
ar
X

iv
:1

20
2.

63
84

v1
 [

cs
.C

V
]

28
 F

eb
 2

01
2

Fast approximations to structured sparse coding and applications to
object classification

Arthur Szlam Karol Gregor Yann LeCun

September 25, 2018

Abstract

We describe a method for fast approximation of sparse
coding. The input space is subdivided by a binary de-
cision tree, and we simultaneously learn a dictionary and
assignment of allowed dictionary elements for each leaf of
the tree. We store a lookup table with the assignments and
the pseudoinverses for each node, allowing for very fast
inference. In the process of describing this algorithm, we
discuss the more general problem of learning the groups
in group structured sparse modelling. We show that our
method creates good sparse representations by using it in
the object recognition framework of [1, 2]. Implement-
ing our own fast version of the SIFT descriptor the whole
system runs at20 frames per second on321 × 481 sized
images on a laptop with a quad-core cpu, while sacrific-
ing very little accuracy on the Caltech 101 and 15 scenes
benchmarks.

1 Introduction

Sparse modeling [3, 4] has proven to be a useful frame-
work for signal processing. Each point from a dataset con-
sisting of vectors in a Euclidean space is represented by a
vector with only a few nonzero coefficients. Sparse mod-
eling has lead to state of the art algorithms in image de-
noising, inpainting, supervised learning, and of particular
interest here, object recognition. The systems described
in [1, 2, 5, 6, 7] use sparse coding as an integral element.
Since the coding is done densely in an image with rela-
tively large dictionaries, this is a computationally expen-
sive part of the recognition system, and a barrier to real
time application. The main contribution of this paper is a

fast approximate algorithm for finding sparse representa-
tions; we use this algorithm to build a system with near
state of the art recognition performance that runs in real
time. During inference the algorithm uses a tree to as-
sign an input to a group of allowed dictionary elements
and then finds the corresponding coefficient values us-
ing a cached pseudoinverse. We give an algorithm for
learning the tree, the dictionary and the dictionary ele-
ment assignment, and along the way discuss methods for
the more general problem of learning the groups in group
structured sparse modelling.

One standard formulation of sparse coding is to con-
siderN d-dimensional real vectorsX = {x1, . . . , xN}
and represent them usingN K-dimensional real vectors
Z = {z1, . . . , zN} using ak × d dictionary matrixW by
solving

argminZ,W

∑

k

||Wzk − xk||
2, s.t. ||zk||0 ≤ q, (1)

where||·||0 measures the number of nonzero elements of a
vector; each input vectorx is thus represented as a vector
z with at mostq nonzero coefficients. While this problem
is not convex, and in fact the problem in theZ variable is
NP-hard, there exist algorithms for solving both the prob-
lem inZ (e.g. Orthogonal Matching Pursuit, OMP []) and
the problem in both variables (e.g.K-SVD [4]) that work
well in many practical situations.

It is sometimes appropriate to enforce more structure
onZ than just sparsity. For example, many authors have
noted that the solution to thez minimization in (1) (and
its l1 relaxation) is very unstable in the sense that nearby
inputs can have very different coefficients, in part because
of the combinatorially large number of possible active sets

1

http://arxiv.org/abs/1202.6384v1

(i.e. sets of nonzero coordinates ofz). This can be a prob-
lem in classification tasks. Other times we may know in
advance some structure in the data that the coefficients
should preserve. Various forms of structured sparsity are
explored in [8, 9, 10, 11].

A simple form of structured sparsity is given by speci-
fying a list ofL allowable active sets, and some function
g : Rd 7→ {1, ..., L} associating to eachx to one of theL
configurations. An example of this is the output of many
subspace clustering algorithms. There,X is reordered
and partitioned intoPX = [X1 X2... XL] (whereP is
a permutation matrix), so that each blockXj is near a
low dimensional subspace spanned byBj . Supposing for
simplicity that each of theBj are of the same dimension
q, then if we setW = [B1...BL], the allowable active sets
are given by{1, ..., q}, {q + 1, ..., 2q}, etc. By setting
the allowable active sets to the blocks, and the functiong
to simply map each point to its nearest subspace (say in
the standard sense of Euclidean projections), then we get
an example of structured sparsity as described above; this
sort of method is used in object recognition in [6].

In this work we will try to learn theL configura-
tions as well as the dictionary. We introduce a LLoyd-
like algorithm that alternates between updating the dictio-
nary, updating the assignments of each data point to the
groups, and updating the dictionary elements associated
to a group via simultaneous OMP [12].

At inference time, we need a fast method for determin-
ing which group anx belongs to. This is computationally
expensive if there is a large number of groups and one
needs check the projection onto each group. However, by
specializing the Lloyd type algorithm to the case when
each group is composed of a union of (perhaps only one)
leaves of a binary decision tree, we will build a fast infer-
ence scheme into the learned dictionary. The key idea is
that by using SOMP, we can learn which leaves should use
which dictionary elements as we train the dictionary. To
code an input, we march it down the tree until we arrive
at the appropriate leaf. In addition to the decision vectors
and thresholds, we will store a lookup table with the active
set of each leaf as learned above, and the pseudoinverse of
the columns ofW corresponding to that active set. Thus
after followingx down the tree we need only make one
matrix multiplication to get the coefficients.

Finally, we would like use these algorithms to build an
accurate real time recognition system. We focus on a par-

ticular architecture studied in [1, 2, 6, 7]. First, SIFT de-
scriptors are calculated densely over the image. Then (a
form of) sparse coding is used to calculate a sparse vector
at every location from the corresponding sift vector. Then
each feature is pooled over a small number of spatial re-
gions and the results are concatenated. Finally the labels
are obtained using linear SVM or logistic regression.

We use this pipeline with two modifications. First we
write our own fast implementation of the SIFT descriptor.
Second we use our fast algorithm for the sparse coding
step. The resulting system achieves nearly the same per-
formance as exact sparse coding calculation but processes
321× 481 size images at the rate of20 frames per second
on a laptop computer with a quad core cpu.

The rest of this paper is organized as follows: Section
2, we discuss greedy structured sparse modeling, and de-
scribe in depth how to train a model that learns the struc-
ture, and that respects a given set of groups given by a
tree. In section 3, we show experiments on image patches
to qualitatively demonstrate what learned groups look like
and then we apply our methods to object recognition.

2 Hashing and dictionary learning

2.1 A simple form of structured dictionary
learning

Here we will first suppose that a list ofL perhaps over-
lapping groupsG1, ..., GL on the coefficientsZ is given.
That is, if we are learning a representation ofX with K
atoms, eachGi ⊂ P({1, ...,K}, whereP is the set of
all subsets of its argument, is specified. We can general-
ize the LLoyd algorithm forK means orK flats to this
setting. After initializing the dictionaryW , we find the
distance of eachx in X to its projectionPGi

x onto the
span ofWGi

for eachi. Eachx is associated to thei with
the smallest distance

x 7→ argmini∈{1,...,L}||PGi
x− x||2, (2)

and we find the coefficients

z = (WT
Gi
WGi

)−1WT
Gi
x.

Then we updateW to be the minimum of the convex prob-
lem

argminW
∑

x

||Wz − x||2,

2

Algorithm 1 SOMP [12]

function Z = SOMP(X,W,K)
Initialize: coefficientsZ = 0, residualR = X ,
active setΩ = ∅.
repeat
j = argmaxi

∑

s |W
T
i Rs|

Ω = Ω
⋃

j

Z =
(

WT
ΩWΩ

)−1
WT

ΩX
R = X −WZ

until K iterations
end function

and repeat. Each of the subproblems either has an explicit
solution or is convex, and so the energy decreases. When
the training is finished, we defineg to be the function that
maps each point inx ∈ R

d to thei minimizing the error
of the projection ofx onto the span ofWGi

.
We can also run the same sort of algorithm when in

addition to each groupG specifying a list of indices, it
also specifies a cost for the use of the dictionary elements
associated to each index. If we choose anl2 cost for each
of the coefficients, we still get explicit updates and the
decrease of energy at each round.

Note that if the number of groups is very large, it may
be too costly to find the best group for eachx exaustively.
However, we can make a greedy approximation by run-
ning a modified OMP. Here, supposing at iterations of the
OMP we have an active setΩ, the available dictionary ele-
ments to add toΩ are the union of all groups containingΩ.
It is not necessary to be able to enumerate all the groups
to use this method, only to have a subroutine which given
Ω ⊂ {1, ..., k} can return

⋃

Ω⊂G G. However, using this
sort of greedy approximation removes the guarantee that
the energy decreases at each iteration.

2.2 Learning the groups with simultaneous
orthogonal matching pursuit

In the previous section the groups were specified in ad-
vance. If we want to learn the groups, we can add a step
in the algorithm. Now instead of taking the list of groups
as input, we instead input just the numberK of dictionary
elements and the number of coefficients allowed perx.

After associating to eachx the group that best represents
it, we can turn around and consider all thex associated
to that group. Our task is then to choose a subset of the
dictionary that best represents that group. A greedy ap-
proximation to this problem in the least squares sense is
given by the Simultaneous Orthogonal Matching Pursuit
algorithm (SOMP)[12]. This algorithm proceeds just as a
standard OMP, but at each iteration, all thex associated to
a given group have to choose the next dictionary element
added to the group together. See algorithm 1.

Unfortunately, because neither OMP nor SOMP is
guaranteed to find the optimal solution to the NP hard
problems they address, the energy may not decrease at
each iteration with this scheme; however, as usual, we
have found that in practice these methods do usually lead
to a decrease in the energy. As inK-means, it may happen
that no group uses a dictionary element; in such a situa-
tion one can remove a dictionary element from one of the
groups, find the residual, and replace the unused dictio-
nary element by the principal component of the residual.

We note that the model presented here can be thought
of as a greedy sparse coding version of a “topic model”.
The dictionary elements act as the words, thex as the
documents, and the groups are the topics. The algorithm
learns the topics and the dictionary simultaneously.

2.3 Hashing, quantization, and dictionary
learning

The main focus of this work will be choosing ag that
can be computed rapidly and learning a dictionary that re-
spectsg. We will considerg to be a hash function onRd,
and hash buckets will be the atomic units of the groups;
that is, the groups will either be the hash buckets or will
be glued together from the hash buckets. This can be con-
sidered a sort of geometric regularization of the sparse
coding problem: the active set will be forced to remain
constant on the region ofRd corresponding to each hash
bucket.

Onceg is chosen, we will learn the dictionary (and per-
haps groups) as above, but instead of allowing eachx to
choose the group that best represents it individually, thex
in a hash bucket will need to choose the group that best
represents them together on average. We will also try to
approximate standard greedy dictionary learning; in this

3

Algorithm 2 Learning a dictionary and groups
Require: dataX , number of dictionary elements
K, number of active coefficients per data pointq,
number of iterationsI, and if desired,g : Rd 7→
{1, ...,M}.
repeat

1: Eachx chooses a group in{1, ..., L} via (2)
or by the modified OMP as in Section 2.1. Ifg
is given, all thex in a hash bucket are forced to
choose the same group.
2: Each group in{1, ..., L} chooses subset of
{1, ...,K} usingZ = SOMP(X,W, k).
3: UpdateW , either viaK-SVD, or a least
squares solve.

until I iterations

case, there will be one group for every hash bucket. As
above, and as withK-means, it may happen that no spa-
tial bucket uses a particular group; in that case we can just
pick a bucket at random and use the output of SOMP on
that bucket to regenerate the unused group.

Learning how to quantizeRd is a much studied (but
still not completely understood) problem. One common
motivation is to build a data structure allowing nearest
neighbors from a given data set to be quickly computed.
Another common motivation is to use the buckets of the
quantization as words to build bag of words feature repre-
sentations. The relationship between vector quantization
and sparse coding has studied before by many authors[].
In particular,K-means is simplyl0 sparse coding with
only the coefficients0 and1 allowed, and only 1 nonzero
perx1.

In this work we will use a2-means tree2 with sub-
divisions along medians to defineg. We start by taking
the entire data set and running2-means, obtaining cen-
tersc1 andc2. We take each data pointx ∈ Xand find
the angle betweenx andc1 − c2; X is divided at the me-
dian. We then repeat on each of the pieces, continuing
until each piece is within a given distance to its mean, or
a set depthp, whichever comes first. We initialize the2-
means with farthest insertion, as in [13]. Note that our

1“shape gain coding” allows a non-binary coefficient
2Although perhaps not exactly standard usage, we will call the data

structure obtained from binary partitions ofR
d a hash

experience is that very few iterations are necessary, and
really the farthest insertion is suffient; in fact cutting in
random directions (with some additional tricks and ran-
domizations) has been shown to lead to good partitions
when the underlying data has a “manifold” structure, see
[14]. The number of buckets at the bottom of the tree is
upper bounded by2p; we will choosep small enough so
that it is simple to store a lookup table with the indices
into the dictionary for each bucket, as well as the decision
vectors for each branch in the tree.

We also could use mappings of the formg(x) =
s(h(Hx + b)), whereH is a p × d matrix, h is some
sort of nonlinearity (e.g.tanh, or sin), b is an offset, and
s is a thresholding function []. These mappings require
less storage and are somewhat simpler to compute for the
same bit depth, but on the data sets we work on, they have
the disadvantage that many of the buckets are often empty
or have very few entries for reasonablep. While this
can be remedied by simply gluing (nearly) empty buck-
ets to nearby full buckets and updating the lookup table,
we have found the trees to work better. Note also that un-
like in nearest neighbor data structures, it is unnecessary
for leaf nodes to keep track of spatially nearby leaves that
are far away in the tree metric, because all we care about
is which dictionary atoms are used at that node.

After building g and training the dictionary, in order
compute the coefficients of a new data pointx, we pass
it though the tree, obtainingg(x). We lookupg(x) in
a table, and this gives an index ofm columnsΩ of
W ; at this point we solve the linear systemWΩz − x
to get the outputs. Alternatively, for each group, we
can store(WT

ΩWΩ)
−1 (or some stable factorization), or

(WT
ΩWΩ)

−1WT
Ω , and just do the requisite matrix multi-

plications

2.4 Discussion of related work

The idea of clustering the input space and then using a
different dictionary for each cluster has appeared several
times before. As mentioned in the introduction, a simple
example is theK-flats algorithm, or other subspace clus-
tering algorithms [15]. There, the subdictionaries serve
the dual purpose of determining the clusters and also find-
ing the coefficients for the data points associated to them.
More recently this technique has been succesfully applied
to object recognition by [6, 7]. In those works, the clus-

4

ters are determined byK-means (or a Gaussian mixture
model); in the first, there is a different dictionary for each
cluster, and the code is the size of the union of all the sub-
dictionaries, but only the blocks corresponding to the cen-
troids near the input are nonzero. In the second work, the
dictionaries for each centroid are the same, but the code is
still a concatenation of the codes associated to each cen-
troid (and are set to zero if the input does not belong to
that centroid). The current work differes from these in
two ways. The first is the use of a fast method for clus-
tering, and the second is the use of shared parts across the
dictionaries, where the organization of the parts sharing
has been learned from the data.

In [16] the authors construct a dictionary on the back-
bone of a hierarchical clustering with fast evaluation.
They also use shared parts. However, in that work the part
sharing is determined by the tree structure of the cluster-
ing, and not learned.

There is now a large literature on structured sparsity.
Like this work, [11, 17] use a greedy approach for struc-
tured sparse coding based on OMP or CoSaMP. Unlike
this work, they have provable recovery properties when
the true coefficients respect the structure, and when the
dictionaries satisify certain incoherence properites. On
the other hand, those works do not attempt to learn the dic-
tionary, and only discuss the forward problem of finding
z from x andW .The works in [8, 9, 10] use an approach
to structured sparsity that allows for convex optimization
in z. In these works the coefficients are arranged into a
predetermined set of groups, and the sparsity term penal-
izes the number of active groups, rather than the number
of active elements; the dictionary is trained to fit the data.
None of these works attempt to learn the group structure
along with the dictionary

Finally we note that other works have explored the idea
of accelerating sparse coding by training the dictionary
along with an approximation method, e.g. [5, 18]. In the
first, the approximation is via a single layer feed forward
network, and in the second, via a multilayer feed forward
network with a shrinkage nonlinearity. This work uses a
tree and lookup table instead.

3 Experiments

3.1 What do the groups look like?

To get a sense of what kind of groups learned from algo-
rithm 2 look like, we train a dictionary on 500,0008 × 8
image patches, and view the results. The image patches
are drawn from the PASCAL dataset, and their means are
removed. We train a dictionary with 256 elements and
512 groups; each group has 5 dictionary elements in it.
We train using the batch method, with aK-SVD update
for the dictionary.

After training, some of the dictionary elements are used
by many groups, and others are used by only a few. The
median number of groups using a given element is 6; 47
elements are in exactly 1 group, and 15 are in more than
30. In figure 1 we display the dictionary ordered by the
number of groups containing each element; this number
increases in each column and moving to the right. Unsur-
prisingly, “popular” elements that belong to many groups
are low frequency. In this figure we also show the groups
containing a few chosen atoms.

3.2 Review of the image classification
pipeline

Here we will review a standard pipeline for object recog-
nition [1, 2], while giving details about our implementa-
tion, which streamlines certain components. It consists of
the following parts: 1) Calculation of sift vectors at every
location (sift grid) 2) Calculation of the feature vectors for
every sift vector using the ”tree sparse coding” described
above, 3) Spatial pyramidal max pooling 4) logistic re-
gression or SVM classification. Care is taken to calculate
each of these parts efficiently.

3.2.1 Sift grid

We run tests with two different implementations of dense
sift. The first is matlab code by L. Lazebnik [1]. We also
use a fast, approximate c++ version that we coded our-
selves. The details are as follows:

The x and y derivatives. We convolve the image with
two 5 × 5 filters that are thex andy derivatives of Gaus-
sian. This results in the values ofx and y derivatives

5

Figure 1: 256 dictionary atoms in 512 groups trained by algorithm 2 on 500,0008 × 8 image patches. The group
structure and dictionary were trained simultaneously. Thedictionary elements, shown on top, are ordered by popularity
(the number of groups they belong to). Underneath, for each dictionary atom in a colored square, we show all of the
groups containing it. These groups can be thought of as “topics”. Less popular atoms tend to be more specialized.

Iy = dI/dy, Ix = dI/dx of the image intensity at ev-
ery location of the image.

Orientation histogram. This operation takes the
two gradient valuesIy , Ix at every location and
smoothly bins them into histogram of eight orientations
(0, π/4, . . . , 7π/4) as follows. First we calculate the ori-
entation angleφ = arctan(Iy/Ix) + π(1 − sign(x))/2

and magnitudem =
√

I2x + I2y . Let φh(n) = nπ/4,

n = 0, . . . , 7. The final set of values isv(n) = m ∗
cos(φ − φh(n))

9
+ where thex+ = x if x > 0 and 0

otherwise. Most of these operations are computation-
ally expensive and therefore we precompute these val-
ues. We bin theIy andIx values into500 bins each and
for every combination (5002 values) we calculatev(n),
n = 0, . . . , 7. The bin range is chosen so that the values
of Iy andIx never fall outside the range of the binning so
no checks are needed. After this computation we obtain8
values at every location of the image.

Smooth subsamplingWe subsample the resulting fea-
tures by two in each direction. Specifically letvn,y,x be
the input value obtained from the previous step, wheren

is the feature number andy, x is the location. The output
value will beun,y,x = vn,2y,2x+vn,2y,2x+1+vn,2y+1,2x+
vn,2y+1,2x+1. This is efficient since it only involves addi-
tions. Note that it results in output values that are essen-
tially four times larger the input values at each location.

Smoothing We convolve each feature with
[[1, 1], [1, 1]] filter. This is calculated using
un,y,x = vn,y,x+vn,y,x+1+vn,y+1,x+vn,y+1,x+1 again
resulting in essentially four times larger output values
then input values.

Combining and normalizing into sift vector Now
we obtain128 component sift vector from every loca-
tion of the features maps from the previous step. At ev-
ery location(x, y) (of the subsampled feature image) we
first obtain128 component vector by concatenating the8-
component vectors at the following locations(x+2i, y+
2j), i = 1, 2, 3, 4 andj = 1, 2, 3, 4. Then we normalize
this vector as follows. If the norm of the vector is smaller
then the thresholdth = 1 we keep the vector. If it is
larger we normalize it to have sizeth. The result is placed
into the appropriate location of the finalmy ×mx × 128
vector, wheremy,x ≈ ny,x/2 wherenx,y are the dimen-

6

sions of the original image. The dimensions are slightly
smaller due to boundary effects. This last operation (com-
bining and normalizing) is the most expensive operation
in the sift grid calculation and we took care to implement
it efficiently. Note that in Lazebnik’s (and Lowe’s origi-
nal) sift the smoothing is done over a larger neighborhood
with inputs near the center weighted more then those fur-
ther. This makes the output more smoothly varying un-
der translations; in our case we used equal weighting over
small neighborhoods for computational efficiency.

3.2.2 Hashed sparse coding.

We used the main procedure of this paper to calculate
feature vector for each sift vector. Each such computa-
tion consisted essentially of depth=16 multiplications of
sift and tree decision vectors (16 × 128 computations)
followed by multiplication of the sift vector by the ap-
propriate pseudo-inverse matrix (typically128 × 5 mul-
tiplications) resulting in total of approximately128 × 21
multiplications. For2048 dimensional feature vector this
compares to128 × (2048 + 4) multiplications that are
needed for omp resulting in almost100-fold reduction.
Our model was trained on2 × 106 randomly selected sift
vectors from Pascal 2011 dataset.

3.2.3 Spatial pyramidal pooling.

We used the same spatial pyramidal max pooling as in [Y-
Lan]. Since the feature vectors are in the sparse format
the resulting computation is very efficient and negligible
compared to either sift or tree sparse coding. The details
are as follows. We need to calculate the maximum over
the features in1×1, 2×2 and4×4 regions of the feature
vector obtained in the previous step. First we split this
vector into4 × 4 regionsRx′,y′ . Let nf be number of
features, typically2048, vf,x,y be the input feature vector
anduf,x′,y′ , x′ = 1, 2, 3, 4, y′ = 1, 2, 3, 4 be the4 × 4
part of the final feature vector. We calculateu using the
following.

uf,x′,y′ = maxx,y∈Rx′,y′
vf,x,y (3)

This calculation is done by looping over all feature vectors
and indices and filling the pooled feature vector so the
number of computations is of the order of the total number
of nonzero features. We can get2 × 2 and1 × 1 parts of

the final feature vector analogously. However it is more
efficient now to use the4 × 4 vector obtained and pool
it into 2 × 2 regions and then pool the result into1 × 1
regions. The final output vector is concatenation of these
vectors, resulting innf × 21 vector.

3.2.4 Classification.

Subsequently a logistic regression classifier is trained on
the feature vectors using the liblinear package [19].

3.2.5 Implementation.

Each the following operations we implemented using a
multicore processing: all steps of the sift, finding the
group using tree, and multiplying by pseudo-inverses. In
each of these steps separately the image/feature image
was split inncoresparts and send to different core. The
system was implemented in C++. Blas in the Accelerate
framework was used in the tree sparse coding. We report
the result on a macbook pro, with a 2.3 Ghz Intel Core i7
processor with 4 cores. The observed speedup compared
to single core was about3.

We also test the run time of just the coding, compared
with coding using OMP with the SPAMS package [20].

3.3 Accuracy on Caltech 101 and 15 scenes

We test the accuracy of the standard pipeline with the
hashed dictionary and with standardl0 sparse coding on
two object recognition benchmarks, Caltech 101 [] and
15 scenes []. As mentioned before, for all data sets, we
train the hashed dictionary on2 × 106 randomly selected
sift vectors from the Pascal 2011 dataset. Caltech 101
consists of 101 image categories and approximately 50
images per category; many classes have more training
examples and we do the usual normalization of error by
class size. We use 30 training examples per class. The 15
scenes database contains 15 categories and 4485 images,
and between 200 to 400 images per category. We use 100
training images per class on this data set. For each data
set, we run over 10 random splits and record the mean and
standard deviation of the test error. We record the results
in Tables 3.4 and 3.4. The first two columns of each table
correspond to the hashed sparsed coding run with5 or 10
nonzero entries on Lazebnik’s sift. The next two columns

7

correspond to the “real time” system, hashed sparse cod-
ing run on our approximate sift, and the last two columns
correspond to OMP, trained and coded with SPAMS[20]
on Lazebnik’s sift. Each row corresponds to the number
of atoms in the dictionary. As far as we know, state of
the art with single features on grayscale images on Cal-
tech 101 with 30 training examples per category is .773,
in [7], and .898 for the 15 scenes, in [21]. Both of these
methods use the same basic pipeline as this work, but with
variations on the sparse coding; our method can be used
in conjuction with their methods.

As has been observed by other authors, increasing the
size of the dictionary only seems to increase the accuracy.
Note that for our method, the only places that the size of
the dictionary affects the computational cost is in train-
ing, where we use an SOMP, and in the final classification
stage. The last component is small for these experiments,
but if we wanted to use the system for detection at many
locations at an image, it would start to be significant.

3.4 Running speed.

We tested the speed of the full pipeline from image to
classification. We show results on images from the Berke-
ley dataset and Caltech 101. The Berkeley images are
321 × 481, The Caltech 101 images were resized so that
the largest size was at most 300, with the aspect ratio
fixed. With 5 nonzero coefficients and depth16 tree, we
get the results in Table 3.4. The entire dataset of9145
images in Caltech 101 was processed in4 minutes and
48 seconds with2048 features and in5 minutes and35
seconds with8092 features. This corresponds to31.75fps
and27.3fps respectively.

We also test the speed of just the sparse coding3. Cod-
ing 15000 sift vectors with a depth 16 tree and 5 nonzeros
per x takes .034 seconds with one core, and .018 with
four. In comparison, SPAMS with a dictionary of size
1024 costs .898 seconds using four cores. This is not ex-
actly a fair test, as SPAMS must calculate a Cholesky de-
composition of the Gram matrix of the dictionary when
it runs, and this could be cached; however, simply multi-
plying the dictionary matrix by the data vectors takes .294

3This test was done on a quad core intel i5 running 64 bit Linux,with
4 gigs of ram; both our code and SPAMS were run as a mex file through
Matlab

seconds. As the size of the dictionary increases, this will
increase, but our method will not get any slower.

4 Conclusion

In this paper we presented a fast approximate sparse cod-
ing algorithm and use it to build an accurate real time ob-
ject recognition system. Our contributions can be summa-
rized into four parts. 1) We describe a general method for
learning the groups for greedy structured sparse coding
using a generalization of LLoyd’s algorithm and SOMP.
2) We use this method to design a fast approximation of
greedy sparse coding that uses a tree structure for infer-
ence. 3) We give a fast approximate implementation of the
SIFT descriptor. 4) These algorithms together allow as to
build a real time object recognition system in the frame-
work of [2]. It processes the entire Caltech 101 dataset in
under 5 minutes (with images resized so that larger size is
300 pixels). As far as we know this is the first time that
a fast implementation of this type of system has been put
together with comparable accuracy.

We see many possible directions in the future both for
improving the group sparse coding algorithm and apply-
ing our system to vision. We would like to learn the hash
or tree, rather than build it before the dictionary training.
We would like to train the system on larger datasets and
work on real time object detection (as opposed to classi-
fication). At this speed the algorithm allows us to process
around 2 million medium sized images (300× 400) in 24
hours on a single computer. The object detection should
also be feasible given that the expensive part calculation
of features at different parts of the image from which de-
tection is calculated - is fast.

References

[1] C. Schmid S. Lazebnik and J. Ponce, “Beyond bags of
features: Spatial pyramid matching for recognizing natural
scene categories”, inCVPR’06, 2006.

[2] Jianchao Yang, Kai Yu, Yihong Gong, and Thomas Huang,
“Linear spatial pyramid matching using sparse coding for
image classification”, inCVPR’09, 2009.

[3] B.A. Olshausen and D. Field, “Emergence of simple-cell
receptive field properties by learning a sparse code for nat-

8

hashedm = 5 hashedm = 10 hashedm = 5, R.T. hashedm = 10 R.T. OMPm = 5 OMPm = 10

K = 1024 .722± .011 .704± .010 .710± .007 .697± .010 .725± .008 .721± .010
K = 2048 .735± .007 .731± .011 .723± .007 .716± .005 .747± .008 .738± .008
K = 4096 .741± .011 .740± .006 .736± .005 .724± .004 .754± .008 .757± .010
K = 8092 .751± .009 .739± .003

Table 1: Caltech accuracies and standard deviations over 10random splits. The first two columns of each table
correspond to the hashed sparsed coding run with5 or 10 nonzero entries, on Lazebnik’s sift. The next two columns
correspond to the “real time” system, hashed sparse coding run on our approximate sift, and the last two columns
correspond to OMP, trained and coded with SPAMS[20] on Lazebnik’s sift. Each row corresponds to the number of
atoms in the dictionary.

hashedm = 5 hashedm = 10 hashedm = 5, R.T. hashedm = 10 R.T. OMPm = 5 OMPm = 10

K = 1024 .792± .006 .789± .004 .786± .004 .770± .007 .801± .006 .802± .004
K = 2048 .807± .006 .800± .004 .796± .007 .788± .007 .814± .006 .813± .006
K = 4096 .810± .007 .810± .004 .807± .003 .804± .004 .826± .007 .822± .007
K = 8092 .811± .004 .815± .004

Table 2: 15 scenes accuracies and standard deviations over 10 random splits. The first two columns of each table
correspond to the hashed sparsed coding run with5 or 10 nonzero entries on Lazebnik’s sift. The next two columns
correspond to the “real time” system, hashed sparse coding run on our approximate sift, and the last two columns
correspond to OMP, trained and coded with SPAMS[20] on Lazebnik’s sift. Each row corresponds to the number of
atoms in the dictionary.

321× 481 pixel images Caltech 101 (on 4 cores)
1 core (s) 4 cores (s) 1 core (fps) 4 cores (fps) total time (m:s) (fps) performance

SIFT 0.039 0.017 25 59 - - -
SIFT+TreeSC+pyramid 0.143 0.045 7 22.5 - - -

full (1024) 0.145 0.0465 6.9 21 4:01 38 .710± .007
full (2048) 0.1473 0.050 6.8 20 4:45 32 .723± .007
full (4096) 0.1495 0.052 6.7 19 4:42 32 .736± .005
full (8092) 0.155 0.0565 6.4 18 5:35 27 .739± .003

Table 3: Speeds of different parts of the system and different dictionary sizes on321 × 481 pixel Berkeley dataset
images and Caltech 101 images. The times are for single framein seconds. Frame rates are the inverses and are in
frames per second. The total time is the time to process the entire Caltech 101 datasets consisting of9145 images
(minutes:seconds). The Caltech 101 images were pre-resized so that largest side is300 pixels. The last column is
the recognition performance when trained on30 training images per category. (The speeds vary probably dueto disc
access and are faster after one or more sweeps through the dataset).

9

ural images”, Nature, vol. 381, no. 6583, pp. 607–609,
1996.

[4] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An al-
gorithm for designing overcomplete dictionaries for sparse
representation”,IEEE Transactions on Signal Processing,
vol. 54, no. 11, pp. 4311–4322, 2006.

[5] Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann Le-
Cun, “Fast inference in sparse coding algorithms with ap-
plications to object recognition”, Tech. Rep. CBLL-TR-
2008-12-01, Computational and Biological Learning Lab,
Courant Institute, NYU, 2008.

[6] K. Yu J. Yang and T. Huang., “Efcient highly overcom-
plete sparse coding using a mixture model.”, inEuropean
Conference on Computer Vision, 2010.

[7] Y. Boureau, N. La Roux, F. Bach, J. Ponce, and Y. LeCun,
“Ask the locals: multi-way local pooling for image recog-
nition”, in International Conference on Computer Vision,
2011.

[8] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach, “Prox-
imal methods for sparse hierarchical dictionary learning”,
in International Conference on Machine Learning (ICML),
2010.

[9] Seyoung Kim and Eric P. Xing, “Tree-guided group lasso
for multi-task regression with structured sparsity”, in
ICML, 2010, pp. 543–550.

[10] Laurent Jacob, Guillaume Obozinski, and Jean-Philippe
Vert, “Group lasso with overlap and graph lasso”, inPro-
ceedings of the 26th Annual International Conference on
Machine Learning, New York, NY, USA, 2009, ICML ’09,
pp. 433–440, ACM.

[11] Richard G. Baraniuk, Volkan Cevher, Marco F. Duarte, and
Chinmay Hegde, “Model-Based Compressive Sensing”,
Dec 2009.

[12] Anna C. Gilbert, Martin J. Strauss, and Joel A. Tropp, “Si-
multaneous Sparse Approximation via Greedy Pursuit”,
IEEE Trans. Acoust. Speech Signal Process., vol. 5, pp.
721–724, 2005.

[13] R. Ostrovsky, Y. Rabani, L. Schulman, and C. Swamy,
“The effectiveness of lloyd-type methods for the k-means
problem”, inFOCS 2006, 2006.

[14] S. Dasgupta and Y. Freund., “Random projection trees and
low dimensional manifolds.”, inSTOC 2008, 2008.

[15] R. Vidal, “Subspace clustering”,IEEE Signal Processing
Magazine, vol. 28, pp. 52–68, 2011.

[16] W. Allard, G. Chen, and M. Maggioni, “Multiscale geo-
metric methods for data sets II: Geometric multi-resolution
analysis”, to appear in Applied and Computational Har-
monic Analysis.

[17] Junzhou Huang, Tong Zhang, and Dimitris N. Metaxas,
“Learning with structured sparsity”, inICML, 2009, p. 53.

[18] K. Gregor and Y. LeCun, “Learning fast approximations
of sparse coding”, inInternational Conference on Machine
Learning (ICML), 2010.

[19] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui
Wang, and Chih-Jen Lin, “LIBLINEAR: A library for
large linear classification”,Journal of Machine Learning
Research, vol. 9, pp. 1871–1874, 2008.

[20] ”, http://www.di.ens.fr/willow/SPAMS/.

[21] Liang-Tien Chia Shenghua Gao, Ivor Wai-Hung Tsang
and Peilin Zhao, “Local features are not lonely-laplacian
sparse coding for image classification.”, inCVPR 2010,
2010.

10

http://www.di.ens.fr/willow/SPAMS/

	1 Introduction
	2 Hashing and dictionary learning
	2.1 A simple form of structured dictionary learning
	2.2 Learning the groups with simultaneous orthogonal matching pursuit
	2.3 Hashing, quantization, and dictionary learning
	2.4 Discussion of related work

	3 Experiments
	3.1 What do the groups look like?
	3.2 Review of the image classification pipeline
	3.2.1 Sift grid
	3.2.2 Hashed sparse coding.
	3.2.3 Spatial pyramidal pooling.
	3.2.4 Classification.
	3.2.5 Implementation.

	3.3 Accuracy on Caltech 101 and 15 scenes
	3.4 Running speed.

	4 Conclusion

