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Abstract. We propose a tracking framework that mediates grouping cues from
two levels of tracking granularities, detection tracklets and point trajectories, for
segmenting objects in crowded scenes. Detection tracklets capture objects when
they are mostly visible. They may be sparse in time, may miss partially occluded
or deformed objects, or contain false positives. Point trajectories are dense in
space and time. Their affinities integrate long range motion and 3D disparity in-
formation, useful for segmentation. Affinities may leak though across similarly
moving objects, since they lack model knowledge. We establish one trajectory
and one detection tracklet graph, encoding grouping affinities in each space and
associations across. Two-granularity tracking is cast as simultaneous detection
tracklet classification and clustering (cl2) in the joint space of tracklets and tra-
jectories. We solve cl2 by explicitly mediating contradictory affinities in the two
graphs: Detection tracklet classification modifies trajectory affinities to reflect ob-
ject specific dis-associations. Non-accidental grouping alignment between detec-
tion tracklets and trajectory clusters boosts or rejects corresponding detection
tracklets, changing accordingly their classification. We show our model can track
objects through sparse, inaccurate detections and persistent partial occlusions. It
adapts to the changing visibility masks of the targets, in contrast to detection
based bounding box trackers, by effectively switching between the two granular-
ities according to object occlusions, deformations and background clutter.

1 Introduction

We address the problem of object segmentation and tracking in crowded scenes. We
propose a framework for combining top-down, model driven information and bottom-
up, grouping driven information for tracking through persistent partial occlusions while
maintaining accurate spatial support for the objects.

Frameworks combining bottom-up and top-down information have a long history in
segmenting and recognizing static images [1,2,3], leading to popular multiple segmen-
tation approaches [4] and recently to competitive detection and pose estimation results
[5]. In the video domain, most previous approaches can be categorized into two orthogo-
nal lines of work namely top-down tracking-by-detection, mostly oblivious to grouping
information, and bottom-up video segmentation, oblivious to model knowledge.

Video segmentation approaches segment objects following the Gestalt principle of
“common fate”, often enhanced by large temporal context of point trajectories [6,7,8,9].
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Fig. 1. Two-granularity tracking. We jointly optimize over detectlet classification hs and
clustering in the joint space via multiple model aware segmentations: Selected repelling
detectlets induce dis-associations between their corresponding trajectlets. Clustering in
the modified graph A(hs) verifies or rejects detectlet hypotheses depending on their
alignment with trajectlet clusters, changing accordingly their classification hs. Here,
the green detectlets are accepted while the red one is misaligned and thus rejected.

Such approaches employ dense spatio-temporal representations of trajectories or su-
perpixel clusters that adapt to motion discontinuities across object boundaries. How-
ever, they often have difficulty handling deformable or articulated motion or close ob-
ject interactions, resulting in under-segmentation of similarly moving objects or over-
segmentation of articulated objects into rigid parts.

Current state-of-the-art object tracking algorithms [10,11,12] link detections over
time. Detection under persistent partial occlusions is challenging since features ex-
tracted from a window around an object may be corrupted by surrounding occluders.
A box representation cannot adapt to the changing visibility mask of a partial occluded
object. As a result, detection responses come as loose-fit / under-fit boxes around a
target, or as hallucinated detections spanning over or in the gap of two objects. Apart
from occlusions, object deformation poses additional challenges, resulting in a difficult
trade-off between precision and recall for deformable object detection.

Our main insight is that the granularity of the tracking representation needs to vary
opportunistically between a whole object tracker during full visibility of the template,
and fine-grained point trackers during partial occlusions. We propose a tracking frame-
work that exploits cues in two levels of tracking granularity: 1) tracking-by-detection
and 2) dense point trajectories. We establish one detectlet (detection tracklet) and one
trajectlet (trajectory tracklet) graph, and encode information of our tracking units as
affinities and repulsions (incompatibilities) in each space, and associations across the
two (Sections 3.1 - 3.3). Two-granularity tracking is cast as the simultaneous detectlet
classification and clustering (cl2) in the joint space of trajectlets and selected detectlets.
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We introduce a graph mediation process that solves cl2 by integrating complemen-
tary information in detectlets and trajectlets via multiple model aware segmentations
(Section 4). Classification and grouping are tightly coupled as shown also in Fig. 1: De-
tectlets classified as true positive modify trajectlet affinities by inducing object specific
dis-associations. In this way, they resolve affinity contradictions and correct trajectlet
affinities leaking across similarly moving objects. We prove clustering in the modified
affinity graph is resistant to noisy dis-associations of false detectlets (Section 4.1). Fur-
ther, non-accidental trajectlet clusters of the modified affinity graph provide feedback to
detectlet classification: 1) they reject detectlets misaligned with them and 2) they boost
isolated detectlets that might have been missed due to low detection score in each frame
by linking them across partial occlusions. Our framework is robust against both false
or drifting detectlet hypotheses as well as leaking model unaware affinities, in contrast
to traditional co-clustering formulations that consider the initial, unmodified affinity
graph.

To evaluate the performance of our framework we introduce a new tracking dataset,
we call UrbanStreet, captured from a stereo rig mounted on a car driving in the streets
of Philadelphia, USA. In contrast to most previous tracking datasets, UrbanStreet pro-
vides segmentation masks rather than bounding boxes as pedestrian labels, since often
times the targets are partially occluded while navigating in traffic. We compare against
a traditional detection based tracker and show our method can segment and track the
targets better under persistent occlusions. We further compare against alternative ver-
sions of our two-granularity framework to illustrate the contribution of each component
in isolation.

2 Related work

Researchers have explored ways of linking sparse detections in time using region infor-
mation [13,14], body part tracking [15], walking pose cycles [16] or motion smoothness
priors [17]. Cluttered environments and persistent partial target occlusions can pose
challenges to such linking approaches. Region based tracking can drift to surroundings
under accidental appearance similarity. Part tracking may be ineffective due to the large
number of false alarms in cluttered scenes. Human dynamics modelling lacks the neces-
sary information to infer the right body pose during persistent occlusions. Smoothness
motion priors are not always useful in complex urban environments, where pedestrians
change their motion in a complicated fashion (e.g., wait for the green light, stop for a
car or bicycle to cross, avoid collisions with surrounding pedestrians, etc.).

Level set trackers [18,19,14,20] have been recently proposed for propagating de-
tection information to no-detection frames and thus tolerate sparse detection responses.
Under the assumption that objects do not interlock, authors of [18] represent object
shape using level sets and compute pixel wise object posteriors based on depth, motion
and shape information. In [14] a level set is initialized by a detection and segments the
object tracked in frames with no detections. However, level set optimization can easily
get stuck in local minima, being unable to distinguish when a target gets occluded [14].
As a result, additional checks are required to recover from such wrong segmentations
and indicate termination of a track. Trajectory units are more powerful than level set



4 Katerina Fragkiadaki, Weiyu Zhang, Geng Zhang and Jianbo Shi

Pedestrian Detection Disparity Optical Flow Motion Segmentation 

Motion 
leakage 

Objects under 
canonical pose 

Distinct 
motion 

Extreme body 
deformation 

Objects in 
different 
depths 

Partial 
Occlusion 

Fig. 2. Complementarity of detectlets and trajectlets. (a) Similarly moving objects. (b)
Extreme body deformation. (c) Partial occlusion.

segmentors thanks to their large temporal support: detection and bottom-up separation
are not needed in each frame: Single frame separation propagates to entangled frames
and correctly segments even interlocked objects assuming they unlock at least in one
frame during their time overlap.

3 Tracking Units

Detectlets and trajectlets provide complementary information for tracking in different
points in space and time: 1) Detectlets are sparse in time, they often miss objects un-
der severe occlusions or extreme deformations. On the contrary, trajectlets are dense
in space and time and extend to frames with no detections. Their long range motion
or disparity affinities can separate targets under partial occlusions. 2) The bounding
box representation of detectlets is often spatially inaccurate. On the contrary, trajectlets
have small spatial support, hence adapt to the changing visibility mask of occluded
pedestrians (Fig. 2c). 3) Detectlets can separate objects under canonical pose despite
their motion or disparity being similar to surroundings. In contrast, trajectory affinities
leak across objects with (persistently) similar motion and disparity (Fig. 2a), or fail to
delineate stationary objects from the background scene.

In Sections 3.1 and 3.2 we present our trajectlet and detectlet units and their pairwise
affinities AT , AD, respectively. In Section 3.3 we present cross-space associations C.
These relationships can be summarized in the extended n× n affinity matrix A:

A =

[ ]
AT C } nT
C> AD } nD, (1)

where n = nT + nD, nT is the number of trajectlets and nD the number of detectlets.
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3.1 Fine-Grained Trajectlets

We define a trajectlet tri to be a sequence of space-time points: tri = {(xti, yti), t ∈
Ti} where Ti is the frame span of tri. We obtain trajectlets by tracking pixels across
frames following the frame optical flow field [21,22]. Trajectlets are dense in space and
can have various lengths depending on the occlusion frequency of the scene part they
capture. Further, they are oblivious to any model information.
Trajectlet Affinities AT : Trajectlets encode rich grouping information in their motion
differences. We set affinities AT (tri, trj) between trajectlets tri and trj according to
the maximum velocity difference veli,j and the maximum disparity difference dspi,j

computed during their time overlap:

AT (tri, trj) = exp

[
−dsti,j

(
vel2i,j
σ2
v

+
dsp2

i,j

σ2
d

)]
, (2)

where dsti,j denotes the maximum Euclidean distance between tri, trj . Penalizing
maximum velocity and disparity difference takes advantage of the most informative
frames in the time overlap between tri, trj [6]. The longer a trajectory the more infor-
mative the corresponding affinities [7]. We set affinities between trajectlets that do not
overlap in time to zero, indicating lack of information regarding their association.

3.2 Coarse-Grained Detectlets

We define a detectlet dlp to be a sequence of detector responses dlp = {(boxt
p, f

t
p), t ∈

Tp}, where boxt
p is the detection bounding box at frame t, f tp is the corresponding

detection score and Tp is the frame span of the detectlet. We obtain detectlets by con-
servatively linking detections between consecutive frames. We define the confidence of
detectlet dlp to be the sum of confidences of its detection responses: fp =

∑
t∈Tp

f tp.

Detectlet Affinities AD: We set affinities AD(dlp,dlq) between detectlets dlp and dlq
that do not overlap in time according to the anchoring score (Fig. 3 Left) between their
closest in time detections:

AD(dlp,dlq) = anchor(boxt1
p ,boxt2

q ,Tr(dlp,dlq)), (3)
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Fig. 3. Left: Detectlet affinities AD. Right: Trajectlet to detectlet associations C. Over-
laps of close-by detectlet boxes do not confuse associations in C. Trajectlets have the
color of their associated detectlet. Associations persist to frames without detections.
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where (t1, t2) are the indices of frames closest in time, and Tr(dlp,dlq) are the set of
trajectlets overlapping with both detectlets. The anchoring score of a pair of bounding
boxes is high when their common trajectlets have similar relative positions inside the
two boxes, as depicted in Fig. 3 Left. We set affinities to zero between detectlets whose
closest in time detections have no common trajectlets, indicating lack of information
regarding their association. We do not encode any motion smoothness priors or color
similarity in detectlet affinities. Instead, our mediation framework computes trajectlet
clusters that reach further in time than any trajectlet in isolation, and informatively
suggest links between isolated detectlets. In contrast, color or motion similarity scores
attempt to interpolate blindly information across detection gaps [17].

3.3 Trajectlet to Detectlet Associations C

We set associations C(tri,dlp) between trajectlet tri and detectlet dlp according to
spatio-temporal overlap:

C(tri,dlp) = 1 if ∀t ∈ Ti ∩ Tp, (xti, y
t
i) ∈ boxt

p. (4)

Computing associations between trajectlets and detectlets rather than between pixels
and detections benefits from large time horizon: It saves from erroneous associations
between a detectlet and background trajectlets or trajectlets of nearby targets due to
accidental per frame overlaps, as shown also in Fig. 3 Right.

4 Mediation

We seek to mediate complementary information encoded in the combined affinity ma-
trix A of Eq. 1. We want to discard false or drifting detectlet hypotheses, link true pos-
itive ones through occlusions via fine grain trajectlet clusters, block leaking trajectlet
affinities and boost detection recall by trajectlets proposing objects with distinct motion
or disparity.

Previous approaches that consider co-clustering (or co-embedding) in a joint space
use the combined affinity matrix A of Eq. 1. For example, clustering in the joint space of
detections and image pixels has been considered in [23] for simultaneous detection and
segmentation in static images. Co-clustering approaches bypass explicit object hypothe-
ses classification by assigning false alarms to a background cluster. We identify two
problems with such standard co-clustering formulations: 1) False associations. Assign-
ing a false detectlet to the background cluster needs to cut association edges between
the false detectlet and its associated in C trajectlets (overlapping with it). Such cut cost
may be prohibitively large and can confuse the co-embedding solution, as shown in
Fig. 4 Left. 2) Affinity contradictions. In places detectlet and trajectlet graphs disagree,
incorrect affinities, namely, trajectlet affinities leaking across the two correctly detected
individuals confuse the co-embedding solution, as shown in Fig. 4 Right.

In the light of the above observations we propose a mediation framework that op-
timizes jointly and explicitly over detectlet classification hs ∈ {0, 1}nD×1 into true
or false positives and detectlets-trajectlet co-clustering, a problem which we call cl2.
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Fig. 4. Model aware affinity graph A(hs). Left: Correcting false associations.
Only selected detectlets, here dl1, can claim trajectories. In this way, we avoid
persistently contaminating the spectral partitioning solution with false detectlets
(here dl2). Right: Resolving affinity contradictions. We cancel trajectory affinities
(AT (tr2, tr4),AT (tr1, tr3)) between incompatible detectlets (dl1,dl2). Spectral par-
titioning in the modified graph does not leak across similarly moving individuals. Stan-
dard co-clustering results are shown in top row.

Instead of working with the initial affinity graph of Eq. 1, we actively modify it accord-
ing to detectlet classification hs, to reflect corresponding model aware dis-associations
between selected incompatible detectlets. This alleviates from the false association or
affinity contradiction problems of previous co-clustering frameworks, while correcting
possibly leaking, model unaware trajectlet affinities. We present our graph modification
in Section 4.1. We further prove that such graph modification can tolerate noisy false
alarm detectlets and boost true positive ones, that align better with respect to the under-
lying grouping links. We present our cl2 cost function in Section 4.2 and describe our
mediation process that solves a relaxed version of it via multiple model aware segmen-
tations in Section 4.3.

4.1 Model Aware Affinity Graph A(hs)

Detectlet to Trajectlet Associations C(hs) : Only selected detectlets dlp, hs(p) = 1 can
claim trajectlets through associations in C(hs):

C(hs, tri,dlp) = hs(p) ·C(tri,dlp). (5)

Induced Trajectlet Affinites AT (hs) : Active selection of detectlets as true or false pos-
itives in hs changes accordingly the trajectlet graph affinities AT by inducing dis-
associations between trajectlets associated with incompatible detectlets, as shown in
Fig.4 Right. Detectlets overlapping in time are defined as incompatible or else repul-
sive, expressing their inability to span the same object:

RD(dlp,dlq) = 1 if |Tp ∩ Tq| > 0. (6)
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Such incompatibilities are implicit in most previous approaches which never link de-
tectlets overlapping in time. Repulsions RD function as hard constraints for cross de-
tectlet dis-associations and induce trajectlet repulsions:

RT (hs, tri, trj) = max
{p,q|hs(p)=1,hs(q)=1}

Ci,p(1−Ci,q)RD(dlp,dlq)Cj,q(1−Ci,p),

(7)
where we use Ci,p to denote C(tri,dlp). We induce repulsions only between trajectlets
associated exclusively with one or the other of the incompatible detectlets. Induced
trajectlet affinities AT (hs) take the final form:

AT (hs, tri, trj) = (1|T |1
>
|T | −RT (hs)) •AT (tri, trj), (8)

where • denotes point-wise multiplication. We summarize the selection aware relation-
ships in the the following combined affinity graph A(hs):

A(hs) =

[ ]
AT (hs) C(hs) } nT
C(hs)> AD } nD. (9)

Graph Modification Analysis During graph modification, affinities between trajectlets
associated to incompatible detectlets are canceled. If the corresponding detectlets are
true positives, then graph modification results in cancellation of leaking trajectlet affini-
ties across the objects captured by the detectlets. If the corresponding detectlets are
false positives, then such modification involves cancellation of affinity links within ob-
ject interiors, that can potentially cause object over-segmentation.

For simplicity we assume that the grouping cues AT are binary. Let εmiss be the
rate an affinity link is missing between two trajectories belonging to the same object
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the rightmost column by integrating over all detection configurations.
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(missing affinity rate). Let εfa be the rate in which an affinity link is present while
the corresponding trajectlets belong to distinct objects (leaking affinity rate). Perfect
segmentation would require both εmiss and εfa to be small.

As shown in Fig. 5, in the case of true positive detectlets, graph modification blocks
leaking affinities and essentially reduces error rate εfa. In the case of false positive de-
tectlets, graph modification may dis-associate object interior links and increase εmiss.
By definition, true positive detectlets overlap at least 50% with the object they capture.
Thus, two true positive detectlets tend to align well with respect to the underlying ob-
jects and cancel the majority (50% at least) of the inter-object affinities. On the other
hand, false alarm detectlets tend to randomly distribute over object interiors. As such
two false positives can cancel at most 25% of the intra-object links. Transitivity on the
remaining untouched links can still group the object as a whole! Since the first case
happens more often than the second, we conclude that our graph modification improves
bottom-up segmentation overall.

4.2 Classification-clustering cl2

We formulate two-granularity tracking as the simultaneous detectlet classification and
clustering in the joint (selected) detectlet and trajectlet space. LetXk ∈ {0, 1}nT×1, Yk ∈
{0, 1}nD×1 denote indicator vectors for trajectlets and detectlet clusters respectively,
where k = 1 · · ·K, and K being the total number of clusters. We have the following
joint optimization over detectlet classification hs and co-clustering (X,Y ):

max .
hs,X,Y,K

K∑
k=1

ncut(A(hs), Xk, Yk) · confidence(Yk)

s.t.
K∑

k=1

Xk = 1nT
,

K∑
k=1

Yk = hs, align(Xk, Yk) > th,

(10)

where ncut(A(hs), Xk, Yk) denotes the normalized cut score of cluster (Xk, Yk):

ncut(A(hs), Xk, Yk) =
[X>k , Y

>
k ]A(hs)[X>k , Y

>
k ]>

[X>k , Y
>
k ]Diag(A(hs)1n)[X>k , Y

>
k ]>

, (11)

confidence(Yk) is the total confidence of detectlets in Yk:

confidence(Yk) = f>Yk, (12)

and align(Xk, Yk) is the alignment score between trajectlets in Xk and trajectlets asso-
ciated to detectlets in Yk, measured as the intersection over union:

align(Xk, Yk) =
|{i| Xk(i) = 1 ∧ ∃j,C(tri,dlj) = 1}|
|{i| Xk(i) = 1 ∨ ∃j,C(tri,dlj) = 1}|

. (13)

The first term in the summation of Eq. 10 requires the detectlet/trajectlet cluster
(Xk, Yk) to be a salient (stable) group under the normalized cut criterion [24], with
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high normalized intra-cluster affinities and associations and low inter-cluster affinities
and associations. Notice the dependence of the combined affinity matrix on the de-
tectlet classification A(hs). The second term biases towards selecting highly confident
detectlet hypotheses. The first constraint ensures each trajectlet is assigned to exactly
one cluster while the second one allows only detectlets classified as true positive to
participate in the clustering.

Importantly, the last constraint in Eq. 10 ensures good alignment between the de-
tectlets in Yk and trajectlet cluster Xk in each cluster (Xk, Yk). This constraint acts
as a feedback loop from trajectlet clustering to detectlet classification, by boosting or
rejecting detectlets that align well (or not) with trajectlet clusters. Alignment is non-
accidental since it signifies that the two sources of information, or two views [25] of
the data, trajectory affinities and detectlets, independently decide the same grouping
for the video scene. Our proof in Section 4.1 guarantees the non-accidentalness since
it shows that clustering in A(hs) is not dominated by modifications of selected in hs

detectlets.

4.3 Mediation via Multiple Model Aware Segmentations

We optimize the cost function of Eq. 10 via multiple model aware segmentations:
We sample hs according to detectlet confidence f . Detectlets in hs induce repulsions
RT (hs) between trajectlets associated with them. We compute multiple segmentations
in the induced affinity graph A(hs) by varying the number of segments K and the
minimum trajectory length L. This results in a pool of detectlet-trajectlet clusters. For
each cluster (Xk, Yk) we measure alignment score align(Xk, Yk) and confidence score
confidence(Yk). We prune clusters whose alignment score is below a threshold ρ = 0.8.
We obtain the tracking solution by sequentially choosing the best scoring cluster from
the remaining ones, that does not overlap with already chosen ones. Detectlets partici-
pating in the final tracking solution update accordingly hs as true positives.

In contrast to multiple segmentation approaches [4,26] that generate a number of
bottom-up segmentation proposals to be verified with an object model, we incorporate
model information earlier, in the segmentation graph A(hs). This allows recovery from
mistakes of model unaware affinities. Furthermore, in contrast to segmentation verifi-
cation approaches [27] that accept or reject object hypotheses by comparing to the local
induced segmentation, we use grouping not only to classify detectlet hypotheses, but to
propose detectlets by linking them through large time gaps or partial occlusions.

5 Experiments

To evaluate our tracking framework we introduce UrbanStreet, a pedestrian tracking
dataset containing 18 sequences taken from a stereo rig mounted on a car driving in the
streets of Philadelphia during rush hours. Part of this dataset was used in [28]. Ground-
truth is provided in the form of segmentation masks for all visible targets every four
frames (0.6 seconds) in each sequence, with a total of about 2500 pedestrian masks
labelled. See also Fig. 6. We further evaluate our framework in TUD crossing dataset
[10]. Ground-truth is provided as a set of pedestrian boxes which we link manually into
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ground-truth tracklets. We label extra bounding boxes missing from the ground-truth
(pedestrians partially occluded more than 50%), resulting in a total of about 1095 la-
belled boxes. We use the pre-trained pedestrian detector of [29], not specifically tailored
to the datasets in hand.

Fig. 6. Results in UrbanStreet. Trajectlet clusters adapt to the changing target visibility
masks during partial occlusions, in contrast to bounding boxes. We do not track through
full occlusions (see red circle): the girl switches cluster ids during its full occlusion. Last
row shows ground-truth labelling for few frames in UrbanStreet.

We perform an ablative analysis of our system, by comparing to the following base-
lines: 1) mediation by co-embedding, which clusters in the unmodified affinity matrix
A of Eq. 1, 2) trajectlet classification, which classifies trajectlets to detectlets according
to associations in C, discarding grouping information in AT and 3) bottom-up trajectlet
clustering in AT . Each of the above baselines produces a set of clusters which we prune
according to alignment scores and let them compete with their detection confidence to
populate the tracking result, same as in our full method. We additionally evaluate our
input detectlets as well as the detection based tracker of [28] whose results are available
for the first seven sequences in UrbanStreet. For these last comparison we fit bounding
boxes to our ground-truth segmentation masks.
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We measure performance using CLEAR MOT metrics [30]. We compute an one-to-
one assignment of hypotheses to ground-truth objects in each frame, measuring inter-
section over union of segmentation masks in UrbanStreet and of boxes in TUD crossing.
We report numbers of miss detections (objects not assigned to any hypothesis), false
alarms (segment hypotheses not assigned to any objects), id-switches (number of times
a ground-truth track changed his assigned segment identity) and tracking accuracy. We
show quantitative results in Table 1 and qualitative in Fig. 6 and 7. Our model does not
track across full occlusions (Fig. 6): Trajectlets across full occlusions do not have any
time overlap and thus have zero affinities. As such, in both datasets we terminate an
object track when the object becomes fully (100%) occluded.

UrbanStreet TUD crossing
MD(%) FA(%) ID-sw. Acc.(%) MD(%) FA (%) ID-sw. Acc. (%)

Our Method 50.3 15.6 73 30.1 12.3 4.5 0 82.9
Co-embedding 57.7 47.0 72 -8.2 14.6 25.1 27 57.8
Trajectory classification 61.0 23.7 71 11.6 18.7 14.5 17 65.2
Bottom-up clustering 78.7 11.5 19 8.5 32.5 8.8 12 57.6
Detectlets 82.6 19.4 49 -4.7 42.6 7.3 81 42.6
Our Method∗ 44.7 12.0 28 37.5
Gong et al.∗ [28] 76.5 24.3 36 -6.8

Table 1. Tracking results. Last two rows in UrbanStreet concern only the first seven
sequences for which results of Gong et al. [28] are available.

UrbanStreet contains challenging scenes of complex pedestrian motion with fre-
quent persistent occlusions. Detection based trackers typically interpolate bounding
boxes across detection gaps according to motion smoothness. Interpolated boxes, shown
dashed in Fig. 6, are often spatially inaccurate. In contrast, two-granularity tracking pro-
vides accurate spatial grounding for the targets, switching to fine grain trajectlet trackers
during detection gaps, rather than blind interpolation.

The numerous miss detections of bottom-up trajectory clustering are due to station-
ary pedestrians as well as to pedestrian groups with similar motion. Detectlet sparsity
is verified in the large number of detectlet miss detections in both datasets. However,
miss detections of detectlets and bottom-up clustering do not coincide, as shown in Fig.
2. As such, our mediation framework outperforms both, being robust to false alarm
detectlets and leaking trajectory affinities. Trajectlet classification in Table 1 has large
number of miss detections which suggests that isolated trajectories cannot “jump” large
time gaps. In contrast, spectral trajectory partitioning propagates information through
transitivity further than any single trajectlet. Id switches in trajectory classification are
due to drifting point trajectories. Similar drifting trajectlet problem has our framework
in the UrbanStreet dataset due to the low frame rate (6.5 fps).

Implementation details When stereo information is available disparity maps are
computed with the code of [31]. We evaluate our method against ground-truth bound-
ing boxes by interpolating for each resulting cluster detections to no detection frames
using trajectlet anchoring. We evaluate against ground-truth segmentation masks by
computing a dense pixel segmentation for each frame using graph cuts on superpixels.
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Traj. Classification

Our mediation

Bottom-up clustering

Co-embedding

False alarm

False alarm

False alarm

False alarm

Fig. 7. Results in TUD crossing. Our method tracks pedestrians under heavy partial oc-
clusions. Co-embedding and trajectory classification are sensitive to noisy, false alarm
or drifting detectlets. Interpolated boxes are shown dashed.

6 Conclusion

We presented a two-granularity tracking framework for segmenting objects in crowded
scenes by mediating grouping information of trajectlets and object specific informa-
tion of detectlets. We cast two-granularity tracking as the simultaneous classification
and clustering problem in the joint space of detectlets and trajectlets. Our mediation
process optimizes jointly over detectlet classification and co-clustering in the space of
selected detectlet and trajectlets and explicitly resolves affinity contradictions via multi-
ple model aware segmentations, alleviating from the problems of standard co-clustering
formulations. We believe two-granularity tracking representation can greatly benefit
tracking-by-detection approaches, for better handling detection gaps and tolerating de-
tection sparsity while providing a target accurate representation.
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