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Abstract. In this paper, we show how to harness both low-rank and
sparse structures in regular or near regular textures for image comple-
tion. Our method leverages the new convex optimization for low-rank
and sparse signal recovery and can automatically correctly repair the
global structure of a corrupted texture, even without precise informa-
tion about the regions to be completed. Through extensive simulations,
we show our method can complete and repair textures corrupted by er-
rors with both random and contiguous supports better than existing
low-rank matrix recovery methods. Through experimental comparisons
with existing image completion systems (such as Photoshop) our method
demonstrate significant advantage over local patch based texture synthe-
sis techniques in dealing with large corruption, non-uniform texture, and
large perspective deformation.

Keywords: Low-Rank and Sparse Matrix Recovery, Texture Comple-
tion, Image Repairing.

1 Introduction

Image completion has been an important but challenging problem widely studied
in computer vision, computer graphics, and image processing in recent years.
Given an image, with intensity values of certain regions missing (due to occlusion
or corruption), the goal is to automatically recover or regenerate the missing
pixel values in a way that the resulting image looks visually acceptable. This is
inherently an extremely ill-conditioned problem as the statement of the problem
does not ensure there will be a well-defined unique solution – in theory, one can
fill in arbitrary values for the missing entries.

To make this problem more well-defined, people typically seek a solution such
that the completed image is in some sense statistically or structurally consistent.
More specifically, it requires that the pixel values of the missing regions follow
the same statistical or geometric structures as the rest of the image. In the
literature, based on different assumptions on the (local or global) statistics or
structures of the input image, many methods which can directly or indirectly
deal with image completion problems have been developed for different types of
images or textures: from the synthesis of stationary stochastic random textures
[1,2,3], to the inpainting of piece-wise smooth natural images [4,5,6] , and to the
synthesis of highly symmetric and highly-structured regular textures [7].
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Fig. 1. A sample result produced by our method. Left column: input image,
where the green window denotes the input window to our system. Middle column:
estimated support of corruption. Right column: repaired image.

In this paper, we focus on the class of images or textures whose structures
have very low intrinsic dimensionality or complexity. More specifically we con-
sider textures that when viewed as samples or signals in a high-dimensional
space, span a very low-dimensional subspace or have a very sparse representa-
tion (w.r.t. certain basis). We call such textures as “Sparse Low-Rank Textures.”
A direct motivation for considering such a texture model is that many regular,
symmetric patterns commonly seen in man-made environments (e.g. building fa-
cades and indoor decorations) are naturally sparse and low-rank. Nevertheless,
this simple texture model actually encompasses a much richer class of textures.
As we will see, our method works equally well when the structure to be com-
pleted is not strictly periodic or stochastically stationary. In fact, our method
works even when the regular patterns are distorted by certain deformations such
as a nonuniform scaling or a perspective transformation – which is typically the
case for completing real images.

Another differentiating factor for image completion methods is their assump-
tions about the support of the missing pixels/regions, or equivalently, what types
of missing regions they intend to handle. Are the missing pixels distributed uni-
formly or clustered as blocks in the image, how large can the missing regions be
or do we want to extend the texture indefinitely? The last case is often referred
to as texture synthesis, which we do not consider in this paper. Actually, almost
all image completion and inpainting methods need to know the exact support
of the missing pixels, and many are very sensitive to whether the support is
given precisely (see Figure 3 for an example). This requirement has severely lim-
ited the applicability of image completion methods in practical scenarios. Very
often we do not know the exact pixels in an image that need to be repaired.
It is desirable that a method should be able to automatically identify and re-
pair some corrupted or occluded regions whose statistics or structures are not
consistent with the rest (say tree branches or a street sign blocking a building
facade). When the support of the corrupted regions is only partially known or
entirely unknown, we refer to the task as image repairing, to distinguish from
the conventional image completion tasks with known support.

Contributions of This Paper. In this paper, we leverage recent breakthroughs in
convex optimization for recovering sparse and low-rank structures and develop
effective and efficient methods that can automatically repair sparse low-rank
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textures despite unknown or partially known corruptions and despite deforma-
tions (see Figure 1 for an example). We will show that by simultaneously enforc-
ing the low-rank and sparse priors on a recovered image, we are able to handle
much higher level of corruptions than conventional low-rank recovery techniques.
We will show with extensive simulations and experiments that for the class of
sparse low-rank textures, our method achieves superior performance over exist-
ing image inpainting or image completion methods, even when the support of the
corruption is provided for these methods. In particular, we compare thoroughly
how well these methods can handle random errors, random block errors, large
contiguous errors, or deformations. In the end, we show with numerous chal-
lenging examples how our method is readily applicable to many realistic image
completion and repairing tasks.

Relations to Previous Work. There are many types of methods developed for
image inpainting, completion or texture synthesis.

The first class of methods use generative parametric models (say stochastic
PDEs) to describe the structures of the image signals. The completion processes
essentially relies on the generalizability of such models and extrapolate the miss-
ing part of the image from the given one. For example, Bertalmio et al. [8] fills
holes in an image by propagating image Laplacians in the isophote direction
continuously from the exterior. Their PDE-based method has it roots in the
Navier-Stokes equation for fluid dynamics [9]. Oliveira et al. [10] proposed an
image-based algorithm based on an isotropic diffusion model extended with the
notion of user-defined diffusion barriers. Levin et al. [11] also performed image
inpainting in the gradient domain using an image-specified prior.

Recently, therehavealso beenworks (see [12,13,14] and references therein)which
perform inpainting based on sparse structures of image patches: patches inside the
missing pixel region are synthesized as a sparse linear combination of elements from
a patch dictionary. Furthermore, Bugeau et al. [15] combine geometric partial dif-
ferential equation (PDEs) and patch-based texture synthesis in a variationalmodel
and performs image inpainting by minimizing the proposed energy function.

The above two classes of inpainting techniques work very well for natural
images corrupted in small regions or thin gaps. However, for large missing regions
that this paper will consider for image completion or repairing, they tend to
generate blurring artifacts or often are not even applicable. Thus in our paper
we will not make direct comparison with them.

In order to complete a large missing region or even extend a texture indef-
initely, one must relies on more restrictive assumptions that the statistics or
structures of the textures are stationary (for random textures) or homogenous
(for regular patterns). The third class of methods rely on such an assumption
and they essentially borrow and stitch together similar pixels or patches from
given areas to complete the image. Such methods are widely used in computer
graphics [1,2,3], [16,17,5]. While these methods are designed to work for random
textures, Liu et al. [7] shows how the patch-based techniques can be extended
to work for regular or near regular symmetric patterns by explicitly estimating
the underlying symmetric structures of the texture. In this work, we also work
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on regular or near regular textures. However, we will take a holistic approach
that does not use any local statistics or patches. In addition, we directly impose
regularity on the entire texture in terms of low-dimensionality and sparseness
and hence completely bypass the difficult symmetry-estimation step.

Based on these studies, especially patch-based techniques, there are several
works done specifically for image completion. Criminisi et al. [6] employs an
exemplar-based texture synthesis technique modulated by a unified scheme for
determining the fill order of the target region. Sun et al. [5] utilize user inter-
action to specify the structure information in the image and help to do image
completion. Komodakis et al. [4] treats image completion, texture synthesis and
image inpainting in a unified manner by posing all of the above image-editing
tasks in the form of a discrete global optimization problem. Many effective im-
age completion systems are based such patch-based techniques, including Patch
Match (PM) that used by Photoshop [18], Image Completion with Structure
Propagation (SP) developed by Microsoft [5], and Shift Map (SM) [19].

2 Problem Formulation and Technical Approach

In this section, we describe the mathematical model for the class of sparse low-
rank textures considered in this paper. We formulate the objective of completing
or repairing a sparse low-rank texture and show how to minimize the objective
via its convex surrogate. We employ the efficient Linearized Alternating Direc-
tion Method (LADM) [20] for solving the convex optimization program.

2.1 Sparse Low-Rank Texture Inpainting

Consider a 2D texture as a matrix I ∈ R
m×n, it is called a low-rank texture if

r � min(m,n), where r = rank(I). All regular, symmetric patterns belong to
this class of textures. For such textures, image completion becomes a low-rank
matrix completion problem. Suppose D ∈ R

m×n is the given image and Ω is the
set of observed entries (pixels). The goal is is to recover an image I of the lowest
possible rank that agrees with D on all the observed pixels. This completion
problem is equivalent to following problem:

min
I

rank(I), s.t. Iij = Dij , ∀(i, j) ∈ Ω, (1)

Although this is in general an NP-hard problem, in a recent seminal paper [21],
Candès et al. has proved that under very mild conditions, even when a significant
portion of entries are missing, the optimal low-rank solution can be found by
solving the convex surrogate to the above problem:

min
I

‖I‖∗, s.t. PΩ(I) = PΩ(D), (2)

where ‖ · ‖∗ is the nuclear norm of a matrix (i.e. the sum of singular values) and
PΩ is a linear operator that restricts the equality only on the entries belong to Ω.
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Fig. 2. An example of rank’s insufficiency. These three images have exactly the
same rank, but they go from purely regular, to nearly regular, and to nearly random
textures.

Although being low-rank is a necessary condition for most regular, structured
images, it is certainly not sufficient. Figure 2 shows three images that have
exactly the same rank. Obviously the first two are more smooth, realistic textures
than the third one. If we consider a rank-r texture as a 2D function I(x, y), define
on R

2. Then I(x, y) can be factored as
∑r

i=1 gi(x)hi(y). If I represents a more
realistic regular or near regular pattern, it is typically piecewise smooth. Hence,
the functions gi and hi are not arbitrary and they have additional structures.
Piecewise smooth functions are typically sparse in certain transformed domain
(say by Fourier or wavelet transform).

So, if we factorize the matrix I as I = UV T , where U and V can be represented
as U = B1X1 and V = B2X2 for some bases (B1, B2). If the bases are properly
chosen, both X1 and X2 will be sparse. Or equivalently, the matrix W = X1X

T
2

will be a sparse matrix, which has the same (low) rank as I since I = B1WBT
2 .

Hence, if we want the recovered image to be both low-rank and sparse (in
certain transformed domain), we could modify the above convex program (2) as
follow to impose additional spatial structures:

min
I,W

‖I‖∗ + λ‖W‖1 s.t. PΩ(I) = PΩ(D), I = B1WBT
2 , (3)

where λ is a weighting parameter which trades off the rank and sparsity of the
recovered image. If we further assume that the bases used are orthonormal, we
have ‖I‖∗ = ‖B1WBT

2 ‖∗ = ‖W‖∗. The convex program (3) is equivalent to:

min
W

‖W‖∗ + λ‖W‖1 s.t. PΩ(B1WBT
2 ) = PΩ(D). (4)

2.2 Sparse Low-Rank Texture Repairing

Almost all previous methods for image inpainting or completion (e.g., [8], [12],
[13], etc.) need information about the support Ω of the corrupted regions. This
information is usually obtained through manually marked out by the user or de-
tected by other independent methods. This often severely limits the applicability
of all the image completion or inpainting methods.

In many practical scenarios, the information about the support of the cor-
rupted regions might not be known or only partially known. Hence the pixels in
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the given region Ω can also contain some corruptions that violate the low-rank
and sparse structures. We could model such corruptions as a sparse error term
E, and solve the following optimization:

min
W

‖W‖∗ + λ‖W‖1 + α‖E‖1 s.t. PΩ(B1WBT
2 + E) = PΩ(D). (5)

Notice that if we know nothing about the corruption areas, we only need to set Ω
to be the entire image. Just like Robust PCA [22], the above convex program will
decompose the image into a low-rank component and a sparse one. Of course,
the nonzero entries in estimated E can help us to further refine the support Ω.
For instance, we could simple set:

supp(E)
.
=

{
(i, j) ∈ Ωc, |Eij | > ε;
(i, j) ∈ Ω, |Eij | ≤ ε.

(6)

for some threshold ε > 0. Or we could estimate the support of E using more
sophisticated model to encourage additional structures such as spatial continuity.
We will discuss one such option in Section 2.4.

We could further iterate between the image completion and support estioma-
tion:

(W i, Ei) = argminW,E ‖W‖∗ + λ‖W‖1 + α‖E‖1
subject to PΩi(B1WBT

2 + E) = PΩi(D),
Ωi+1 = Ωi − supp(Ei+1),

(7)

where α is a weighting parameter between sparsity and low-rankness.
We could iterate the above process till convergence and obtain the repaired

image I∗ = B1W
∗BT

2 . In practice, we also notice a good side effect of adding the
additional E term, we can not only obtain the support of the corrupted regions
but also can reduce noise on the repaired texture image I∗.

2.3 Solution via Linearized Alternating Direction Method

Our optimization requires simultaneously minimizing the nuclear norm and 1-
norm of a matrix, which has been explored in the work of [23] for data clustering.
Hence we could utilize the same algorithm suggested by that work: the linearized
alternating direction method with adaptive penalty[24]. This method has proven
to be one of the fastest algorithms for solving various low-rank matrix completion
and recovery problems. To adopt LADMAP method to our problem, we need to
make our objective function separable. Thus we introduce an auxiliary variable
A to replace W in the low-rank term, which turns the optimization problem into
the following:

minA,E,W ‖A‖∗ + λ‖W ‖1 + α‖E‖1 s.t. A = W, PΩ(B1WBT
2 + E) = PΩ(D). (8)

LADM works by minimizing the augmented Lagrangian function of the above
problem:

Lμ(A,W,E, Y1, Y2) = ‖A‖∗ + λ‖W ‖1 + α‖E‖1 + 〈Y1, A−W 〉+ 〈Y2, PΩ(B1WBT
2

+E)− PΩ(D)〉+ μ
2
‖A−W ‖2F + μ

2
‖PΩ(B1WBT

2 + E)− PΩ(D)‖2F , (9)
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(a) Input image (b) True supp. (c) Input supp. (d) Our result (e) LRTC result

Fig. 3. Robustness to imperfect input support. This figure shows that with 5%
support map corrupted, our algorithm recovers the image while the method based on
low-rank matrix completion LRTC [25] fails.

with respect to the unknown variables A, W , E one at a time. Here Y1, Y2 are the
Lagrange multipliers, 〈·, ·〉 is the inner product, ‖·‖F is the Frobenius norm, and
μ > 0 is a penalty parameter. The LADM updates all the variables as follows:

Ak+1 = argmin
A

Lμk (A,Wk, Ek, Y1k, Y2k), (10)

Wk+1 = argmin
W

Lμk (Ak+1,W,Ek, Y1k, Y2k), (11)

Ek+1 = argmin
E

Lμk (Ak+1,Wk+1, E, Y1k, Y2k), (12)

Y1k+1 = Y1k + μk · PΩ(B1Wk+1B
T
2 + Ek+1 −D),

Y2k+1 = Y2k + μk · (Ak+1 −Wk+1),

μk+1 = ρ · μk,

where ρ > 1 is a constant. Subproblem (10) has closed-form solution:

Ak+1 = argmin
A

‖A‖∗ +
μk

2

∥
∥A−Wk +

1

μk
Y1k

∥
∥
2

F
= S(μk)−1

(
Wk − 1

μk
Y1k

)
, (13)

where Sμ(·) is the singular value shrinkage operator: Sε(W ) = UT ε(Σ)V T in
which UΣV T is the SVD of W and T ε(x) = sgn(x)max(|x| − ε, 0) is the scalar
shrinkage operator.

Solving subproblems (12) and (11) need extra modification on the objective
function since there are linear operator on variables E and W . By [20] and [24],
we can approximate the objective function by linearizing the quadratic penalty
term in the augmented Lagrangian function (9) and adding a proximal term to
update W and E. This results in the following updating scheme:

Wk+1 = T λ
μkη1

(

Wk − BT
1 (PΩ(B1WBT

2 +Ek−D+ 1
μk

Y2k)B2+Wk−Ak+1− 1
μk

Y1k

η1

)

, (14)

and

Ek+1 = T α
μkη2

(

Ek − PΩ(E+B1Wk+1B
T
2 −D)+ 1

μk
Y2k

η2

)

, (15)

where η1 > 0 and η2 > 0 are some parameters (cf. [24]), and we set η1 = 3, η2 = 3
in our paper.

To show the advantage of adding the robust error term E for support de-
tection, we do a comparison with another low-rank texture completion method
based on matrix completion [25]. In Figure 3, we first corrupted an input low-

rank image with a ground truth support Ω, then we generate a new support Ω̃
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(a) Input D (b) E1 (c) Ω1 (d) I1 (e) E2 (f) Ω2 (g) I2

Fig. 4. Estimation of contiguous error support using MRF. This figure shows
an example of estimating a contiguous support by our method after merging MRF into
our model. It takes only two iterations for our method to converge precisely to the
correct support.

by randomly switching 5% of the support Ω (from 1 to 0 or from 0 to 1). We

use Ω̃ as the input support for our method and the LRTC method [25] and com-
pare their completion results. In the comparison, we set parameters λ = 0.001,
α = 0.85 for our algorithm and use DCT as the basis for B1 and B2. For the
LRTC method, all parameters are set as the same values as those in the public
code of LRTC. The results in Figure 3 clearly show that our method can handle
erroneous input support while other matrix completion methods would fail.

2.4 Handling Error E with Contiguous Support

In a real image, very often the regions we need to repair have contiguous supports
– occluded or corrupted pixels are likely to be adjacent to each other in the image.
The simple thresholding used in (6) treats each pixel independently and does not
take this additional information for estimating the error support. To incorporate
such prior information, we could use a Markov random field (MRF) to model the
spatial continuity of the error support supp(E), as in [26]. We do not make any
other assumptions about the locations, sizes, shapes, or the number of occluded
regions.

Following a similar strategy in [26] to estimate a continuity-prone support,
we only have to replace the support update in Eq. (7) by the following:

supp(E) = argminΩ∈{−1,1}m×n

∑

(l,n)∈M γs[i]s[j] +
∑

l∈V log
(

p(ei[l]|s[l])), (16)

with

log
(
p(e[l]|s[l] = −1)

)
=

{− log β, |e[l]| ≤ β;
log β, |e[l]| > β.

log
(

p(e[l]|s[l] = 1)
)

=

{
0, |e[l]| > β;
log β, |e[l]| ≤ β.

(17)

where G = (V,M) is a graph which represents the image domain, s = vec(Ω) ∈
R

mn, e = vec(E) ∈ R
mn, V = {1, ...,mn} denotes the set of m × n pixels

and M denotes the edges connecting neighboring pixels. Here, the parameter β
indicate the level of error we would accept before considering an entry of the
image as occluded. The parameter γ in the Markov random field model controls
the strength of mutual interaction between adjacent pixels. It should correspond
to the level of spatial continuity for the error supports.
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(a) Input image (b) Our result (c) Our support (d) TILT result (e) E of TILT

Fig. 5. Comparison with TILT. Notice that TILT does not (intend to) fully repair
the occluded parts while our method does.

Figure 4 shows how MRF works. We used γ = 0.015, β = 5 and λ = 0.001, α =
0.85 in the example (empirically set since they bring best performance). All other
experiments use the same parametric setting unless stated otherwise.

2.5 Handling Deformed Texture D

In practice, textures in a real image that we need to perform the completion or
repairing task rarely have precise regular patterns. Very often we see a distorted
version of the regular patterns. For instance, a building facade seen through a
perspective camera introduces a planar homography between the facade plane
and the image plane.

In this case, the recovered low-rank texture I agrees with the observed texture
D up to certain transformation. To recover I, we then need to solve the following
problem instead:

min
W,E,τ

‖W‖∗ + λ‖W‖1 + α‖E‖1 s.t. PΩ(B1WBT
2 + E) = PΩ(D ◦ τ), (18)

where τ : R2 → R
2 belongs to a certain group of transforms, e.g., affine trans-

form, perspective transforms, and general cylindrical transform [27].
Above problem is not a convex program as the constraint is now nonlinear

in the unknowns. Similar to the work of TILT by Zhang et al. [28], we could
linearize D ◦ τ at the previous τ i as D ◦ (τ i+Δτ) ≈ D ◦ τ i+JΔτ where J is the
Jacobian: derivative of the image with respect to the transformation parameters.
Then, to handle deformation, our method can be easily modified as follows:

(W i+1, Ei+1, Δτ i+1) = argminW,E,Δτ ‖W ‖∗ + λ‖W ‖1 + α‖E‖1
s.t. PΩi(B1WBT

2 + E) = PΩi(D ◦ τ i + JΔτ ),
τ i+1 = τ i +Δτ i+1,
Ωi+1 = Ωi ∪ supp(Ei+1).

(19)

The algorithm runs in the same spirit as TILT, except that it further imposes
sparsity of the recovered texture and repair the image once the locations of
errors are detected. Nevertheless the improvement of our method in repairing
the rectified texture is very significant. Figure 5 shows an example that compares
the results of our method with the TILT code released by the authors of [28].

3 Simulations and Experiments

A. Comparison with Low-Rank Matrix Recovery. Here we conduct simu-
lations to study the working range of our method. We corrupt different percentages
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(a) random corruption
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(b) one disk
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(c) random blocks

Fig. 6. Quantitative comparisons with RPCA. This figure shows normalized
residual error versus the sampling rate of our method and RPCA [22] on different
kinds of corruptions.

of a clean texture (without deformation) with gross errors and see how much cor-
ruption we can handle for different types of corruption (random, one large block,
random small blocks).

To demonstrate the importance of the sparse prior on recovering natural low-
rank textures and the effectiveness of the proposed solution, we compare our
method with the state-of-art low-rank matrix completion or recovery method:
Robust Principal Component Analysis (RPCA) [22] (The object function is
minA ‖A‖∗ s.t. PΩ(A) = PΩ(D), which does not exploit the sparse prior at all).
This is also the method which some of the latest texture completion methods
such as LRTC [25] are based upon.

In this simulation, we restrict to the simpler case that the support Ω is
precisely known (hence RPCA is equivalent to matrix completion). The ratio
p/(m × n) between the number of corrupted/missing entries (pixels) and the
number of entries in the matrix is denoted by “SR” (sampling ratio). We use the
normalized residual ‖A −M‖F /‖M‖F to measure the recovery error, where A is
the recovered image, and M is the ground truth.

The parameter setting for our algorithm and RPCA is λ = 0.001, α = 0. We
use DCT as basis in all simulations and experiments unless otherwise stated. We
have tested three kind of corruptions: uniform random corruptions, one disk cor-
ruption, and random block corruptions on three representative low-rank textures:
a synthesized checkerboard image and two real texture images. The checkerboard
is of precise rank 2 and the other two are full rank but approximately low-rank.

We test the two algorithms for input images with SR growing from 0 to 99.9%.
Figure 6 shows quantitative comparison between the two methods with different
levels and kinds of corruptions. Figure 7 further show some qualitative results
that compare the two methods. These results clearly show that the sparse prior
on the image indeed helps low-rank texture completion in all cases.

B. Comparison with Image Completion Systems. In this experiment,
we have conducted a series of comparative tests between our method and a
few recent image completion methods such as the Shift Map (SM) method [19]
and some highly engineered commercial systems: Patch Match (PM) used by
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Fig. 7. Qualitative comparisons with RPCA on simulated images. First one
(columns 1-3) is a checkerboard texture 91% randomly corrupted; second one (columns
4-6) is a real texture 30% corrupted on a disk like region; and third one (columns 7-9)
is a real texture 40% corrupted by random blocks. In each case, the first image is input,
the second is our result, and the third is result by RPCA [22].

Photoshop ([18], [29]), Image Completion with Structure Propagation (SP) de-
veloped by Microsoft Research Asia [5]. These methods all share the spirit of
sample-based texture synthesis: they stitch sampled local patches together to
ensure certain global consistency. As these methods rely mostly on local statis-
tics and structures, they tend to work on natural images or random textures too
while our method does not. However, this experiment is to demonstrate signifi-
cant advantages of our method on completing or repairing regular or near regular
low-rank patterns. The reason is partially because these methods normally do
not or cannot exploit global structural information about the textures.

Unlike our method, these image completion systems typically require the user
to mark out rather precisely the to-be-completed region or regions (marked out
as red regions in this paper), and even to provide additional information about
the structures to be recovered (such as that required by the SP method). Notice
that if the support of the corrupted region is small, our method does not even
need information about the support at all. For our method, we only have to
specify a large window that contains some corrupted regions (see Figure 8 forth
row first column for example). Nevertheless, if the corruption is somewhat too
large (say larger than 25% of the input region), our method can also take a rough
support for the corrupted region Ω0 as part of the input (marked with red curves
in the input images shown in Figure 9). The repairing result can be significantly
improved. As our method is inherently robust, the provided support needs not
to be so precise.

In addition, these methods are not designed at all to handle textures that are
deformed from a purely homogeneous texture or regular pattern. For instance,
they can not handle images with perspective deformation. In our method, the
deformation can be estimated by solving (19). The estimated τ is then used to
rectify the input region and we then solve (8) to repair the texture, typically
with two iterations (first to estimate the error support, second to complete the
image with a partially known error support). If the image has no deformation,
we can simply skip the deformation estimation step. For a color image, three
matrices associated with the three RGB channels are repaired independently. In
this experiment, we set α = 0.85, and all other parameters remain the same as
previous simulations and experiments.

In Figure 8, we present comparisons with Shift-Map method [19], Patch Match
(PM) ([18], [29]) and Structure Propagation (SP) [5] on four different images: a
simulated non-uniform low-rank texture, a uniform building facade, a somewhat
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Fig. 8. Comparison results with Shift-Map [19], SP [5] and Photoshop [18].
Columns 1-2: input and result of our method; Columns 3-4: input and result of Shift-
Map; Columns 5-6: input and result of SP; Columns 7-8: input and result of Photoshop.
For rectified textures, our method can take the whole image as input, while in the
deformed case, a green window indicates our input.

Fig. 9. Realistic repairing results. First row: input images where the green windows
denote the input windows to our system, and red contours denote the initial error
supports to our system. Second row: repairing images by our method. Third row:
estimated final error supports by our method.

less uniform building facade and a real building facade image with perspective
deformation, which correspond to five rows in Figure. 8, respectively. As we see,
these three method fail to recover precisely the consistent structural pattern of
the original image.
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C. More Examples of Image Repairing. To show how our method can han-
dle realistic image repairing tasks, Figure 9 shows several interesting examples
produced by our method on real urban scene images. The process to generate
these results is exactly the same as that in previous comparison experiments.
As we see in these results, our algorithm could recover very well the low-rank
and sparse structures in regular or near regular textures in natural images. How-
ever, as mentioned earlier in Section 2, our algorithm is not intended to work
for random or near random textures that may violate the low-rank and sparse
assumption, such as the last example shown in Figure9. It may “over-smooth”
such textures hence the results might not be on par with local patch-based meth-
ods that are more suitable for such textures. Finally, notice that the recovered
images of our method are not as sharp as the original input image because they
are essentially estimated, not synthesized with original pixels. Nevertheless, it
should not be difficult to improve the quality of our results by incorporating
with local patch-based synthesis methods. We leave this for future study.
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