2 logN

where E is the N × N matrix whose elements are all one, and C =
[N logN, ..., N logN ]T . The above equation is based on the observation that pi is a
vectorized permutation matrix (so it contains n 1s), and the elements of M are bounded
within [0, α].

Lemma 6. (sj , Tj , Δ) If Assumption 1(Δmin), 2(sj , Tj, Δ) hold, then pj+2=Hd

(Mpj+1).

Proof: By contradiction: Obviously Lemma 5 holds, if Lemma 6 does not hold, due to
Assumption 1(Δmin), there exists i, s.t. pT

j+2Mpj+1 < pT
i Mpj+1, and

pT
j+2Mpj+1 ≤ pT

i Mpj+1 −Δmin (15)

According to Lemma 5, we have

pT
i Mpj+1 −Δmin ≤ pT

i Msj+1 −Δmin +
Tj

Δ
αnN2 logN

pT
j+2Msj+1 − Tj

Δ
αnN2 logN ≤ pT

j+2Mpj+1 (16)
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By combining the above three equations we have:

pT
j+2Msj+1 − pT

j Msj+1 +Δmin ≤ 2
Tj

Δ
αnN2 logN (17)

By the definition pj+2 � Hd(Msj+1), we have pT
j+2Msj+1 − pT

j Msj+1 ≥ 0, By

Assumption 2 (sj , Tj , Δ) have: Tj

Δ αnN2 logN < Δmin

2 . Thus contradiction exists.

Lemma 7. If Assumption 1(Δmin) and Assumption 2 (sj , Tj , Δ) hold, we have:

∀i �= j + 2, pT
j+2Msj+1 − pTi Msj+1 ≥ Δ (18)

i.e. Assumption 2 (sj+1, Tj , Δ) also holds.

Proof: Obviously Lemma 5 (sj , Tj, Δ) & Lemma 6 (sj , Tj, Δ) hold. By Lemma 5:

pT
j+2Msj+1 ≥ pT

j+2Mpj+1 −
Tj

Δ
αnN2 logN (19)

By Assumption 1(Δmin) and Lemma 6 (sj , Tj , Δ) we have:

pT
j+2Mpj+1 −

Tj

Δ
αnN2 logN ≥ pT

i Mpj+1 +Δmin − Tj

Δ
αnN2 logN (20)

By Lemma 5 (sj , Tj, Δ) we have:

pT
i Mpj+1 +Δmin − Tj

Δ
αnN2 logN ≥ pT

i Msj+1 +Δmin − 2
Tj

Δ
αnN2 logN

Combining the three equations we reach:

pT
j+2Msj+1 ≥ pT

i Msj+1 +Δmin − 2
Tj

Δ
αnN2 logN (21)

By Assumption 2 (sj , Tj, Δ), Δ ≤ Δmin − 2
Tj

Δ αnN2 logN , the lemma holds.

Lemma 8. If Assumption 2 (sj+1, Tj , Δ) holds, Assumption 2 (sj+1, Tj+1, Δ) holds.

Proof: Since Tj+1 < Tj , the below relations hold, either thus Assumption 2
(sj+1, Tj+1, Δ).

Tj+1

Δ
αnN2 logN <

Tj

Δ
αnN2 logN <

Δmin

2
(22)

0 < Δ < Δmin − 2
Tj

Δ
αnN2 logN < Δmin − 2

Tj+1

Δ
αnN2 logN (23)

We commence with the satisfaction of Assumption 2 (sj , Tj, Δ) at a specific iteration j,
and then prove Assumption 2 (sj+1, Tj+1, Δ) will also hold in the next iteration. Thus
for each k > 0 in the later iterations, Assumption 2 (sj+k, Tj+k, Δ) will always hold
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and this leads to our main results: here we prove our main theoretical conclusion as
shown in Theorem 3 in the main text.

Proof: For k = 0, 1, ... Lemma 4 (sj+k+1, Tj+k+1, Δ) and Lemma 6
(sj+k+1, Tj+k+1, Δ) obviously hold. By Lemma 6 (sj+k, Tj+k, Δ), we know
pj+k+2 = Hd(Mpj+k+1). According to Assumption 1 (Δmin) and Lemma 4
(sj+k+1, Tj+k+1, Δ), when k is big enough, we have sequence sj+k will converged
to discrete sequence pj+k .

Now we prove the different convergence property of the classical GAGM and the pro-
posed SCGA as has been stated in Corollary 1 and Corollary 2 in the main text.

Proof: By combining Theorem 1 and Theorem 3, we know GAGM will converged
to circular sequence. By combining Theorem 2 and Theorem 3, we know when M
becomes positive definite, SCGA will converge to a fixed discrete point.

Remark 1. (The wildness of Assumption 2) According to Equ.8 and Equ.9, Δ lies in:

[
Δmin −√

Δ2
min − 8TjαnN2 logN

2
,
Δmin +

√
Δ2

min − 8TjαnN2 logN

2
] (24)

When Tj �→ 0, this formula imply Δ ∈ (0, Δmin), also when Tj goes to zero, the
SoftMax result SoftMax(sj) approaches to discrete result (vectorized permutation
matrix). From Lemma 1 we know as sj goes to discrete result, the score difference
between best solution pj+1 and suboptimal solution pi approaches Δmin, thus after
several iteration, we can chooseΔ = Δmin

2 , which lies in the range (0, Δmin) - and
smaller than the difference between best and suboptimal score, thus the existence of
Assumption 2 is assured. In addition, based on our previous derivation, for a given
sj , once there exists a Δ sufficing the condition for Assumption 2, all later sj+1 would
satisfy the constraint. These facts consolidate our judgement that Assumption 2 is weak.
Furthermore, we have a more concrete observation as described in Lemma 9.

Lemma 9. By adding specks to M, there exist s1 and T1, s.t. Assumption 2 holds.

Proof: One can select s0=( 1
N2 , . . . ,

1
N2 )

T , obviously Δ lies within [ 1
N2Δmin,

N2−1
N2 Δmin], and then we can select an appropriateT1 s.t. Δ lies in the scope of Equ.24.

At the end of this appendix, we give conceptual illustrations showing the idea of our
proof, and suppose T �→ 0 without loss of generality. First we introduce the initial
status. The dotted arrows mean the generate process, red dotted arrows denote iterative
step of GAGM [2], where sj+1 = SoftMax(Msj); blue dotted arrows denote discrete
optimum where pj+1 = Hd(Msj). Yellow solid lines mean the corresponding function
score. The bidirectional-arrow means the quantity relationship between targets. Dashed
bidirectional-arrow denotes the “Gap” relationship while solid bidirectional-arrow de-
notes the “asymptotic” relationship.

As illustrated in Fig.4, according to Lemma 3 we know as T approximates to 0, for
all k, sTj+k+1Msj+k approaches to pT

j+k+1Msj+k . Based on Assumption 2 (sj , Tj, Δ)
we know there is a gap between optimal score pT

j+1Msj and any other score. Thus from
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Fig. 4. Conceptualization of applying [13]’s conclusions to the proposed iteration chain

Lemma 4 we get the “asymptotic” relationship between sj+1 and pj+1. The green curve
arrow illustrates the role of Assumption 2 - here we use Tj to represent Assumption
2(sj , Tj , Δ). Kosowsky and Yuille focus on the connection of the Hungarian solution
and the SoftMax one, which is first order version versus the pairwise graph matching
task we address in this paper - a quadratic assignment problem solved by transforming
it into a series of iterative first-order assignment subproblems. By repeatedly applying
their conclusion to the separate steps in the quadratic case, we know that starting from
sj , each score sTj+k+1Msj+k would approximate to pT

j+k+1Msj+k (Roughly speaking,
the approximation of two scores do not necessarily ensure sj+k+1 �→ pj+k+1, ∀k, while
we show in Fig.5 that the answer is affirmative if only Assumption 2 holds for the first
iteration). In addition, under the precondition of Assumption 2 (sj , Tj, Δ), according
the conclusion from [13], one can obtain a single sj+1 that approaches pj+1. Note
that [13]’s conclusion does not address the chain property in the quadratic assignment
problem where first-order assignment is performed in each iteration, thus involving
multiple (sj+k+1, pj+k+1) pairs. In another saying, if directly applying their conclusion
to the chain case, one has to check the existence of a specific and separate Δk that
builds the asymptotic relation between respective sj+k+1, pj+k+1 in each iteration - and
further the convergence property of the iterative algorithm. As an extension, we strictly
analyze and give the affirmative answer in terms of convergence for this iteration chain,
under the rather weak precondition: if only Assumption 2 (sj , Tj, Δ) holds once in one
beginning iteration, say j, then in all of the next iterations, the updated Assumption 2
(sj+k+1, Tj+k+1, Δ) holds, and sj+k+1 is bound to approximate to pj+k+1.

We also prove that pj+k+2 is the Hungarian solution of Mpj+k+1, thus for other pi,
the score gap exists - see the dotted eclipses for attention (thus the discrete sequence
pj+k+1 induced by sj+k composes an iteration chain by self). We show the proof flow
in Fig.5 and summarize key steps as following:
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Fig. 5. Conceptualization of proof flow for the iteration chain in the pairwise graph matching
problem. The main idea is exploring the connection between continuous solution and discrete
one: sj �→ pj , as well as pj+1 = Hd(Mpj), where pj+1 is indeed calculated from Hd(Msj). In
this spirit, SCGA’s convergence proof is similar to the one of CGA.

1. Using Assumption 2, suppose there is a gap between function score of optimal
solution pj+1 and suboptimal pi;

2. From Lemma 4 we know pj+1 �→ sj+1, which we will use in the next step;
3. Prove the “asymptotic” relationship between pT

i Msj+1 and pT
i Mpj+1 (also

pT
j+2Msj+1 and pT

j+2Mpj+1) by Lemma 5, as illustrated by red solid bidirectional-
arrows;

4. In Lemma 6, we proved pj+2 is the Hungarian solution of Mpj+1, thus pT
j+2Mpj+1

is bigger than any pT
i Mpj+1, according to Assumption 1, there exists a gap Δmin

between them, as illustrated by black dashed bidirectional-arrows;
5. We know pT

i Msj+1 �→ pT
i Mpj+1 and pT

j+2Msj+1 �→ pT
j+2Mpj+1, using gap

Δmin we obtain gap Δ in Lemma 7;
6. Update Tj to Tj+1 in Lemma 8, thus Assumption 2 (sj+1, Tj+1, Δ) holds, and

obtain “asymptotic” relationship between pj+2 and sj+2;
7. Finally, by combining above results, Theorem 3 proves actually discrete sequence

pj+k is a Hungarian sequence, thus there exists a gap Δmin between adjacent dis-
crete scores ( indicated by the nodes pT

j+2Mpj+1, pT
j+3Mpj+2 in Fig.5).
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