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Abstract. We propose a novel formulation to express the attachment of
a polygonal surface to a skeleton using purely linear terms. This enables
to simultaneously adapt the pose and shape of an articulated model in
an efficient way. Our work is motivated by the difficulty to constrain a
mesh when adapting it to multi-view silhouette images. However, such
an adaption is essential when capturing the detailed temporal evolution
of skin and clothing of a human actor without markers. While related
work is only able to ensure surface consistency during mesh adaption,
our coupled optimization of the skeleton creates structural stability and
minimizes the sensibility to occlusions and outliers in input images. We
demonstrate the benefits of our approach in an extensive evaluation.
The skeleton attachment considerably reduces implausible deformations,
especially when the number of input views is limited.

Keywords: Shape Adaption, Pose Estimation, Mesh Editing, Linear
Optimization.

1 Introduction

Capturing the shape of a moving non-rigid object from images comprises a va-
riety of challenges: object shape and pose change in every frame and usually
only a limited number of synchronized views of the object is available. A typical
scenario is to track the temporal evolution of skin and clothing of a human actor
without markers in order to record realistic animations. Similarly, taking body
measurements without contact and performing motion analysis in sports and
medicine often require a purely vision based system. However, the human body
is highly articulated and the space of possible shapes is large. Fortunately, most
articulated objects are supported by a skeleton which limits the space of possible
deformations. This makes it possible to first estimate the coarse skeleton pose
and then refine a shape model to represent local details.
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Fig. 1. Our approach adapts the shape and pose of an articulated template mesh (a)
to images (b). Distances between vertices and silhouette contours (c) are minimized
until the mesh fits tightly to the input silhouettes (d). Our linear formulation allows to
optimize shape and skeleton pose simultaneously, which yields more plausible results
(f) than optimization of the shape alone (e).

In previous work, the skeleton is only used for pose estimation and initializa-
tion of a polygonal mesh such that it has a similar pose. Usually, a subsequent
refinement of the mesh surface is decoupled from the skeleton [7,17] because
joint optimization can introduce non-linearities. We argue that dropping this as-
sociation of skeleton and surface makes the adaption process sensible to outliers
and can lead to unnatural deformations. Linear blend skinning [3] is the most
common method for attaching a mesh to a skeleton. It binds each vertex to one
or multiple bones. A mesh in a new pose is obtained by applying bone transfor-
mations on each vertex and blending the results. This method is practical for
obtaining new vertex positions when bone transformations are given. However,
adapting the skeleton from vertex positions is a non-linear problem. Recent work
[10,18] has shown that it is possible to attach a skeleton to a mesh using purely
linear formulations. Since these methods need to approximate elongated bones
by multiple short ones, they are not well suited for the human body.

In this paper, we derive a novel formulation for the deformation of an ar-
ticulated mesh. It not only allows to optimize for pose and shape jointly but
can also be computed efficiently. In contrast to transformation based skinning
methods [3,9], our formulation defines the position of each surface vertex relative
to the associated bones. The resulting least squares attachment between surface
and bones allows to obtain an optimal deformation using linear solvers. Given
a roughly initialized mesh, we employ an iterative closest point (ICP) scheme
which alternates between a search for correspondences of mesh vertices with
image data, and the optimization of vertices and skeleton joints such that the
mesh best fits to the given data. In order to improve robustness to unsuitable
correspondences, we use a covariance based weighting scheme [12]. It automati-
cally weights point correspondences by analyzing adjacent surface information.
Another advantage of our approach is that the size of the skeleton is not assumed
to be constant (i.e. the length of bones can vary during optimization). For ex-
ample, this allows to better approximate bending and stretching of the spine of
vertebrates using a much simpler model. By introducing quadratic constraints
for bone lengths, our method is able to enforce symmetric or fix-sized bones
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without increasing the time complexity of the solver. Figure 1 gives a visual
overview of our approach.

In Section 2, we investigate existing approaches for adapting polygonal meshes
to image data. We present our novel formulation for implicit skinning and corre-
spondence weighting in Section 3. In Section 4, we demonstrate how to deform
a 2D or 3D mesh to image silhouettes and evaluate the achieved quality and
accuracy. We discuss our findings and come to conclusions in Section 5.

2 Related Work

Various authors in the area of computer vision have studied the problem of
adapting a polygonal mesh to image data. Previous work can be categorized
into two main groups based on whether or not explicit skeletons are used:

Skeleton-less methods: Authors such as Aguiar et al. [1] argue that a skeleton
limits the application of marker-less motion capture to humanoid models and
loose clothing can not be handled realistically. [1] adapt a human body mesh to
multi-view images by first deforming a low-resolution volumetric mesh to capture
the pose. Then, they refine the detailed shape using a coupled high resolution
surface mesh. In contrast, Cagniart et al. [5] decompose a mesh into larger
surface patches and fit them to 3D point clouds. This increases robustness to
noisy data and allows to handle arbitrary objects such as a ball.

Skeleton based methods: These methods encode prior information about the
deformable object by using an explicit skeleton. [7] and [17] adapt the shape
and pose of a mesh in a two step algorithm which first globally optimizes the
skeleton pose and then drops the binding to the skeleton to non-rigidly deform
the surface of the mesh. While Vlasic et al. [17] propose to optimize the skeleton
and polygonal surface independently from each other, Gall et al. [7] use mesh
vertices rigged to the skeleton to estimate the pose of the model given the image
data. In [2], a method to perform pose estimation for the skeleton of a mesh
directly with linear blend skinning is presented. A common limitation of above
mentioned methods is that the skeleton size must be known in advance. This issue
is addressed by Droeschel and Behnke [6] who propose a method to adapt both
the pose and some parametric shape parameters of an adaptive body model to
image data. Hofmann and Gavrila [8] attempt to optimize both pose and shape
of a human model by batch processing a set of automatically selected multi-
view frames. Recent work by Taylor et al. [16] improves the commonly needed
iterative correspondence search between mesh vertices and image data. They
train a regression function that can predict correspondence between image data
and vertices directly. However, most previously mentioned approaches are based
on non-linear optimization and thus they are not computationally efficient for
large meshes. A linear method to jointly optimize the skeletal pose and non-rigid
shape has not been addressed in the current literature.
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Fig. 2. Implicit skinning: Vertices vi of the mesh (a) are attached to the skeleton (b)
by differential coordinates βi (c)

Our approach is related to the work of [7] and [1]. Instead of using the skeleton
only for pose initialization, we integrate it into a linear optimization formula-
tion where it makes the deformation process more robust, yet computationally
feasible. Moreover, the simultaneous optimization of pose and shape yields more
accurate joint positions than estimating the skeleton pose using a static surface
and rotational movements only.

3 Simultaneous Linear Skeleton and Shape Refinement

We formulate the adaption of a polygonal mesh as the minimization of an en-
ergy E. This formulation combines a surface smoothness energy Eskin, an energy
Ebone which ensures that vertices are kept attached to their corresponding bones
and the energy Edeform that allows to deform a mesh to fit image data:

E(V,G) = λskin Eskin(V) + λboneEbone(V,G) + λdeformEdeform(V) (1)

where V = {vi}, i = 1 . . . |V| represents the vertices of the polygonal mesh M.
Our skeleton consists of a set of joint positions G = {gj}, j = 1 . . . |G|. While
vertices of the mesh are connected by faces fi (3D) or edges (2D), skeleton joints
are connected by bones bj between joint gj and the parent joint gprev(j) in the
tree-like skeleton hierarchy (see Figure 2). The use of explicit point positions
makes it possible to create a linear relationship between skin and bones. Each
energy can be expressed as a quadratic function and a minimum of (1) is ob-
tained by solving the corresponding unconstrained linear system of equations.
The scalars λ > 0 allow to adjust the influence of each energy term. In the re-
mainder of this section, we describe the energy terms in detail and show how to
efficiently solve (1) with additional bone length preserving constraints.

3.1 Laplacian Surface Deformation Energy

We deform the surface of the mesh by modifying selected vertices while keeping
the remaining mesh smooth. Laplacian mesh editing [4] is a computationally
efficient method that applies the Laplace operator on each surface vertex vi to
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obtain a vector δi that is equal to the offset between vi and the weighted mean
of its 1-ring vertex neighborhood Ni:

Li(V) = δi = vi −
∑

j∈Ni

wijvj (2)

where weights wij ≥ 0 are obtained using the co-tangent weighting scheme [4].
The squared deformation energy is defined as

Eskin(V) =

|V|∑

i=1

‖Li(V)− Ti(V)δ̂i‖2 (3)

where δ̂i are the delta coordinates of the undeformed mesh. A disadvantage
of (2) is that delta coordinates are not rotation and scale invariant. Sorkine
et al. [13] present how to implicitly approximate a transformation Ti(V) for
each vertex vi that is linear dependent on eventual new vertex positions and
therefore allows (3) to be used even in presence of small rotations and scaling1.
Throughout the paper, we use λskin = 1.

3.2 Skeleton Binding Energy

The skeleton binding energy Ebone is responsible for attaching the surface of the
articulated mesh to the skeleton. Given an initial configuration between vertices
and bones, this energy penalizes a deviation from this configuration during defor-
mation. While [10,18] propose a linear skeleton binding for short bone segments
only, our approach handles arbitrary sized bones and is compatible to existing
skinning algorithms. A skinning algorithm such as [3] assigns linear skinning
weights ρi,j ≥ 0 to each vertex vi which bind it to one or multiple bones bj
(
∑

j ρi,j = 1). We introduce differential bone coordinates βi which are similar
to δ-coordinates in (2). They encode the position of vertex vi relative to its
connected bones bj, which are defined through joint positions gj and gprev(j):

Bi(V,G) = βi = vi −
|G|∑

j=1

ρi,j
(
γi,j gj + (1− γi,j) gprev(j)

)
. (4)

Each γi,j is chosen such that the vector between vi and
(
γi,j gj + (1− γi,j) gprev(j)

)

is orthogonal to bone bj (see Figure 2c):

γi,j =
1

2
− ‖vi − gj‖2 − ‖vi − gprev(j)‖2

2 ‖gj − gprev(j)‖2 (5)

where ‖.‖2 denotes the squared Euclidean distance. The energy Ebone penalizes
any deviation from this initial attachment:

Ebone(V,G) =

|V |∑

i=1

κi‖Bi(V,G)−Ti(V,G)β̂i‖2 (6)

1 In 2D, Ti(V) can be determined exactly, thus even large rotations and scale changes
can be handled without artifacts.
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(a) Default pose, defines δ̂i and β̂i

(b) λbone = 2 (c) λbone = 0.1 (d) Changing bone lengths

Fig. 3. Effects of bending and stretching the skeleton (red) on a 2D mesh (blue). In
(b), we show that high values for λbone cause a stiff surface when bending. A small
λbone (c) produces smoother result due to the skin energy Eskin. (d) Changing bone
lengths leads to scaling of attached the surface.

where β̂i are the beta-coordinates of the initial mesh. During mesh adaption,
this energy ensures that bones and surface vertices will be deformed jointly. For
example, joint positions are automatically updated when only surface vertices
are deformed, and vice versa. In order to handle small changes in rotation and
scale, we implicitly approximate a transformation matrix Ti(V,G) for each
vertex according to [13]. κi ≥ 0 are weights that adjust the strength of the
binding between surface and skeleton for each vertex individually. This allows
some regions of the mesh to be more rigid than others. A typical scenario is loose
clothing, such as a skirt on a human mesh. Stoll et al. [14] show how to learn
such weights automatically.

Equation (6) can be used for 2D and 3D meshes and allows natural defor-
mations near joints where vertices are affected by more than one bone. In Fig-
ure 3, we show some examples for deforming a 2D mesh. The four skeleton
joints are predefined and the new vertex positions are obtained by minimizing
E = Eskin(V) + λboneEbone(V,G).

3.3 Covariance Weighted Mesh Deformation Energy

In an iterative closest point (ICP) scheme, we find correspondences (i, k) be-
tween mesh vertices vi and target points tk and minimize their squared distance
through the deformation energy term Edeform:

Edeform(V) =
∑

(i,k)∈Matches

dist2(vi, tk). (7)

Related approaches usually minimize the Euclidean distance between model ver-
tices and target points [1,7,17]. This distance measure originates from mesh mod-
eling where deformation is driven by user defined target handles [4,13]. However,
when determining correspondences between vertices and target points automati-
cally, a reliable rejection or weighting of implausible matches is required. Instead
of using simple surface normal based weighting such as in [17], we extend co-
variance based correspondence weighting [12] from point clouds to polygonal
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(a) Covariance based weighting (b) Surface covariances

Fig. 4. We use covariance matrices for describing the surface around a vertex vi. The
mean of two corresponding covariances yields an automatic weighting Hik.

meshes. [12] is based on the assumption that each vertex vi can be described
by a locally planar neighborhood which is described by a covariance matrix Σi.
It has a small variance in the normal direction of the surface but a high vari-
ance on the local surface plane. Such vertex/covariance tuples allow to optimize
surface-to-surface distances by minimizing the squared Bhattacharyya distance
between vi and tk:

dist2(vi, tk|Hik) = ‖vi − ti‖2Hik
= (vi − tk)

T

(
Σv

i +Σt
k

2

)

︸ ︷︷ ︸
Hik

−1

(vi − tk) (8)

where Hik is the combined correspondence covariance. This distance measure
has two key advantages for mesh deformation: First, an anisotropic covariance
matrix allows for movement along the surface plane but constrains corresponding
vertices to have a low distance in normal direction. Second, the mean of two
similarly oriented covariance matrices conserves a high weight in normal direction
while differently oriented covariances automatically decrease the strength of the
correspondence (see Figure 4a). Note that covariance matrices are symmetric,
thus surface points with an opposing normal vector would wrongly yield a strong
correspondence. Therefore, we need to discard correspondences with differently
oriented surfaces.

For 3D meshes, we calculate the surface covariance Σv
i by analyzing the faces

adjacent to vertex vi. First, we assign a covariance Σfj to each face:

Σfj = Rfj diag(εcov, 1, 1)Rfj
T (9)

where the rotation matrix Rfj rotates the normal of face fj onto the x-axis
and εcov � 1 defines the variance in normal direction. Then, the covariance
Σv

i for vertex vi is obtained as the weighted sum of inverse-covariances of its
neighboring faces, as illustrated in Figure 4b:

Σv
i =

⎛

⎝
∑

j∈NF(vi)

αij

(
Σfj

)−1

⎞

⎠
−1

with
∑

j∈NF(vi)

αij = 1 (10)
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where αij is a weight proportional to the area of face fj and NF(vi) the list of
faces adjacent to vertex vi. For 2D meshes or silhouette contours, we obtain Σv

i

via edge covariances weighted by edge lengths.

3.4 Quadratically Constrained Energy Minimization

The quadratic energy minimization from (1) can be efficiently solved using sparse
Cholesky matrix decomposition. However, the length of bones is completely un-
constrained such that the skeleton can change in size. In situations when there is
noisy or occluded image data, the stability of mesh deformation can be increased
when the lengths of bones are controlled by quadratic equality constraints. They
allow to keep the lengths of bones constant or enforce symmetric bones during
shape adaption:

min
V,G

E(V,G) = min
x

1

2
xTCx+ bTx with x =

[
V

G

]
(11)

subject to
1

2
xTEkx = ek for k = 1 . . .K

where the positive definite matrix C and the vector b encode the least squares
equations of (1). x = [vx1 , v

y
1 , v

z
1 , v

x
2 , . . . , v

z
|V |, g

x
1 , g

y
1 , . . . , g

z
|G|]

T contains vertex
and joint positions. For example, the length of a single bone can be fixed to ek
using ‖gj − gprev(j)‖2 = ek, where the squared Euclidean distance operator can
be expressed as a symmetric matrix Ek. Similarly, body symmetry (e.g. bones
with equal length) can be expressed as ‖ga − gprev(a)‖2 = ‖gb − gprev(b)‖2.

A quadratically constrained quadratic problem (11) cannot be solved using
a linear solver directly. Thus, we use the iterative Sequential Quadratic Pro-
gramming (SQP) algorithm [11]. This algorithm iteratively solves a (sparse)
symmetric linear system of equations and therefore increases the time required
for solving (11) only by a linear factor.

4 Experimental Evaluation

In this section, we demonstrate that including a skeleton binding energy improves
the quality when adapting a polygonal shape to silhouette images. We test our
approach on two different types of scenes: adapting the shape and pose of a hand
to segmentations of a moving hand in 2D images and adapting a 3D human body
model to sequences of multi-view camera images. Hand adaption is particularly
suited to show robustness to occlusion and outliers in the input data. The multi-
view scenario demonstrates how our skeleton term improves the deformation
quality, especially when only a limited number of views is available.

4.1 Optimizing Shape and Pose of a 2D Hand Model

In the first experiment, we optimize the shape and pose of a 2D outline of a
hand by adapting it to the segmentation of a real hand. We show how a skeleton
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(a) (b) (c) (d) (e)

Fig. 5. Adapting a model of a hand to segmented images. Silhouette image (top),
adaption without skeleton (middle) and with our skeleton term (bottom).

rigged to the model improves robustness when occluding objects are present in
the silhouette image. For comparison, we demonstrate how the same model fails
to handle such scenes when no skeletal structure is present.

As a model of the hand, we use a polygonal line with a simple skeleton that
allows to pose each finger individually. We obtain skinning weights using the
method described in [3] and compute differential coordinates for the line δ̂i and

skeleton binding β̂i according to (2) and (4). In addition, we set up quadratic
constraints Ek that ensure that the lengths of all bones stay constant during
deformation. For evaluation, we recorded multiple sequences of a moving hand,
each more than 100 frames long. We manually initialize the positions of the finger
tips in the first frame. The remaining bones and the polyline is adapted to the
silhouette using correspondences between line vertices and silhouette contours.

In Figure 5, we show some frames of our test sequences (the full videos are
provided in supplemental work). We adapt the hand model to the silhouette con-
tours in every frame, using the adapted model of the previous frame as an initial-
ization. The skeleton provides a crucial supportive structure for the polygonal
line which helps to maintain a plausible shape and minimizes errors in occluded
regions. For example, in Figures 5b and 5c the hand is moved behind a metal bar
and a false image contour occurs at the lower finger tips. The skeleton with fixed
bone lengths allows to handle this movement correctly, while skeleton-less defor-
mation gets stuck at the contour of the occluder. In Figure 5e, individual fingers
are not visible in the silhouette anymore. Nevertheless, the prior information
of the skeleton term helps to maintain plausible finger locations. In addition, a
skeleton eliminates drifting along the arm.
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4.2 Human Shape Adaption from Multi-view Silhouettes

In this experiment, we provide a qualitative and quantitative evaluation of our
approach for adapting a 3D human body model to multiple synchronized silhou-
ette images. Similar to [1,7,17], we require a mesh of the person in roughly the
same pose. Typically, such a mesh is obtained by a laser scanner or via image
based methods. A rough pose can be obtained through pose estimation directly
from silhouette images [7,15]. The initialized mesh is then deformed such that
its reprojection has a maximum overlap with all silhouette images.

We iteratively align projected rim vertices with their closest silhouette contour
in all camera images (8 iterations are usually sufficient). The 2D/3D correspon-
dences are handled by the deformation energy term Edeform. In [7], a method is
presented that allows to minimize the distance between a 3D vertex Vi ∈ R

3 and
a viewing ray corresponding to an image pixel tk ∈ R

2 based on the following
linear relationships:

(
N�

1 − tk,xN
�
3

)
Vi +

(
T �
1 − tk,xT

�
3

)
= 0

(
N�

2 − tk,yN
�
3

)
Vi +

(
T �
2 − tk,yT

�
3

)
= 0 (12)

where the 3×3 matrix N� = K�R� is calculated from the 3×4 projection matrix
P� = K�[R�|T �] of camera 
 (subscripts of N denote the respective rows in the
matrix). The 3D covariance matrix ΣV

i corresponding to vertex Vi needs to be
rotated into the image coordinate system of camera 
, which allows to additively
combine it with the 2D contour covariance of pixel tk:

H̃ik =
Σ̃V

i +Σt
k

2
with Σ̃V

i =

[
R�

1

R�
2

]
ΣV

i

[
R�

1

R�
2

]T
(13)

where H̃ik is the combined correspondence covariance. Plugging (12) and (13)
into (8) yields a covariance-weighted squared distance function dist2(Vi, tk|H̃ik)
for 2D/3D correspondences.

We evaluate our pose and mesh adaption on a public dataset which contains
high quality silhouettes of multiple actors recorded by eight 1-megapixel cam-
eras [7]. In every frame, we initialize the actor specific template model using the
3D skeleton pose information provided in this dataset. We make use of our linear
skeleton binding energy for shape adaption, but do not use bone length preserv-
ing constraints. Our quantitative evaluations are based on the commonly used
pixel overlap error [1,2,5]. Therefore, we count the number of pixels that are
different in the reprojection of the deformed mesh and the input segmentations.

In Table 1, we evaluate the influence of our skeleton term and covariance
based correspondence weighting. Almost all scenes benefit from an additional
skeleton term, which decreases the silhouette overlap error by 200 pixels on
average compared to mesh adaption without skeleton and covariance weighting,
which is most similar to the method in [7].

We like to point out that there are larger errors in configurations where a bone
term is used without covariance weighting (εcov = 1). This can be explained as
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Table 1. Effect of covariance weighting εcov and bone energy when adapting a mesh
to multi-view silhouette images. Reported values are the mean silhouette overlap error
for the given sequence.

Sequence # Frames Not εcov=1 εcov=0.01
adapted λbone = 0 λbone = 0.1 λbone = 0 λbone = 0.1

Dance [7] 574 7,600 4,400 4,500 4,300 4,100
Skirt [7] 721 6,900 4,100 4,300 4,300 4,100
Handstand [7] 401 8,800 5,100 5,200 5,200 4,900
Wheel [7] 281 7,200 4,400 4,600 4,300 4,300
Dog [7] 60 4,700 3,300 3,100 3,100 3,100

2 3 4 5 6 7 8

5,000

10,000

Number of Views

(a) Handstand (401 frames)

2 3 4 5 6 7 8

5,000

10,000

Number of Views

(b) Dance (574 frames)

Fig. 6. Mean silhouette overlap error in pixels (evaluated on all views) when the mesh
is adapted only to the first n views of the given sequence. Legend: not adapted (dashed),
without skeleton (dotted) and with skeleton (solid).

follows: the bone energy competes against the deformation energy to maintain
a natural distribution of vertices along the mesh surface while the deformation
pulls vertices to their closest silhouette contour. Covariance based weighting
enables both energies to be optimized with minimal interference.

So far, the improvement of our method is rather small compared to [7] be-
cause the number of camera views (eight) is sufficient for a good adaption with
surface-only regularization. The real benefit of our method becomes apparent
when fewer input silhouette images are available. In Figure 6, we analyze the
silhouette overlap error depending on the number of input views and compare
mesh adaption with and without a skeleton term. For reference, we plot the ini-
tial error of the not yet adapted mesh, which is independent on the number of
views. While there is almost no difference when all eight camera views are used,
our bone energy term yields a significantly lower error when only a few views are
available. In Figure 7, we take a closer look at the reason for these results. By
means of the Wheel sequence adapted to the first three camera views, we analyze
the mean silhouette overlap at each frame and camera individually. It can be
seen that our bone energy consequently yields a lower error in all frames (Fig-
ure 7a). While the skeleton term effectively minimizes the errors in views used for
adaption, its preference for plausible deformations is honored by a lower error in
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4,000

6,000

8,000

10,000

12,000
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(a) Mean error for each frame

1 2 3 4 5 6 7 8
0

5,000

10,000

Camera Number

(b) Mean error for each camera

Fig. 7. Evaluation of the Wheel sequence [7] when only cameras 1-3 are used for mesh
adaption. The silhouette overlap error (y-axis) is computed from all views. Legend: not
adapted (blue), without skeleton (green) and with skeleton (red).

(a) Handstand (b) Handstand (c) Skirt (d) Dance

Fig. 8. Our bone energy term reduces unnatural deformations even when only a few
camera views are available (here: 4 views). Deformation without (left) and with skeleton
(right).

the remaining views. Adaption without an underlying skeleton simply overfits to
the given views and causes unnatural effects visible in remaining views. This can
be seen in a qualitative analysis in Figure 8. It is worth noting that the explicit
encoding of skeleton joint positions allows to obtain an optimized skeleton pose
as a by-product of shape adaption. In Figure 9, we show some frames where our
approach significantly improves the locations of skeleton joints over their initial
positions.

Finally, we analyze the runtime of our approach when adapting a rather large
mesh with 2500 vertices and 15 skeleton joint positions. The overall adaption of
the mesh to a single frame in an eight camera setup takes 4 s in an unoptimized
Matlab implementation on an Intel i7 CPU, which includes the time for eight
iterations of matching rim vertices and silhouette contours, calculating vertex
covariances and minimizing the deformation energy. A single minimization of the
deformation energy E accounts for about 60ms when skeleton information is not
used. By jointly minimizing the unconstrained bone energy, this time increases to
75ms. This increase is negligible since energy minimization requires only a frac-
tion of the overall runtime. When solving the quadratically constrained version
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(a) Handstand #38 (b) Wheel #120 (c) Skirt #297

Fig. 9. Our simultaneous shape and pose adaption is able to correct an inaccurate
initial pose estimate (dashed). Solid lines represent our optimized skeleton.

of (11) with 6 symmetry constraints, the time for a single energy minimization
increases to 500ms.

5 Discussion and Conclusions

We have presented a novel method to bind the surface of a polygonal mesh to
an articulated skeleton using a linear formulation. Given an initialized template
mesh, we are able to simultaneously adapt both its detailed shape and pose to a
silhouette representation of an articulated object such as a human body. This is
an improvement over previous methods, which are only able to adapt the mesh
surface without making use of skeleton information [1,7,17]. We have shown that
a skeleton term in shape optimization is able to increase stability of the defor-
mation process, especially when the number of input views is low. The reason for
this improvement is that the skeleton adds a crucial inner structure to the model
which penalizes deviations from unnatural deformations. As a consequence, our
approach allows to either reduce the number of views in a multi-camera setup
or to focus the cameras on different regions of the object to capture more visual
details. In order to handle loose clothing, we locally reduce the skeleton binding
strength in regions where the surface should not be attached to a skeleton. Our
linear skeleton binding can easily be integrated in existing mesh adaption ap-
proaches and does not increase the runtime requirements considerably compared
to adapting the surface only.

Our approach is not limited to adapt a mesh to 2D silhouette contours. Ver-
tex correspondences and the covariance based weighting scheme can easily be
applied to different types of input data, such as 3D point clouds. A limitation
shared with other ICP based methods is the dependency on a good initialization
of the template mesh. Thus, we can only adapt to local details in the vicinity
of the initialized position. By introducing correspondences based on texture in-
formation, it is possible to find correspondences across camera views and even
sequential frames. Therefore, our hope is that this paper will inspire future work
in areas such as skeleton supported mesh tracking.
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