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Abstract. In this work, we investigate how to automatically uncover
the underlying group structure of a feature vector such that each group
characterizes certain object-specific patterns, e.g., visual pattern or mo-
tion trajectories from one object. By mining the group structure, we can
effectively alleviate the mutual inference of multiple objects and improve
the performance in various visual analysis tasks. To this end, we propose
a novel auto-grouped sparse representation (ASR) method. ASR groups
semantically correlated feature elements together through optimally fus-
ing their multiple sparse representations. Due to the intractability of pri-
mal objective function, we also propose well-behaved convex relaxation
and smooth approximation to guarantee obtaining a global optimal solu-
tion effectively. Finally, we apply ASR in two important visual analysis
tasks: multi-label image classification and motion segmentation. Com-
prehensive experimental evaluations show that ASR is able to achieve
superior performance compared with the state-of-the-arts on these two
tasks.

1 Introduction

Most of current image analysis methods represent images by aggregating local
features into image-level features, such as bag of words model [1H3]. These meth-
ods generally ignore the fact that the local features may be from different objects
and treat the image-level feature as a whole in the follow-up computation. Such
over-simplified strategy may render the results of image analysis inaccurate. For
example, given two multi-object images containing one common object, they
should be assigned one identical annotation. Indeed they are quite similar if
only considering local features from the common object. But their image-level
features may differ greatly due to involving local features from non-common ob-
jects and background and thus mislead the image similarity computation. To
handle such mutual interference of multiple objects in image analysis, several
previous works propose to perform segmentation or detection as pre-processing
before feature extraction [4, [5]. However, such pre-processing is quite compli-
cated, computationally expensive and inefficient.
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Fig. 1. Illustration on the proposed auto-grouped sparse representation method. The
elements of the image-level feature represent different visual patterns. The feature el-
ements are divided into k groups according to their individual sparse representations.
Each group represents one specific object. Based on the group-wise sparse represen-
tations, a multi-edge graph is constructed to describe the relationship between the
images.

In order to alleviate the mutual interference of multiple objects in given image-
level features, we propose to divide its elements into several independent groups,
such that each group represents typical visual patterns for one object. Thus,
local features from different objects can be segregated to some extent and se-
mantically different objects are considered independently in the follow-up com-
putations. Then we can obtain analysis result (e.g., image similarity) specific for
one object, which is immune to the interference from other objects and back-
ground, as desired. In this way, we can obtain more accurate image relationship
description from original image-level features and improve their performance in
various visual analysis tasks.

To this end, we propose a novel auto-grouped sparse representation (ASR)
method to automatically learn the intrinsic semantic groups of an image-level
feature vector. The pursuit groups should roughly reside on the identical sub-
space if they correspond to objects from the same class ﬂﬂ—@] And ASR computes
multiple sparse representations for elements of an input image-level feature vec-
tor w.r.t. an over-complete basis to identify the subspaces (corresponding to the
objects) [@] In particular, ASR performs single sparse representation over each
feature element, and meanwhile it imposes fusion-encouraging regularization to
force the semantically correlated feature elements to share the same sparse rep-
resentation. Thus the feature elements corresponding to the same object, namely
falling on the same subspace, can be grouped together since they possess similar
sparse representations.

Fig. M provides an example to illustrate the proposed ASR method. Given an
input image, its feature elements representing the same object (person or dog)
fall on identical subspace and thus will select identical basis images (containing
person or dog respectively) in their sparse representations. Thus elements of its
image-level feature can be divided into k groups according to their sparse rep-
resentations. Each feature group includes several characteristic visual patterns
for one specific object. In a multi-edge graph constructed based on the multiple
sparse representation models, the input image is connected with the basis images
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via varying number of edges, reflecting the relevance degree between them. It
can be seen that such relationship is more accurate and flexible.

Note that the proposed ASR is a general method and can also be applied for
other intrinsic group identification tasks, such as motion segmentation. In this
work, we examine the applicability of ASR in two practical visual analysis tasks.
The first application is to build the multi-edge graph [10] for more accurately
classifying multi-label images. Compared with conventional single edge graph,
our multi-edge graph achieves the state-of-the-art performance on the NUS-
WIDE-LITE database. And the second one is two-view motion segmentation.
ASR segments the motion trajectories by grouping the corresponding mixture
linear regression models. Compared with previously well-performed methods |11,
12], ASR significantly decreases the segmentation error rates and offers more
accurate and stable segmentation results.

2 Related Work

The proposed work aims at automatically uncovering the group structures across
multiple feature entries and simultaneously calculating the underlying sparse
representations within each group. The most intuitive approach to tackle this
problem is the Expectation-Maximization (EM) method |11]. EM may regard
the group assignments as hidden variables, and iterates the inference over hid-
den variables and the parameter estimation of decoupled models until a local
optimum is reached. Gaffney et al. [13] applied the EM method to the trajectory
clustering with the assumption that the motion trajectories are generated from
a mixture regression model. The documentable limitation of the EM method is
the locality of its optimization and thus the final solution is typically sensitive
to initialization.

The second type of approaches may be based on convex relaxation. Recently,
Quadrianto et al. [14] proposed to solve the regression model with mixture of
several regression vectors by relaxing the assignment variables into continuous
ones. Their experimental results show that the convex formulation performs
better than the EM method on a number of benchmark datasets. However,
their formulation seems hard to be generalized to sparse representation setting.
Indeed, to the best of our knowledge, there has been no effort on solving the
sparse mixture regression problem in a convex optimization framework.

Our method is directly inspired by the convex relaxation of clustering [15],
where the authors employ the sparsity-inducing norms to enforce the fusion of
data points. Sparsity-inducing norms have emerged as flexible tools that allow
variable selection in penalized linear models [16, [17]. In this paper, we combine
these lines of research into our framework of auto-grouped sparse representation.

3 Problem Formulation

In this work, we propose an auto-grouped sparse representation (ASR) method to
automatically identify the intrinsic group structure of a given feature vector. In
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particular, the elements of a feature vector y € RP constitute K non-overlapped
groups {yc,,---,¥Ycx |, €ach of which represents one specific object and admits
a specific sparse representation wy € R™ w.r.t. the sub-matrix of provided over-
complete basis matrix A € RP*™. And C, C {1,...,p} is the feature element
indices contained in the k" group. We aim to find the groups of elements in
y and simultaneously estimate their sparse representations by optimizing the
following objective,

K K
, 1
min {2 D llye, — Acewrllz, + A |wk|zl} ; (1)
k=1

{Crowr i, —1

where y¢, denotes elements of y indexed by C, and Ac, denotes rows indexed
by Ci in the matrix A. In the above optimization problem, each element of y is
assigned to its corresponding group such that the overall loss is minimized.

The above objective function is a combinatorial optimization problem and
in general computationally intractable. Following the relaxation technique in-
troduced in |15], we relax the hard constraint on the number of groups to the
fusion-encouraging constraint on the sparse representations {w;}’_; C R™ of all
elements in y

' 12 p
min D llyi — Aiwillz, + A Iwille, ¢
twidin (2 i=1
subject to : Z 1w, #w; <t (2)
i<j

Here y; denotes the i element of the vector y, A; denotes the it® row of the
matrix A. The indicator function 1lyw,.w, takes value 1 if w;, w; are unequal,
and 0 otherwise; ), ; denotes Zf;ll ;’:i 41- Intuitively, the constraint on the
number of different vectors w; serves as a proxy of constraining the number
of groups. When ¢ > p(p — 1)/2, it amounts to each entry forming an individ-
ual group. Otherwise, along with the decrease of ¢, more feature elements are
assigned into the same group.

However, due to the non-convexity of the indicator function, Problem (2l
remains computationally hard. Here, we replace the indicator function by £..-
norm [15], which results in the following convex optimization problem:

o f1g L
i {2 3 llyi — Aswillz, + 2y |wi|@1} ,
ifi=1

i=1 i=1
subject to : Z lwi —wjlle, <t
i<j

The constraint imposed by the f.,-norm encourages the maximal difference be-
tween two vectors to be zero, namely fusing them together. It can be equivalently
expressed in following regularization form:

! More details and underlying rationale are referred to [157].
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' 1 P p
min $ 0>y = Aiwillg, A Iwille, + 8 _llwi = willew o (3)
i=1 i=1

{witi, i<j

The objective function of Problem (B]) consists of a smooth loss term and two non-
smooth regularization terms. In particular, we decompose the objective function
f(w) into the following two terms:

. 12
flw) = > v — AswillZ,
1=1

P
r(w) =AY Wil + 8 lwi — wyle..
i=1

i<j

The problem bearing such non-smooth terms can be solved by smooth approxi-
mation |18]. We provide the optimization details in the following section. Using
the proposed ASR, the feature element-wise sparse representations {w;}?_; are
effectively recovered. In certain cases they may not exactly form distinct groups
{wk}le. However, it is still possible to construct reliable groups. In this work,
we build an affinity graph of these representation vectors, and use a gap in the
distribution of eigenvalues of the corresponding Laplacian matrix to estimate
the number of groups K. Then spectral clustering techniques [19] can be ap-
plied to the affinity graph to cluster the representation vectors {w;}’_; into K
groups. And we obtain the feature elements group {yx}&_, accordingly. Then
{wk}le can be estimated by performing sparse representation on each group
individually.

4 Optimization Procedure

4.1 Smooth Approximation

According to the smooth approximation proposed in [18], the non-smooth regu-
larization term r(w) can be approximated by the following smoothed one,

ru(w) = Azsu(wi) + BZQ;A(Wiawj)a

i<j
where "

2
= ; — 4
sulwi) = | max_(wiov) = v, @

._ 12 2

Qu(Wi,wj) = max (w; —w;,v)— _|v]z,- (5)

[vile, <1 2

Herein, p is a parameter to control the approximation accuracy and fixed as
1 x 10~* throughout the experiments. For a fixed w;, denote v(w;) the unique
maximizer of [ ). It is standard that v(w;) = min {1, max{—1,w;/u}} where
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operators max {-, -} and min {-, -} are performed in element-wise for the involved
vectors. Moreover, s, (w;) is differentiable and its gradient Vs, = v(w;) is Lip-
schitz continuous with the constant Ly = 1/ |20]. Also, denote v(w;, w;) the
unique maximizer of (&). Then v(w;, w;) can be easily obtained via the £;-ball
projection algorithm [21]. Moreover, ¢,(w;) is differentiable and its gradient
Va,(wi) = .., v(w;, w;) is Lipschitz continuous with the constant L, = 1/p
for each term [20].

4.2 Optimization of the Smoothed Objective Function

For a fixed small smoothness parameter p, we are going to minimize the following
smoothed objective function,

fu(w) = f(W) +7u(w). (6)

It is known that f,(w) is differentiable with the gradient:

Vu(wi) = VI(wi) + Vru(ws), (7)
where,

Viwi) = Al (Aiw; — i),

Vru(wi) = v(w;) + ZV(W,’,W]').
J#i

It is straightforward to verify that V f (w) is Lipschitz continuous with constant
Ly = ||AT A2, where || - ||2 denotes the spectral norm of a matrix. Combin-
ing the discussion in the previous subsection, we get that V f,(w;) is Lipschitz
continuous with the constant,

Lj =[ATAl2+ = (A+8). (8)

1
W
In particular, we employ the Accelerated Proximal Gradient (APG) method [22]

to optimize f,(w). The detailed optimization procedure is provided in
Algorithm [Tl

4.3 Convergence Analysis
The following theorem guarantees the convergence of Algorithm [l

Theorem 1. Let the sequences {w'V)}22 be generated by Algorithm[D. Then for
any t > 0, we have,

ALy, |lw* |7

)y _ *) < fu £y

where w* is an optimal solution to the problem (@) and Ly, is the Lipschitz
constant of the function f,(-) calculated in Eqn. ().
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Algorithm 1. Smooth minimization for objective (3)
Input: A € RP*" y € RP, \, 3, itermax and .
Output: w;, i =1,...,p.
Initialization: Calculate Ly, according to Eqn. (§). Initialize w® e RP, ~(O ¢ RP,
and let 77(0) —1,t+0.
repeat
a® = (1= n®)yw® 4 M~
Calculate V f,(a?) according to Eqn. (),
YD =4O U V(@)

"](t)qu
WD (1 = g ®)g(® | O +1)
ntth = 2 bt L
until ¢ > itermax or |f, (W) — £, (w)] < e.

The above theorem can be directly derived from Theorem 2 in [18]. From
Theorem [ for a fixed p, it can be seen that Algorithm [l has the optimal rate of
convergence O(1/t?), where ¢ is the number of iterations. In terms of the desired
residue, i.e., |f, —min f,| < ¢, the rate of convergence is O(1/+/e).

5 Experiments

5.1 Toy Problem: Sparse Mixture Regression

We first apply ASR in sparse mixture regression problem [14] to verify its effec-
tiveness in uncovering data’s group structure. The observed data points {y;} Y,
are generated according to the linear model y; = w,{ai +¢. Here a; is a given re-
gressor vector, wy, is selected from a mixture of sparse linear models {wk}szl and
e ~ N(0,1) is added Gaussian noise. Here the data points {y;}}¥.; can be stacked
into a feature vector y = [y1,...,yn]? and the regressor vectors are stacked to
form the basis matrix A = [ay, ..., an}T. The mixture regression aims to estimate
the K regression models {wy}< | according to {y;,a;}Y ;. And simultaneously
data points {y;}}, are separated into K groups in which the data points are
generated by the same linear model. Namely, it aims to find the group structure
of the input vector y according to the underlying linear regression models of its
elements.

In this experiment, we apply ASR on the dataset generated by varying number
of linear models with K = 2, 3, 4. The number of data points n is respectively
set as 30, 120, 1000. Data dimension p is fixed as 10. Each element of a; and
wg is i.i.d. sampled from a uniform distribution on the unit interval. The mod-
els {wy} are sparsified by randomly zeroing half of their elements. The value of
regularization parameters are set as 3 = 1/p? and A = 0.1. And the convergence
parameters are fixed as € = 1 x 10™* and iter,.x = 10,000. Fig. B shows the
curves of the objective function values in Eqn. (@) along the optimization iter-
ations, and the obtained data groups. The clear block diagonal structure of the
{+ distance matrix of the uncovered linear models well demonstrates the ability
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of ASR to cluster the mixed data correctly. From the convergence curve, it can
be seen that objective function converges within less than 200 iterations, which
shows satisfying convergence rate.

1000=—==

10 20 40 60 80 100 120 200 400 600 800 1000

., ASRresults

ASR results 10

ASR results

1500

3
8
<
=

o
=}
3

Objective Value
~

Objective Value
8
2
Objective Value

o
o
o

150 200 [ 50 100 150 200 1000

100 c 0 500
Iterations Iterations Iterations

(a) K =2 (b) K =3 (c) K=4

50

Fig. 2. Auto-grouped results from ASR on the synthetic datasets for sparse mixture re-
gression. Top panel shows the /-distance matrices of the recovered regression models,
where darker color means smaller distance. And bottom panel shows the convergence
curves of the optimization processes.

5.2 Multi-edge Graph For Image Classification

Multi-edge Graph vs. Single-Edge Graph. A type of popular methods
for image classification is to perform semi-supervised learning based on a graph
G = {V,&} [23, 24]. Here each vertex v; € V represents an image which is
described by a feature vector y; € RP. And the edge e;; € € from the i*" to jt*
vertex, with weight w;;, represents their similarity. In traditional graphs, such as
k-NN graph and ¢;-graph }, similarity of two vertices is calculated based on
the feature-level measure and represented by a single edge. However, as pointed
out in the introduction, multiple intrinsic groups may exist in one feature vector
(corresponding to different objects or background), and more accurate similarity
can be obtained based on group-wise measurement. Here, we propose to apply
ASR to build a multi-edge graph G = {V,£} to more accurately and flexibly
describe the relationship between images, and obtain better image classification
performance.

In constructing the multi-edge graph, we apply ASR for each feature vector
y; of vertex v; by treating the others as basis A. Then we obtain K representa-
tion vectors {wf}szl and the corresponding element groups of y;. Here the j**
element in w? , wF(7), represents the similarity between v; and v; w.r.t. the k"
feature group and we construct the edge efj according to w¥(j). Note that for
different samples, the intrinsic group structure may be different. And thus the
number of edges K between two vertices may vary.
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After constructing the multi-edge graph, any graph regularized semi-supervised
learning method can be employed to perform multi-label image
classification [23, 124]. Since most of the methods operate on the graph adja-
cent matrix, which bears 2D structure, we also need to construct an adjacent
matrix for multi-edge graph G through properly selecting and merging the mul-
tiple edges. In practice, we first duplicate each edge efj into multiple edges, and
the number of duplication is equivalent to the number of the feature elements
in k" group. In this way, any two nodes in G are directly linked by identical
number of edges. Then we adopt the Marginal Fisher Analysis (MFA) ratio [26]
to evaluate the discriminative capability of the edges for multiple image class.
After obtaining the edges ranking on the discriminative capability, we select the
top t = 100 edges and combine them into single edge by summing their weights
directly. The produced graph adjacent matrix is used for the semi-supervised
learning on image classification.

Results. We compare the multi-edge graph with the k-NN and ¢;-graph [25]
on the multi-label image classification task. The evaluations are performed on
the public NUS-WIDE-LITE dataset [27], which consists of 55,615 images and
81 different semantic labels. Here, we use 27,807 images as labeled data and the
remains are unlabeled as in [28]. The used 634-D feature is the concatenation
of 225-D block-wise color moments (CM), 128-D wavelet texture (WT), 73-D
edge direction histogram (ED), 64-D color histogram (CH) and 144-D color cor-
relogram (CC). The k-NN graph is constructed by selecting & = 3000 nearest
neighbors. For the ¢;-graph, the regularization parameter A = 0.1 is selected
from [0.001,10]. In building the multi-edge graph, the parameters are fixed as
A=0.1,8=2x 1074, iterya, = 200 and € = 1 x 10~%. In our experiments, it
takes about 15 seconds to build the graph for one vertex on a PC with Quad
CPU 2.83GHz and 8GB memory. An exemplar sub-graph of G is shown in Fig.[Bl
In this sub-graph, several vertices are linked to the query vertex vy via 7 edges
(the estimated number of groups K = 7), each of which measures the similarity
between corresponding vertex and v; based on a certain feature group, as indi-
cated in the legend. It can be seen from Fig. ] that more semantically similar
vertices (e.g., va, v4) have larger number of edges with larger weights to the
vertex v1. This is because these vertices (images) contain more similar objects
to vy, which is captured by ASR in constructing the multi-edge graph.

After duplicating the edges between two vertices into 634 edges (total dimen-
sion of adopted feature), the MFA ratio is calculated based on 20 positive and neg-
ative nearest neighbors of each vertex in G [26], and top ¢ = 100 edges are selected
and combined. Then the popular Random Walk (RW) [24] and Entropic Graph
Semi-Supervised Classification (EGSSC) 23] are used to perform semi-supervised
learning on the multi-edge graph and baseline single-edge graphs. For EGSSC,
the parameters are searched in the sets g € {1 x 10781 x 1074,0.01,0.1} and
ve{1x1078,1x107% 1 x 1074,0.01,0.1} as in [23]. Classification performance
is measured by the Mean Average Precision (MAP) [28] and shown in Table[Il It
can be seen that the multi-edge graph significantly improves the multi-label im-
age classification performance, for both two semi-supervised learning methods. In
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Fig. 3. A subgraph of the constructed multi-edge graph. Here 5 types of features are
used. Note that for ease of display, each type of feature is shown in groups, as indicated
by the subscripts in legend. The groups of these feature elements clusters obtained by
ASR are shown in legend. In the multi-edge graph, the edges’ weights are shown in a
histogram form.

Table 1. MAP (%) of label propagation on different graphs

Graph RW [24] EGSSC [23]
kNN-graph 21.62 20.83
{1-graph 23.36 23.76
f1-graph Comb  22.60 23.55
Multi-edge graph 29.09 29.95
LELR [28] 25.79

particular, compared with the state-of-the-art performance from LELR [@], the
improvement achieves 3.3% for multi-edge graph + RW and 4.1% for multi-edge
graph + EGSSC.

Besides, we also compare ASR with k-means + ¢;-graph. In particular, the
elements of feature vectors are clustered into 7 groups by k-means along the
feature dimension. And we construct £;-graph for each feature element cluster.
These ¢1-graphs are then combined into a 7-edge graph ¢;1-graph Comb for fairly
comparing with our ASR multi-edge graph. From Table[], it is shown that multi-
edge graph outperforms ¢;-graph Comb graph by about 6% MAP. This further
demonstrates that ASR’s ability to find reasonable feature groups with more
discriminative information, benefitting from its accordance with the intrinsic
structure of features.

5.3 Motion Segmentation

Two-View Motion Segmentation. Motion segmentation is aimed to as-
sign multiple well tracked motion trajectories to the corresponding moving rigid
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objects. From epipolar geometry, given two corresponding points p and ¢ from
two images (p,q € R®*}, they satisfy the following equation [29],

p'Fq=0. 9)

Here the fundamental matrix F' encapsulates the intrinsic projective geometry
between two views. Trajectories on the same object have identical fundamental
matrix. And when K different rigid objects are moving independently, there are
K different fundamental matrices {Fj }5_,.

Here we apply ASR to the two view motion segmentation problem, where
the tracked trajectories are only from two frames. We first rewrite the epipolar
equation (@) for one corresponded pair as (p ® q)T w = 0, where ® denotes the
Kronecker product and the vector w is formed by concatenating the columns of
F. By removing the homogeneous coordinate (last element of w) to the right
hand side, the epipolar equation for N corresponding points can be written as
aZka = 1, where a; consists of the first 8 elements of the vector p; ® q;. Here, we
also denote the first 8 elements of original w as w without confusion. Then we
stack the vectors a;’s into basis matrix A = [aj,...,a,]T and the corresponding
input vector is y = [1,...,1]7 € R™. Similar to the mixture regression, we can
solve it through ASR as in Eqn. (). Thus, we can obtain the segmentation of the
motion trajectories according to their estimated fundamental matrix Fj, which
is expressed as vector wy, in ASR.

Table 2. Segmentation errors (%) for sequences with 2 motions

Method GPCA [12] RANSAC EM ASR
Checkerboard: 78 sequences

Mean 11.01  12.43 £0.26 37.44 + 0.58 9.07
Median 7.51 8.22 +0.93 39.26 £ 0.82 4.13
Traffic: 31 sequences

Mean 7.75 14.60 + 1.12 41.24 +0.41 9.42
Median 1.95 10.54 4+ 2.28 42.91 + 0.52 2.32
Articulated: 11 sequences

Mean 16.11  20.15+0.61 33.77 + 1.27 6.15
Median  14.14  17.28 £+ 2.51 32.37 £+ 4.08 0.99
All: 120 sequences

Mean 10.63  13.70 £ 0.32 38.08 + 0.42 8.89
Median 6.68 9.05 +0.98 40.33 +0.60 3.07

Results. We use the Hopkins155 dataset [30] to evaluate ASR for the two-view
motion segmentation task. The dataset consists of 155 video sequences of two
or three motions, which are divided into three categories: checkerboard, traffic,
and articulated. We use the trajectories from the first 2 frames of each sequence
as the input of the two-view motion segmentation.

2 Actually, the point coordinates are in the projective plane, namely p, q € P2
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We compare our method with three popular motion segmentation methods.
The first one is Generalized Principal Component Analysis (GPCA) [12], which
first projects the data points to a 4 dimensional subspace, and then groups the
estimated normal vectors of the subspaces for data segmentation. The second
method is the Expectation-Maximization (EM) [11], which is widely used but
only provides a local optimum solution. The last one is the RANdom SAmple
Consensus (RANSAC) which solves model fitting problem by random data sam-
pling and evaluation [31]. In the experiments, both the EM and RANSAC are run
20 times and their average errors are reported. For ASR, the parameters are set
as A = 0 due to the fundamental matrix is not sparse, 8 = 1/N?, iteryax = 1,000
and € = 1 x 10™%. Note that here we do not compare the proposed method with
multiple sample based methods, e.g., sparse subspace clustering [32], since they
only apply for multi-view motion segmentation. And they do not estimate the
fundamental matrices since they vary across multiple frames.

The segmentation errors are provided in Table 2] for two motions and Table 3]
for three motions respectively. It can be seen that ASR and GPCA significantly
outperform the EM and RANSAC methods owning to their convexity. Compared
with GPCA, the proposed ASR achieves smaller segmentation errors in most
of the sequences, and brings 1.74% and 3.91% overall improvement for two and
three motions respectively. More accurate segmentation results achieved by ASR
well demonstrate its superior ability in uncovering the underlying data group
structure.

Table 3. Segmentation errors (%) for sequences with 3 motions

Method GPCA [12] RANSAC EM ASR
Checkerboard: 26 sequences

Mean 32.27  56.02 +0.29 46.88 +1.02 25.53
Median  30.92  57.47 £0.76 47.66 4+ 1.85 20.04
Traffic: 7 sequences

Mean 17.58 48.61 +1.24 47.56 £+ 2.19 26.48
Median  18.54 51.37 £0.98 51.31 £ 1.32 29.92
Articulated: 2 sequences

Mean 26.14  61.70 £ 3.83 43.27 + 5.60 10.05
Median  26.14  61.70 £ 3.83 43.27 4+ 5.60 10.05
All: 35 sequences

Mean 28.86  54.62 +£0.32 46.81 +1.11 24.83
Median  24.32  57.07 £0.79 48.28 4+ 1.84 22.62

6 Conclusions and Future Work

In this work, we proposed auto-grouped sparse representation (ASR) to automat-
ically obtain the underlying group structures of the correlated feature elements.
In ASR, each uncovered group represents a certain semantically meaningful pat-
tern. We applied a convex relaxation to the primal intractable objective function
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to guarantee a global solution and further introduced smooth approximations to
ease the optimization process. Furthermore, two realistic applications of ASR
were considered besides the evaluations on synthetic data. For multi-label im-
age classification, ASR achieves remarkable performance improvement over the
state-of-the-art methods owing to its ability to more accurately describe the se-
mantic relationship between images by building informative multi-edge graph.
And for two view motion segmentation, ASR significantly reduces segmentation
errors compared with previous methods. Our proposed ASR need include a set
of pair-wise regularizations which may be inefficient for large-scale problems. In
the future, we plan to explore how to enhance the efficiency of the ASR, e.g.,
by utilizing some priors to remove redundant constraints. And we are also inter-
ested in providing the solution path for a general instruction on the parameter
selection of A and .
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