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Abstract fast approximate algorithm for finding sparse representa-
tions; we use this algorithm to build a system with near
We describe a method for fast approximation of sparstate of the art recognition performance that runs in real
coding. The input space is subdivided by a binary déme. During inference the algorithm uses a tree to as-
cision tree, and we simultaneously learn a dictionary asigin an input to a group of allowed dictionary elements
assignment of allowed dictionary elements for each leafaxid then finds the corresponding coefficient values us-
the tree. We store a lookup table with the assignments ang a cached pseudoinverse. We give an algorithm for
the pseudoinverses for each node, allowing for very fasarning the tree, the dictionary and the dictionary ele-
inference. In the process of describing this algorithm, weent assignment, and along the way discuss methods for
discuss the more general problem of learning the grouthe more general problem of learning the groups in group
in group structured sparse modelling. We show that astructured sparse modelling.
method creates good sparse representations by using it iOne standard formulation of sparse coding is to con-
the object recognition framework cfl[L] 2]. Implementsider N d-dimensional real vector& = {z,...,zy}
ing our own fast version of the SIFT descriptor the wholgnd represent them usidg K -dimensional real vectors
system runs a20 frames per second 321 x 481 sized Z = {z,,..., 2y} using ak x d dictionary matrixi¥’ by
images on a laptop with a quad-core cpu, while sacrifigelving
ing very little accuracy on the Caltech 101 and 15 scenes

benchmarks. argmin Z [[Wzi, — 2|, sit]lzello <q, (1)
k

1 Introduction where]|-||o measures the number of nonzero elements of a
vector; each input vectar is thus represented as a vector
Sparse modelind [3.] 4] has proven to be a useful framewith at mosty nonzero coefficients. While this problem
work for signal processing. Each point from a dataset cda-not convex, and in fact the problem in thevariable is
sisting of vectors in a Euclidean space is represented bj-hard, there exist algorithms for solving both the prob-
vector with only a few nonzero coefficients. Sparse molém in Z (e.g. Orthogonal Matching Pursuit, OMP []) and
eling has lead to state of the art algorithms in image dée problem in both variables (e f-SVD [4]) that work
noising, inpainting, supervised learning, and of paraculwell in many practical situations.
interest here, object recognition. The systems describedt is sometimes appropriate to enforce more structure
in [1,[2,5,[6/ 7] use sparse coding as an integral elemean.”Z than just sparsity. For example, many authors have
Since the coding is done densely in an image with relasted that the solution to the minimization in (1) (and
tively large dictionaries, this is a computationally expeiits [, relaxation) is very unstable in the sense that nearby
sive part of the recognition system, and a barrier to réaputs can have very different coefficients, in part because
time application. The main contribution of this paper is @f the combinatorially large number of possible active sets
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(i.e. sets of nonzero coordinates:f This can be a prob- ticular architecture studied inl[1] 2, [6, 7]. First, SIFT de-
lem in classification tasks. Other times we may know Btriptors are calculated densely over the image. Then (a
advance some structure in the data that the coefficiefuisn of) sparse coding is used to calculate a sparse vector
should preserve. Various forms of structured sparsity atevery location from the corresponding sift vector. Then
explored in[[8[ 9, 10, 11]. each feature is pooled over a small number of spatial re-

A simple form of structured sparsity is given by specgions and the results are concatenated. Finally the labels
fying a list of L allowable active sets, and some functioare obtained using linear SVM or logistic regression.
g:R? s {1,..., L} associating to eachto one of theL We use this pipeline with two modifications. First we
configurations. An example of this is the output of manyrite our own fast implementation of the SIFT descriptor.
subspace clustering algorithms. Thepg,is reordered Second we use our fast algorithm for the sparse coding
and partitioned intaPX = [X; Xs... X1] (whereP is step. The resulting system achieves nearly the same per-
a permutation matrix), so that each blogk is near a formance as exact sparse coding calculation but processes
low dimensional subspace spannediby Supposing for 321 x 481 size images at the rate 26 frames per second
simplicity that each of thé3; are of the same dimensioron a laptop computer with a quad core cpu.
q, then if we seWV = [B;...B; ], the allowable active sets The rest of this paper is organized as follows: Section
are given by{1,...,q}, {¢ + 1, ...,2¢}, etc. By setting 2, we discuss greedy structured sparse modeling, and de-
the allowable active sets to the blocks, and the funggiorscribe in depth how to train a model that learns the struc-
to simply map each point to its nearest subspace (sayure, and that respects a given set of groups given by a
the standard sense of Euclidean projections), then we geé. In section 3, we show experiments on image patches
an example of structured sparsity as described above; thigualitatively demonstrate what learned groups look like
sort of method is used in object recognitionlin [6]. and then we apply our methods to object recognition.

In this work we will try to learn theL configura-
tions as well as the dictionary. We introduce a LLoydx . .. .
like algorithm that alternates between updating the d-ict(ijg HaShlng and dICtIOHaI’y leamlng
nary, updating the assignments of each data point to the . o
groups, and updating the dictionary elements associafed A simple form of structured dictionary
to a group via simultaneous OMP |12]. learning

. At m_ference time, we need a fast. ”.‘e‘h‘)d for d?term'pl_ere we will first suppose that a list df perhaps over-
ing which group arx belongs to. Thisiis computatlonallyIa ping groupssy, ..., Gz, on the coefficients is given.

expensive if there is_ a I_arge number of groups and O‘El at is, if we are learning a representation’6fwith K
needs check the projection onto each group. However,a %ms, eactt; ¢ P({1,... K}, whereP is the set of

specializing the Lloyd type algorithm to the case Whea (lgsubsets of its argument, is specified. We can general-

each group IS compo;eq of a union OT (peThapS onI.y O the LLoyd algorithm forK” means orK flats to this
leaves of a binary decision tree, we will build a fast mfers—ettin After initializing the dictionaryV’, we find the
ence scheme into the learned dictionary. The key ided,Is 9- 9 '

that by using SOMP, we can learn which leaves should udslgtance of éach in X to its projectionF;,» onto the

which dictionary elements as we train the dictionary. an ofi¥, for eachi. Each is associated to thewith

code an input, we march it down the tree until we arri\}ee smallest distance

at the appropriate leaf. In addition to the decision vectors T argminge gy
and thresholds, we will store a lookup table with th_e aCt'\é%d we find the coefficients
set of each leaf as learned above, and the pseudoinverse of
the columns of” corresponding to that active set. Thus 2= (Wg Wg,) "W .
after followingz down the tree we need only make oNngy, o, e ypdaté)” to be the minimum of the convex prob-
matrix multiplication to get the coefficients. lem

Finally, we would like use these algorithms to build an
accurate real time recognition system. We focus on a par-

L}||PG1‘I_I||2’ (2)

argming, Z [|Wz — z||?
x



After associating to each the group that best represents

Algorithm 1 SOMP [12] it, we can turn around and consider all theassociated
function Z = SOMP (X, W, K) to that group. Our task is then to choose a subset of the
Initialize: coefficientsZ = 0, residualR = X, dictionary that best represents that group. A greedy ap-
active sef) = (). proximation to this problem in the least squares sense is
repeat given by the Simultaneous Orthogonal Matching Pursuit
j = argmax; Y |[WIR,| algorithm (SOMP)[1R]. This algorithm proceeds just as a
Q=0Uj standard OMP, but at each iteration, all thassociated to
7 — (W%WQ)A wix a given group have to choose the next dictionary element
R=X_-WZ added to the group together. See algorithim 1.
until X iterations Unfortunately, because neither OMP nor SOMP is
end function guaranteed to find the optimal solution to the NP hard

problems they address, the energy may not decrease at
each iteration with this scheme; however, as usual, we

and repeat. Each of the subproblems either has an expli@ye found that in practice these methods do usually lead
solution or is convex, and so the energy decreases. WHf decrease in the energy. Asiirmeans, it may happen

the training is finished, we defingto be the function that that no group uses a dictionary element; in such a situa-
maps each point i € R< to thei minimizing the error tion one can remove a dictionary element from one of the

of the projection of: onto the span ofV/g;, . groups, find the residual, and replace the unused dictio-

We can also run the same sort of algorithm when fR7Y element by the principal component of the residual.
addition to each groug’ specifying a list of indices, it ~We note that the model presented here can be thought
also specifies a cost for the use of the dictionary elemefits2s a greedy sparse coding version of a “topic model”.
associated to each index. If we choosdacost for each The dictionary elements act as the words, thas the
of the coefficients, we still get explicit updates and tHéocuments, and the groups are the topics. The algorithm
decrease of energy at each round. learns the topics and the dictionary simultaneously.

Note that if the number of groups is very large, it may
be too costly to find the best group for eackxaustively. . . .
However, we can make a greedy approximation by ru‘%l3 Hashmg’ quantization, and dictionary
ning a modified OMP. Here, supposing at iteratiaf the learning
OMP we have an active s@t the available dictionary ele- The main focus of this work will be choosinggthat

ments to add té) are the union of all groups containifiy . . L
) can be computed rapidly and learning a dictionary that re-
It is not necessary to be able to enumerate all the grou

S ; . ! d

to use this method, only to have a subroutine which giV(Se%eCth' we will con$|derg tobea h_ash f_unct|on OR’, ]

Q c {1,... k} can returrJ G. However, using this and hash buckets will be the atomic units of the groups;
) QcaGa M !

L hat is, the groups will either be the hash buckets or will
sort of greedy approximation removes the guarantee tha .
. . € glued together from the hash buckets. This can be con-
the energy decreases at each iteration.

sidered a sort of geometric regularization of the sparse
coding problem: the active set will be forced to remain

2.2 Learning the groups with simultaneous constant on the region @? corresponding to each hash

orthogonal matching pursuit bucket. _ o
Onceyg is chosen, we will learn the dictionary (and per-

In the previous section the groups were specified in dthps groups) as above, but instead of allowing eatih
vance. If we want to learn the groups, we can add a stemose the group that best represents it individuallyzthe
in the algorithm. Now instead of taking the list of groupm a hash bucket will need to choose the group that best
as input, we instead input just the numt€of dictionary represents them together on average. We will also try to
elements and the number of coefficients allowed jper approximate standard greedy dictionary learning; in this



experience is that very few iterations are necessary, and

Algorithm 2 Learning a dictionary and groups really the farthest insertion is suffient; in fact cutting in
Require: dataX, number of dictionary elements ~ random directions (with some additional tricks and ran-
K, number of active coefficients per data pajnt domizations) has been shown to lead to good partitions
number of iterationd, and if desiredg : R% — when the underlying data has a “manifold” structure, see
{1,..,M}. [14]. The number of buckets at the bottom of the tree is
repeat upper bounded b9?; we will choosep small enough so

1: Eachz chooses a group ifil, ..., L} via () that it is simple to store a lookup table with the indices

or by the modified OMP as in Sectibn R.1.gf into the dictionary for each bucket, as well as the decision

is given, all thex in a hash bucket are forced to  vectors for each branch in the tree.

choose the same group. We also could use mappings of the forgiz) =

2: Each group in{1,..., L} chooses subset of  s(h(Hxz + b)), whereH is ap x d matrix, h is some

{1,..., K} usingZ = SOMP (X, W, k). sort of nonlinearity (e.gtanh, orsin), b is an offset, and

3: UpdateW, either via K-SVD, or a least s is a thresholding function []. These mappings require

squares solve. less storage and are somewhat simpler to compute for the
until I iterations same bit depth, but on the data sets we work on, they have

the disadvantage that many of the buckets are often empty
or have very few entries for reasonahle While this
case, there will be one group for every hash bucket. Asn be remedied by simply gluing (nearly) empty buck-
above, and as witli{-means, it may happen that no spaets to nearby full buckets and updating the lookup table,
tial bucket uses a particular group; in that case we can just have found the trees to work better. Note also that un-
pick a bucket at random and use the output of SOMP like in nearest neighbor data structures, it is unnecessary
that bucket to regenerate the unused group. for leaf nodes to keep track of spatially nearby leaves that
Learning how to quantiz&? is a much studied (butare far away in the tree metric, because all we care about
still not completely understood) problem. One commas which dictionary atoms are used at that node.
motivation is to build a data structure allowing nearest After building g and training the dictionary, in order
neighbors from a given data set to be quickly computasbmpute the coefficients of a new data paintwe pass
Another common motivation is to use the buckets of tligthough the tree, obtaining(z). We lookupg(z) in
quantization as words to build bag of words feature repr-table, and this gives an index af columnsQ of
sentations. The relationship between vector quantizatigfn at this point we solve the linear systeWinoz — =
and sparse coding has studied before by many authongf]get the outputs. Alternatively, for each group, we
In particular, K-means is simply, sparse coding with can store Wl Wq)~! (or some stable factorization), or
only the coefficient® and1 allowed, and only 1 nonzero(Wl Wq)~ Wl and just do the requisite matrix multi-
peraﬂ. plications
In this work we will use a2-means tre@ with sub-
divisioqs along medians to d_efi@e We start py taking 2.4 Discussion of related work
the entire data set and runnidgmeans, obtaining cen-
tersc; andc,. We take each data point € Xand find The idea of clustering the input space and then using a
the angle between andc; — co; X is divided at the me- different dictionary for each cluster has appeared several
dian. We then repeat on each of the pieces, continutilges before. As mentioned in the introduction, a simple
until each piece is within a given distance to its mean, example is thek -flats algorithm, or other subspace clus-
a set deptlp, whichever comes first. We initialize ti2e tering algorithms[[15]. There, the subdictionaries serve
means with farthest insertion, as [n [13]. Note that otiie dual purpose of determining the clusters and also find-
» - — . - ing the coefficients for the data points associated to them.
shape gain coding” allows a non-binary coefficient . . .
2Although perhaps not exactly standard usage, we will calidata More recently this technique has been succesfully applied
structure obtained from binary partitions®f a hash to object recognition by [6,]7]. In those works, the clus-




ters are determined hi -means (or a Gaussian mixture3 Experlments
model); in the first, there is a different dictionary for each
cluster, and the code is the size of the union of all the su®-1 \What do the groups look like?
dictionaries, but only the blocks corresponding to the cen-
troids near the input are nonzero. In the second work, tFe get a sense of what kind of groups learned from algo-
dictionaries for each centroid are the same, but the cod#&tiem[2 look like, we train a dictionary on 500,080x 8
still a concatenation of the codes associated to each détage patches, and view the results. The image patches
troid (and are set to zero if the input does not belong &e drawn from the PASCAL dataset, and their means are
that centroid). The current work differes from these ifgmoved. We train a dictionary with 256 elements and
two ways. The first is the use of a fast method for clu§12 groups; each group has 5 dictionary elements in it.
tering, and the second is the use of shared parts acrosdMgetrain using the batch method, with/&SVD update
dictionaries, where the organization of the parts sharif@j the dictionary.
has been learned from the data. After training, some of the dictionary elements are used
by many groups, and others are used by only a few. The
o median number of groups using a given element is 6; 47
In [16] the authors construct a dictionary on the backiements are in exactly 1 group, and 15 are in more than
bone of a hierarchical clustering Wlth fast evaluationqg | figurel we display the dictionary ordered by the
They also use shared parts. However, in that work the paiiinber of groups containing each element; this number

;haring is determined by the tree structure of the clustg{zreases in each column and moving to the right. Unsur-
ing, and not learned. prisingly, “popular” elements that belong to many groups

are low frequency. In this figure we also show the groups

There is now a large literature on structured sparsiﬁ?nta'nmg a few chosen atoms.

Like this work, [11[17] use a greedy approach for struc-
tured sparse coding based on OMP or CoSaMP. Unlié_ez Review of the image classification
this work, they have provable recovery properties when .

the true coefficients respect the structure, and when the pipeline

dictionaries satisify certain incoherence properites. Qyre we will review a standard pipeline for object recog-
the other hand, those works do notattemptto learn the digion [1,[2], while giving details about our implementa-
tionary, and only discuss the forward problem of findings, which streamlines certain components. It consists of
z fromz andW . The works in[8] 9. 10] use an approacthe following parts: 1) Calculation of sift vectors at every
to structured sparsity that allows for convex optimizatiqgcation (sift grid) 2) Calculation of the feature vectons f

in 2. In these works the coefficients are arranged intGsgery sift vector using the "tree sparse coding” described
predetermined set of groups, and the sparsity term pe%t%k)ve, 3) Spatial pyramidal max pooling 4) logistic re-

izes the number of active groups, rather than the numBgession or SVM classification. Care is taken to calculate
of active elements; the dictionary is trained to fit the datgach of these parts efficiently.

None of these works attempt to learn the group structure

along with the dictionary
3.2.1 Siftgrid

Finally we note that other works have explored the id&¥e run tests with two different implementations of dense
of accelerating sparse coding by training the dictionagift. The first is matlab code by L. Lazebnik [1]. We also
along with an approximation method, e.gl [[5] 18]. In thése a fast, approximate c++ version that we coded our-
first, the approximation is via a single layer feed forwagklves. The details are as follows:
network, and in the second, via a multilayer feed forward The x and y derivatives. We convolve the image with
network with a shrinkage nonlinearity. This work usestavo 5 x 5 filters that are the: andy derivatives of Gaus-
tree and lookup table instead. sian. This results in the values of and y derivatives



Figure 1: 256 dictionary atoms in 512 groups trained by allgor[2 on 500,008 x 8 image patches. The group
structure and dictionary were trained simultaneously. dibonary elements, shown on top, are ordered by popularit
(the number of groups they belong to). Underneath, for eatiodary atom in a colored square, we show all of the
groups containing it. These groups can be thought of asc¢sdpiess popular atoms tend to be more specialized.

I, = dI/dy,I, = dI/dx of the image intensity at ev-is the feature number and z is the location. The output
ery location of the image. value willbew,, y » = vn 2y 20+Vn,2y,2241+VUn,2y+1,20+
Orientation histogram.  This operation takes theUn2v+1.20+1- ThiS s efficient since it only involves addi-
two gradient valuesl,, I, at every location and tions. Nott_a that it results in output values that are essen-
smoothly bins them into histogram of eight orientatiorf@!ly four times larger the input values at each location.
(0,7/4,...,7r/4) as follows. First we calculate the ori- Smoothing We convolve each feature with
entation angley = arctan(I,/I,,) + (1 — sign(z))/2 [[1,1],[1,1]] filter. This is calculated using

. U =wv v v v again
and magnituden = /12 +12. Let ¢y(n) = nw/4, “¥7. ny,e T Ungy,otl T Unytlat Unytlotl 89
Y resulting in essentially four times larger output values

n = 0,...,7. The final set of values is(n) = m * then input values.

cos(¢ — ¢n(n))3. where thez;, = zif z > 0and0  compining and normalizing into sift vector Now
otherwise. Most of these operations are computatiofs optain128 component sift vector from every loca-
ally expensive and therefore we precompute these Vighy, of the features maps from the previous step. At ev-
ues. We bin thd, and/, v2alues Into500 bins each and gy |cation(x, ) (of the subsampled feature image) we
for every combinationf00° values) we calculate(n), - first ohtain1 28 component vector by concatenating the

n=0,...,7. The bin range is chosen so that the valuggmponent vectors at the following locatiofis+ 2i, y +
of I, andI, never fall outside the range of the binning sgj) i =1,2,3,4andj = 1,2,3,4. Then we normalize

no checks are needed. After this computation we oaifyjs yector as follows. If the norm of the vector is smaller
values at every location of the image. then the threshold, = 1 we keep the vector. If it is
Smooth subsamplingWe subsample the resulting fealarger we normalize it to have sizg. The result is placed
tures by two in each direction. Specifically lgf,, ., be into the appropriate location of the final, x m, x 128
the input value obtained from the previous step, wherevector, wheren,, , ~ n, /2 wheren, , are the dimen-



sions of the original image. The dimensions are slightlige final feature vector analogously. However it is more
smaller due to boundary effects. This last operation (cosfficient now to use thd x 4 vector obtained and pool
bining and normalizing) is the most expensive operatidninto 2 x 2 regions and then pool the result intox 1

in the sift grid calculation and we took care to implememegions. The final output vector is concatenation of these
it efficiently. Note that in Lazebnik’s (and Lowe’s origi-vectors, resulting im s x 21 vector.

nal) sift the smoothing is done over a larger neighborhood

with inputs near the center weighted more then those fdr 4 cjassification.

ther. This makes the output more smoothly varying un-

der translations; in our case we used equal weighting ostbsequently a logistic regression classifier is trained on
small neighborhoods for computational efficiency. the feature vectors using the liblinear package [19].

3.2.2 Hashed sparse coding. 3.2.5 Implementation.

We used the main procedure of this paper to calcul®ech the following operations we implemented using a
feature vector for each sift vector. Each such computaulticore processing: all steps of the sift, finding the
tion consisted essentially of depthé-multiplications of group using tree, and multiplying by pseudo-inverses. In
sift and tree decision vectord( x 128 computations) each of these steps separately the image/feature image
followed by muiltiplication of the sift vector by the apwas split inncoresparts and send to different core. The
propriate pseudo-inverse matrix (typicallg8 x 5 mul- system was implemented in C++. Blas in the Accelerate
tiplications) resulting in total of approximatel28 x 21 framework was used in the tree sparse coding. We report
multiplications. For2048 dimensional feature vector thisthe result on a macbook pro, with a 2.3 Ghz Intel Core i7
compares tal28 x (2048 + 4) multiplications that are processor with 4 cores. The observed speedup compared
needed for omp resulting in almos00-fold reduction. to single core was aboat

Our model was trained oh x 10° randomly selected sift  We also test the run time of just the coding, compared
vectors from Pascal 2011 dataset. with coding using OMP with the SPAMS packa@el[20].

323 Spatial pyramidal pooling. 3.3 Accuracy on Caltech 101 and 15 scenes

We used the same spatial pyramidal max pooling as in [\X/

. : test the accuracy of the standard pipeline with the
Lan]. Since the feature vectors are in the sparse forma - . .

: o . ... hashed dictionary and with standdgdsparse coding on
the resulting computation is very efficient and negligib

o object recognition benchmarks, Caltech 101 [] and

compared to either sift or tree sparse coding. _The deti\% scenes []. As mentioned before, for all data sets, we
are as follows. We need to calculate the maximum over .

icti 6
the featuresin x 1, 2 x 2 and4 x 4 regions of the feature train the hashed dictionary anx 10° randomly selected

vector obtained in the previous step. First we split th%ft vectors from the Pascal 2011 dataset. Caltech 101

) . consists of 101 image categories and approximately 50
vector into4 x 4 regionsR, . Letn; be number of g g PP y

. . images per category; many classes have more trainin
features, typicall2048, vy, be the input feature Vecmrexa?n Iez and Wg d())/'the usyual normalization of error b X
andusyr . o' = 1,2,3,4, 1 = 1,2,3,4 be thed x 4 P y

| : class size. We use 30 training examples per class. The 15
part of the final feature vector. We calculataising the . : .
following. scenes database contalqs 15 categories and 4485 images,
and between 200 to 400 images per category. We use 100
©) training images per class on this data set. For each data
set, we run over 10 random splits and record the mean and
This calculation is done by looping over all feature vectossandard deviation of the test error. We record the results
and indices and filling the pooled feature vector so theTable$ 3.4 and 3l4. The first two columns of each table
number of computations is of the order of the total numbesrrespond to the hashed sparsed coding run svith10
of nonzero features. We can gek 2 and1 x 1 parts of nonzero entries on Lazebnik’s sift. The next two columns

Uf,aly =M% yeR,, Vf2y



correspond to the “real time” system, hashed sparse cedeonds. As the size of the dictionary increases, this will
ing run on our approximate sift, and the last two columirscrease, but our method will not get any slower.
correspond to OMP, trained and coded with SPAMS[20]
on Lazebnik’s sift. Each row corresponds to the number
of atoms in the dictionary. As far as we know, state & Conclusion
the art with single features on grayscale images on Cal-
tech 101 with 30 training examples per category is .778,this paper we presented a fast approximate sparse cod-
in [[7], and .898 for the 15 scenes, [n [21]. Both of thesag algorithm and use it to build an accurate real time ob-
methods use the same basic pipeline as this work, but wébt recognition system. Our contributions can be summa-
variations on the sparse coding; our method can be useéd into four parts. 1) We describe a general method for
in conjuction with their methods. learning the groups for greedy structured sparse coding
As has been observed by other authors, increasing tsing a generalization of LLoyd’s algorithm and SOMP.
size of the dictionary only seems to increase the accuragyWe use this method to design a fast approximation of
Note that for our method, the only places that the size @feedy sparse coding that uses a tree structure for infer-
the dictionary affects the computational cost is in traignce. 3) We give a fast approximate implementation of the
ing, where we use an SOMP, and in the final classificati&hFT descriptor. 4) These algorithms together allow as to
stage. The last component is small for these experimemis)d a real time object recognition system in the frame-
but if we wanted to use the system for detection at mamprk of [2]. It processes the entire Caltech 101 dataset in
locations at an image, it would start to be significant. under 5 minutes (with images resized so that larger size is
300 pixels). As far as we know this is the first time that
] a fast implementation of this type of system has been put
3.4 Running speed. together with comparable accuracy.
We tested the speed of the full pipeline from image to e see many possible d|rect(|j(_)ns 'T thgt:]utureotl)oth flot
classification. We show results on images from the Berka:Proving fhe group sparse coding aigorithm and apply

. ing our system to vision. We would like to learn the hash
ley dataset and Caltech 101. The Berkeley images ar%ree, rather than build it before the dictionary training

321 x 481, The Caltech 101 images were resized so t & . X
. . e would like to train the system on larger datasets and
the largest size was at most 300, with the aspect ratiQ

fixed. With 5 nonzero coefficients and depth tree, we v_vorlf on real tl_me object detectpn (as opposed to classi
. . fication). At this speed the algorithm allows us to process

get the results in Table_3.4. The entire dataseflof5 - . . . .

: . L around 2 million medium sized image¥)( x 400) in 24

images in Caltech 101 was processed:iminutes and hours on a single computer. The object detection should

48 seconds witl2048 features and is minutes and35 g puter. )

seconds witl8092 features. This correspondsdb.75fps also be feaS|bI¢ given that the expensive part cal_culatlon
. of features at different parts of the image from which de-
and27.3fps respectively.

We also test the speed of just the sparse C&Ji@@d- tection is calculated - s fast
ing 15000 sift vectors with a depth 16 tree and 5 nonzeros
per z takes .034 seconds with one core, and .018 wiReferences
four. In comparison, SPAMS with a dictionary of size
1024 costs .898 seconds using four cores. This is not eqj C. Schmid S. Lazebnik and J. Ponce, “Beyond bags of
actly a fair test, as SPAMS must calculate a Cholesky de- features: Spatial pyramid matching for recognizing ndtura
composition of the Gram matrix of the dictionary when  scene categories”, iBVPR 06, 2006.
it runs, and_th_is could be_cached; however, simply multi[z] Jianchao Yang, Kai Yu, Yihong Gong, and Thomas Huang,
plying the dictionary matrix by the data vectors takes .294 * «| jnear spatial pyramid matching using sparse coding for
image classification”, itVPR' 09, 2009.

3This test was done on a quad core intel i5 running 64 bit Limith ) )
4 gigs of ram; both our code and SPAMS were run as a mex filegtvou [3] B.A. Olshausen and D. Field, “Emergence of simple-cell
Matlab receptive field properties by learning a sparse code for nat-



| hashedn =5 | hashedn = 10 || hashedn =5, R.T. | hashedn = 10R.T. | OMPm =5 | OMPm =10 |

K =1024 722+ .011 .704+ .010 .710+ .007 .697+ .010 .725+.008 | .721+.010
K = 2048 735+ .007 731+ .011 723+ .007 7164+ .005 747+ .008 | .738+.008
K = 4096 741+ .011 .740+ .006 736+ .005 724+ .004 754+ .008 | .757+.010
K = 8092 .751+ .009 .739+ .003

Table 1: Caltech accuracies and standard deviations ovearidbm splits. The first two columns of each table
correspond to the hashed sparsed coding run wih10 nonzero entries, on Lazebnik’s sift. The next two columns
correspond to the “real time” system, hashed sparse codim@m our approximate sift, and the last two columns
correspond to OMP, trained and coded with SPAMS[20] on Laiebsift. Each row corresponds to the number of
atoms in the dictionary.

| hashedn =5 | hashedn = 10 || hashedn =5, R.T. | hashedn = 10R.T. | OMPm =5 | OMPm =10 |

K =1024 .792+ .006 .789+ .004 .786+ .004 770+ .007 .801+ .006 | .802+ .004
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K = 4096 .810+ .007 .810+ .004 .807+ .003 .804+ .004 .826+ .007 | .822+ .007
K = 8092 .811+ .004 .815+ .004

Table 2: 15 scenes accuracies and standard deviations @wvend@om splits. The first two columns of each table
correspond to the hashed sparsed coding run vih10 nonzero entries on Lazebnik’s sift. The next two columns
correspond to the “real time” system, hashed sparse codim@m our approximate sift, and the last two columns
correspond to OMP, trained and coded with SPAMS[20] on Laiebsift. Each row corresponds to the number of
atoms in the dictionary.

321 x 481 pixel images Caltech 101 (on 4 cores)
1 core (s)| 4 cores (s)|| 1 core (fps)| 4 cores (fps)|| total time (m:s)] (fps) | performance]
SIFT 0.039 0.017 25 59 - - -
SIFT+TreeSC+pyramid 0.143 0.045 7 22.5 - - -
full (1024) 0.145 | 0.0465 6.9 21 401 38 | 710 £ .007
full (2048) 0.1473 0.050 6.8 20 4:45 32 723 £ .007
full (4096) 0.1495 0.052 6.7 19 4:42 32 | .736 £ .005
full (8092) 0.155 0.0565 6.4 18 5:35 27 .739 + .003

Table 3: Speeds of different parts of the system and diffedetionary sizes or321 x 481 pixel Berkeley dataset
images and Caltech 101 images. The times are for single fraiseconds. Frame rates are the inverses and are in
frames per second. The total time is the time to process ttieeé@altech 101 datasets consistingdafls images
(minutes:seconds). The Caltech 101 images were pre-tes@¢hat largest side 00 pixels. The last column is
the recognition performance when trained3drtraining images per category. (The speeds vary probablyaldisc
access and are faster after one or more sweeps through &setjat
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