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Abstract. How hard are geometric vision problems with outliers? We
show that for most fitting problems, a solution that minimizes the num-
ber of outliers can be found with an algorithm that has polynomial time-
complexity in the number of points (independent of the rate of outliers).
Further, and perhaps more interestingly, other cost functions such as the
truncated L2-norm can also be handled within the same framework with
the same time complexity.

We apply our framework to triangulation, relative pose problems and
stitching, and give several other examples that fulfill the required condi-
tions. Based on efficient polynomial equation solvers, it is experimentally
demonstrated that these problems can be solved reliably, in particular
for low-dimensional models. Comparisons to standard random sampling
solvers are also given.

1 Introduction

The ability to handle outliers in multiple view geometry problems is a major
challenge. It is well-known that least-squares methods will inevitably break down
due to erroneous correspondences, so there is a need for methods that are robust
to noisy image measurements. A common choice is to try to maximize the number
of inliers, that is, points within some error tolerance. More ideally, one would like
to use a robust cost function such as the truncated L2-norm. In this paper, we
analyze the problem of robust fitting and show that many geometric problems
are in fact tractable under various cost functions. The validity of our approach
is experimentally demonstrated on three application problems; see Figure 1.

(a) (b) (c)

Fig. 1. (a) Triangulation. An image point gives rise to a cone {θ ∈ D : ri(θ) ≤ ε}.
(b) Stitching. Images taken by a stationary camera can be stitched together. (c) Planar
motion. A surveillance camera views an object moving in a plane.
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1.1 Related Work

One of the most successful approaches to robust fitting is ransac, originally
proposed in [1] and later refined in various aspects, e.g., [2]. In ransac a series
of minimal subproblems are solved and the solutions are evaluated on the full
problem. Normally, noise-free solutions to the subproblems are sought but there
are also cases where the subproblem is optimized in some sense, e.g. [3]. It is
implicitly assumed that a good solution can be found as a solution to one of
the subproblems. In this paper it is shown that by using a different type of
subproblems, an optimal solution can often be guaranteed.

A different paradigm that has also turned out to be useful in this context
is the L∞-framework [4]. In [5], a heuristic relaxation method is proposed to
remove outliers. In [6], it is shown how to detect outliers but the method tends
to remove a lot of inliers as well. Further extensions in this direction have been
explored in [7, 8]. The approach works well for large-scale problems with few
outliers, but cannot handle large rates of outliers.

The most similar works to ours include [9–13] where the aim is to develop
algorithms which provably maximizes the number of inliers. In [9, 10], branch-
and-bound techniques are developed which have exponential worst-time com-
plexity. In [11], registration problems dealing mainly with 2D transformations
are considered. In the case of linear constraints on the transformation space (e.g.,
when optimizing over translations), it is concluded that in order to obtain the
optimal solution, one only needs to examine the intersections of the constraints.
This is equivalent to what our approach boils down for this specific setting.
However, in the case of non-linear constraints (more specifically, in the case of
rotations), specialized solutions are proposed which do not apply to the general
setting that we consider. In [12], a triangulation method is presented, but it is
only practical for a few outliers due to its high computational complexity. For
quasiconvex residual functions, an O(nd+2) algorithm is given in [13], where n
is the number of points and d the dimension of the model. We improve on this
result by showing it is possible to solve the same problem in O(nd+1). Further,
our result holds for a larger set of residual functions and we can model other
cost functions than the cardinality of the inlier set.

2 Problem Formulation

Let {ri(θ)}ni=1 be a set of non-negative residual functions. Consider the following
optimization problem,

min
θ

n∑

i=1

� (ri(θ)) , (1)

where θ ∈ D ⊆ R
m. Here �(x) is a loss function, for example, �(x) = 1 if

x > ε and 0 otherwise; see Figure 2(a). Hence, with this loss function, (1) is
simply minimizing the number of outliers. We will require that the loss function
� is non-decreasing and piecewise constant with a finite number of discontinuity
points. This may seem like a severe restriction, but we can in fact approximate
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any truncated norm-function to arbitrary precision. An example is the truncated
L2-norm given in Figure 2(b).

(a) (b)

Fig. 2. (a) The number of inliers (i.e., residual errors below ε) is minimized when the
loss function is a step function. (b) The truncated L2-norm (blue) can be approximated
with a non-decreasing piecewise constant function (red).

Before stating our main theorem and developing an algorithm for solving the
above problem, we will give a few example applications.

Example 1 (Line fitting). Given a set of points (xi, yi), i = 1, . . . , n, we wish
to fit a line to the data. In this case the parameter space is a two-dimensional
manifold or more precisely the cylinder D = {θ ∈ R

3 : θ21+θ22 = 1}. The residual
functions are computed as

ri(θ) = |xiθ1 + yiθ2 + θ3|.

Example 2 (Triangulation). Given a set of 3 × 4 camera matrices Pi and cor-
responding image points (xi, yi), i = 1, . . . , n, the goal is to reconstruct a 3D
point. The residual functions measuring reprojection errors can be written

ri(θ) =

∥∥∥∥

(
xi − aTi θ + āi

cTi θ + c̄i
, yi − bTi θ + b̄i

cTi θ + c̄i

)∥∥∥∥ , (2)

where (aTi , āi), (b
T
i , b̄i) and (cTi , c̄i) denote the first, second and third row, re-

spectively, of Pi. The domain is the set of points in front of all cameras

D = {θ ∈ R
3 : cTi θ + c̄i ≥ 0, i = 1, . . . , n}.

All points that satisfy ri(θ) ≤ ε form a convex cone; see Figure 1(a).

Example 3 (Rigid registration). Let (xi, yi) and (x′
i, y

′
i) be corresponding 2D

points, i = 1, . . . , n, and suppose we wish to estimate a rigid transformation
such that the first set of points is mapped to the other. The residual functions
are given by

ri(θ) =

∥∥∥∥

(
θ1 −θ2
θ2 θ1

)(
xi

yi

)
+

(
θ3
θ4

)
−
(
x′
i

y′i

)∥∥∥∥ .

The parameter space is (as in Example 1) a cylinder, but it is now a three-
dimensional manifold D = {θ ∈ R

4 : θ21 + θ22 = 1}.
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3 Main Result

In this section we will examine the set of minimizers to (1). Specifically, we will
define a non-empty subset of the minimizers and show that these points can be
found by analyzing subproblems of at most d residual functions, where d is the
dimension of the parameter space. The number of such subproblems is

(
n
d

)
. For

low values of d, an exhaustive search over these sets is tractable.
Let the discontinuity points of loss function � be denoted by ε1, . . . , εk; cf. Fig-

ure 2. As a consequence, the sum in (1) can only attain a finite number of different
values and hence there exists at least one minimizer for (1). Let θ∗ be such a
minimizer and consider the set

Ω∗ =

n⋂

i=1

{θ : �(ri(θ)) ≤ �(ri(θ
∗))}. (3)

Clearly this set is non-empty since it contains θ∗. Moreover, any θ in this set is
a minimizer to (1). Our aim is to devise an algorithm that is guaranteed to find
at least one such θ. We start by simplifying (3).

First we note that for each i such that ri(θ
∗) > εk, that is, the value is larger

than any discontinuity point, the constraint �(ri(θ)) ≤ �(ri(θ
∗)) does not restrict

θ and can be dropped. Let I∗ denote the indices such that ri(θ
∗) ≤ εk. With the

0 − 1 loss function, this is simply the set of inliers. Moreover, the fact that � is
piecewise constant makes it possible to simplify the description, since

�(ri(θ)) ≤ �(ri(θ
∗)) ⇔ ri(θ) ≤ εji

where εji takes one of the values ε1, . . . , εk. This allows us to rewrite Ω∗ as

Ω∗ =
⋂

i∈I∗
{θ : ri(θ) ≤ εji}.

Now consider the optimization problem,

min
θ

f(θ) s.t. ri(θ) ≤ εji for i ∈ I∗. (4)

where f is an auxiliary goal function. We note that a solution to this problem
will also solve the original problem.

3.1 Main Theorem

To proceed we need some regularity conditions for problem (4).

Condition 1. The goal function f is continuously differentiable and there exists
a minimizer to (4). Moreover, the residual functions are continuously differen-
tiable at the minimizer and satisfy a constraint qualification for the Karush-
Kuhn-Tucker (KKT) constraints [14].
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A constraint qualification is a standard condition in the optimization literature
and we will discuss it in more detail later. The importance of constraint qualifi-
cations is to guarantee that, by examining only KKT points, we do not lose out
on local minima and, hence possibly, global optimal solutions.

Theorem 1. Assume that the domain D satisfies D = R
d and Condition 1 is

fulfilled. Then a minimizer of (4) is also a KKT point for a subproblem of size
at most d, that is,

min
θ

f(θ) s.t. ri(θ) ≤ εji for i ∈ I, (5)

where I of is a subset of {1, . . . , n} of size |I| ≤ d.

The following extension of the theorem of Caratheodory will be useful.

Lemma 1. Let v and ei, i = 1, . . . , n be in R
d and assume that

v +

n∑

i=1

μiei = 0 with μi ≥ 0. (6)

Then there exists a subset I of {1, . . . , n} of size |I| ≤ d such that

v +
∑

i∈I

μ̄iei = 0 with μ̄i > 0.

Proof. By (6), −v is a positive linear combination of the ei’s. By the theorem of
Caratheodory, it can also be written as a positive linear combination of d+1 of
the ei’s. After renumbering we can write this as

v +
d+1∑

i=1

μ′
iei = 0.

Hence 0 is a positive linear combination of d+2 vectors. Again by Caratheodory,
it is also a positive linear combination of d+1 of these vectors. If v is one of them
we are done. Otherwise

∑d+1
i=1 μ′′

i ei = 0. Now let k = minμ′
i/μ

′′
i and assume that

the minimizer is i = d+ 1,

0 = v +

d+1∑

i=1

μ′
iei − k

d+1∑

i=1

μ′′
i ei = v +

d∑

i=1

(μ′
i − kμ′′

i )ei.

Since μ̄i = μ′
i − kμ′′

i is always non-negative, this completes the proof. ��

Proof (Theorem 1). The KKT conditions state that in optimum

∇f +

n∑

i=1

μi∇ri = 0 with μi ≥ 0
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and that μi(ri − εji) = 0, i = 1, . . . , n. By Lemma 1 there is a subset I of
{1, . . . , n} of size |I| ≤ d such that

∇f +
∑

i∈I

μ̄i∇ri = 0 with μ̄i > 0.

Clearly, μ̄i(ri−εji) = 0 holds so the optimum is a KKT point for the subproblem
generated by I as well. ��

3.2 An Algorithm

Theorem 1 implies that a solution to (4) – and hence a solution to our main
problem (1) – is a KKT point for a subproblem of size (at most) d. To find the
KKT points of this problem we need to work out which residual functions are
involved and which thresholds εji are relevant. We will handle this by performing
an exhaustive search over subsets and thresholds. Recall that there are n differ-
ent residual functions and k different thresholds. Hence, there are

(
n
d

)
different

choices of residual functions and for each choice, the d thresholds can be chosen
in kd different ways. In total, there are O(kdnd) different cases to consider. For
each of these we compute all n residuals. Hence the algorithm has complexity
O(kdnd+1), which is polynomial in the number of residuals, but exponential in
the dimension of the parameter space. Note, however, that for a given problem
type the dimension d is fixed. Algorithm 1 gives an overview.

Algorithm 1 . Polynomial-Time Optimum Search

Given a set of residual functions, solve main problem (1)

For each subset I of {1, . . . , n} of size |I | ≤ d
For each choice of thresholds εj1 , . . . , εjd .

Compute all KKT points, denoted θKKT, in (5).
For each θKKT,

Compute all residuals ri(θKKT) and count the outliers.
If this is the lowest number of outliers so far, store θKKT.

4 Finding the KKT Points

Algorithm 1 requires a method to find all KKT points for a given subproblem
(5). If the residual functions are quasiconvex (for example, as in triangulation)
and the auxiliary goal function is convex we can do this by using standard
methods for convex optimization [4]. A faster approach can be obtained if the
KKT points can be described using polynomial equations and this is often the
case in multiple view geometry. A KKT point is characterized by (possibly after
renumbering)

∇f(θ) +

d∑

i=1

μi∇ri(θ) = 0,

μi(ri(θ)− εji) = 0 for i = 1, . . . , n.

(7)
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Constraints for which μi 
= 0 are called active since (7) implies that equality holds
for these constraints. A KKT point will have between 0 to d active constraints.

5 Application I: Triangulation

Given n cameras with known camera matrices we wish to determine the coor-
dinates of a scene point θ ∈ R

3. The reprojection residual functions ri(θ) are
given by (2). To solve for the KKT points we need to enforce constraints of the
type ri(θ) ≤ εji which is a convex cone in R

3. Since the intersection of convex
sets is convex, the optimization in (5) is over a convex set. Any convex set has a
unique point with minimal norm, so we choose the auxiliary goal function to be
f = ||θ||2. This ensures that a minimizer exists. Moreover, the residual functions
in (2) are continuously differentiable except in the camera centre. For the last
part of Condition 1 we use Slater’s condition [14]. It requires that the feasible
set should contain an inner point. The feasible set in (5) is the intersection of a
number of convex cones. One can prove that except in some degenerate config-
urations (of measure zero), this intersection has an inner point. It follows, that
except in (unlikely) degenerate cases, the optimum of (5) is either a KKT point
or a camera centre.

To find the KKT points we need to consider the active constraints ri(θ) = εji ,
which can be rewritten as gi(θ) = 0, where

gi(θ) =
(
θT (xici − ai) + xic̄i − āi

)2

+
(
θT (yici − bi) + yic̄i − b̄i

)2 − ε2ji
(
θT ci + c̄i

)2
.

(8)

Clearly this is a quadratic equation in θ. As noted in Section 4 there will be
up to d = 3 active constraints. If there are exactly three, then we get a system
of three quadratic equations as in (8). As predicted by Bezout’s theorem there
will be up 8 solutions. If there are only two active constraints, then we add an
equation by forcing the gradients to be linearly dependent,

0 = det
(∇gi ∇gj ∇f

)
= det

(∇gi ∇gj 2θ
)
,

which is a cubic equation. This also yields a reasonable system with 12 solutions.
The case with one active constraint can be handled similarly. Finally we need
to check θ = 0, since then ∇f = 0.

5.1 Experimental Validation

Algorithm 1 was implemented in matlab. The polynomial equations were solved
using a generic polynomial solver based on [15]. Experiments were run on the
well-known Dinosaur sequence using the step loss function, i.e. trying to minimize
the number of outliers. We compare our results with a standard minimal solver.
In this case we used the optimal two-view triangulation from [3]. To get a fair
comparison that solver was tried for all possible choices of two views. Hence the
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result is the best possible that could be achieved with ransac. Figure 3 shows
a comparison to the proposed method. For most of the triangulated points in
the Dinosaur sequence there are no outliers. We only consider cases with at least
one outlier.

Error threshold
1 pixel 2 pixels

Same result 108 51
1 outlier less 156 82
2 outliers less 10 2

Fig. 3. Comparison between the proposed method and the best possible result using
a standard solver. For two different thresholds the number of times that a certain
improvement was achieved are is presented. For example, with a threshold of 1 pixel,
the proposed method had one outlier less in 156 cases.

The running times for the generic solver were around 0.1 s per minimal case
on a desktop computer. A specialized solver can solve the same problem in a few
milliseconds [15].

6 Extension to Manifolds

A lot of interesting models are not natural to parameterize using the whole of Rd.
For example, rotations are most naturally parameterized using unit 4-vectors.
Hence, we will study the case when the parameter space is a d-dimensional
differentiable manifold.

Theorem 2. Assume that the domain D is a d-dimensional differential mani-
fold embedded in Rm (d < m) by hj(θ) = 0, j = 1, . . . ,m − d, and that Condi-
tion 1 is fulfilled. Then a minimizer of (4) is also a KKT point for a subproblem
of size at most d, that is,

min
θ

f(θ) s.t. ri(θ) ≤ εji for i ∈ I

hj(θ) = 0 for j = 1, . . . ,m− d,

where I is a subset of {1, . . . , n} of size |I| ≤ d.

Proof. Consider a KKT point θ to the full problem. The KKT conditions state
that in optimum

∇f +

n∑

i=1

μi∇ri +

m−d∑

j=1

λj∇hj = 0, (9)

where μi ≥ 0 and that μi(ri− εji) = 0, i = 1, . . . , n. The fact that the parameter
space is a d-dimensional manifold means that the gradients {∇hj} span a (m−d)-
dimensional subspace of Rm orthogonal to the d-dimensional tangent space at
the KKT point. If we let P be an operator projecting to the tangent space, then
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P∇f +

n∑

i=1

μiP∇ri = 0.

By Lemma 1, there is a set, I, with |I| ≤ d such that

P∇f +
∑

i∈I

μ̄iP∇ri = 0, (10)

and μ̄i(ri(θ) − εji) = 0 for all i ∈ I. Now consider ∇f +
∑

i∈I μ̄i∇ri. Clearly it
is orthogonal to the tangent space of the manifold since its projection (10) was
zero. Hence it can be written as a linear combination of the ∇hj ’s,

∇f +
∑

i∈I

μ̄i∇ri +

m−d∑

j=1

λ̄j∇hj = 0.

We have proven that θ is a KKT point for (9). ��

7 Application II: Stitching

Given two sets of unit 3-vectors we wish to estimate a rotation that maps one set
onto the other. This problem typically arises when stitching images to panora-
mas. A rotation in R

3 can be parametrized using 3 angles representing the rota-
tion around each axis. This approach however involves trigonometric functions
and is unsuitable in the framework of polynomial solving. A more tractable ap-
proach is to use the well-known quaternion representation of rotations in R

3. A
rotation is represented by a unit 4-vector θ with ||θ|| = 1. Similar to triangula-
tion, Condition 1 will be fulfilled except for rare, degenerate instances.

To find the KKT points we need to consider the active constraints ri(θ) = εji ,
which can be rewritten as gi(θ) = 0, where

gi(θ) = xiRθx
′
i − cos(ε). (11)

This is a quadratic equation in θ. As noted in Section 4 there will be up to
d = 3 active constraints. If we have exactly three, we have three equations as
in (11) and ||θ||2 = 1 which is sufficient to solve for the unknowns. Since all the
equations are quadratic in θ we get 16 solutions.

If only two constraints are active we know from (7) that two points satisfy
(11) and by the embedding that ||θ||2 = 1. This totals three equations. Just as
in the triangulation case, we get the fourth equation by forcing the gradients to
be linearly dependent,

0 = det
(∇f ∇(||θ||2 − 1) ∇gi ∇gj

)
,

where i, j denotes the indexes of the active correspondences. Since we are free
to choose the objective function f(θ) we set f(θ) = θ1 giving ∇f = (1, 0, 0, 0)
essentially reducing the size of the determinant. We get three quadratic equations
and one cubic, so the number of solutions is 24. One can show that the case with
one active constraint does not have to be handled.
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7.1 Experimental Validation

Atotal of 95 image pairswere produced for various scenes. Feature correspondences
were established using sift and the internal camera parameters were extracted
from the exif tags. In each image pair, 10 point correspondenceswere selected ran-
domly for the experiment. For the first experiment we used the step loss function
in Figure 2(a), that aims to minimize the number of outliers. Figure 4(a) shows
the improvement over the best solution achievable using ransac with a standard
solver. In this case a standard solver is a two-point solver minimizing the angular
error.For the second experiment, we use the approximative truncatedL2 norm; see
Figure 2(b). The normwas truncated at 0.1◦ and approximatedwith three steps at
0.01◦, 0.03◦ and0.1◦. Figure 4(b) shows a histogramover the improvement.The im-
provement is in terms of the sumof squared truncated errors, so the unit is degrees2.
Note that the exact loss function is used for the comparison and not the approx-
imated version. The same standard solver was used for comparison but this time
the solution was updated with respect to the truncated L2 norm.

Like in the case of triangulation the generic polynomial solver required about
0.1 s per minimal case, but this could be reduced to a a couple of milliseconds.

Error threshold
0.1◦ 0.2◦

Same result 45 70
1 outlier less 41 20
2 outliers less 7 4
3 outliers less 0 1

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

2

4

6

8

Cost function improvement

F
re

qu
en

cy

Fig. 4. (Stitching). (a) Improvement for the first loss function, i.e. minimizing the
number of outliers. (b) Improvement for truncated L2 norm.

8 Application III: Planar Motion

Consider a camera that is moving and rotating in a known plane – or equivalently
a fixed camera observing an object that is moving and rotating in a known plane;
cf. Figure 1(c). Without losing generality we can assume that the plane is z = 0.
The camera matrix can be written,

P = S[R | t], (12)

where S is a known rotation matrix, R is an unknown rotation about the z-axis
and t = (t1, t2, 0). The model has two degrees of freedom (d = 2) being a rotation
angle and a translation direction in the plane. According to Theorem 2 we can
find the optimum by considering subproblems with one or two residuals. It turns
out that the relevant case is the one with two active residual constraints. Let
(xi, yi), (x

′
i, y

′
i), i = 1, 2 be the correspondences giving rise to those residuals.

Quantities in the second camera will be primed.
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All 3D points that project to points with distance ε to the point (x, y) can be
written

(PX̃)TCPX̃ = 0, (13)

where X̃ denotes homogeneous coordinates of the 3D points and

C =

⎛

⎝
1 0 −x
0 1 −y
−x −y x2 + y2 − ε2

⎞

⎠ .

There are two cases that we need to consider. If X is a point at infinity, then
(13) is a constraint only on the camera rotation and the relevant rotations can
be computed from a single point correspondence. Given this rotation another
point correspondence is used to compute relevant translations. For the sake of
brevity, we leave out the exact derivations for this case. The second case is the
one with finite X . Using the form of P from (12), we can rewrite (13) as

(X + t)TRTSTCSR(X + t) = 0.

Here X denotes standard coordinates in R
3. We note that STCS is known and

that this constrains X + t to a cone. To eliminate t we consider the dual of this
cone. A vector n is a possible normal to this cone if

nTRTSTC−1SRn = 0.

We define N = STC−1S. We get a cone of this sort for the other view as well,
denoted N ′. For the reprojection error to be exactly ε and ε′ in the two views,
respectively, we the need these cones to be tangent to each other and thus should
contain a common normal n; see Figure 5.

Fig. 5. For two cones to be tangent, they should have a common normal n. Note that
the cones here have been translated to a common origin. The translation t should lie
in the plane with normal n.

For two correspondences, we get

nT
i R

TNiRni = 0 and nT
i R

′TN ′
iR

′ni = 0. (14)

If we choose the original coordinate system wisely, we can set R′ = I and param-
eterize Rwith a unit 2-vector (a, b) adding the constraint a2 + b2 = 1. Further,
let n1 = (1, c, d)T and n2 = (1, c′, e)T , (the scale of the normals is not relevant).
Given the active normals, the translation is given by t = n1×n2 (Figure 5). For
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a planar motion this should be perpendicular to the z-axis. This gives us our
last condition,

det
(
ez n1 n2

)
= 0.

The determinant condition turns into c′ = c. This also means that

Rn1 =

⎛

⎝
a− bc
b− ac

d

⎞

⎠ and Rn2 =

⎛

⎝
a− bc
b− ac

e

⎞

⎠ .

Hence we can replace the rotation parameters with f = a − bc and g = b − ac.
That this should be a rotated version of the first two rows of n1 can be enforced
by f2 + g2 = 1 + c2. In summary,

(1 c d)N ′
1 (1 c d)T = 0, (f g d)N1 (f g d)T = 0,

(1 c e)N ′
2 (1 c e)T = 0, (f g e)N2 (f g e)T = 0,

and f2 + g2 = 1 + c2.

There are 5 unknowns and 5 quadratic equations, so there may be up to 32
solutions. In general, Condition 1 will be fulfilled.

8.1 Experimental Validation

In this case we collected a set of 75 view pairs and established point correspon-
dences with sift, selecting 10 correspondences for each view pair at random. For

Error threshold
5 pixels 8 pixels

Same result 57 60
1 outlier less 24 20
2 outliers less 2 3

0 10 20 30 40 50
0

10

20

30

40

Cost function improvement

F
re

qu
en

cy

Fig. 6. (Planar motion). (a) Improvement in minimizing the number of outliers. (b)
Improvement for the truncated L2 norm.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Fig. 7. The red lines show the best possible standard solution (dashed) with error
margins (solid), which has 10 outliers and 10 inliers. The green lines show the optimal
solution which has no outliers.
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the comparisons we used the two-point solver proposed in [16]. Figure 6 shows
the results for the two cost functions in Figure 2. The table in Figure 6(a) shows
the improvement over best possible ransac solution for two different thresholds.
Figure 6(b) shows a histogram over the improvement for the truncated L2 norm,
truncated at 3 pixels and approximated with three steps at 1, 2 and 3 pixels.
The improvement is in terms of the sum of squared truncated errors, so the unit
is pixels2. Note that the exact loss function is used for the comparison and not
the approximated version.

Since we have as many as 5 quadratic equations, the generic solver required
0.35 s per case. A specialized solver for similar problems runs in about 10 ms.

9 Concluding Discussion

We have presented a framework for computing optimal solutions to multiple
view geometry problems with robust error norms. In this section, we will discuss
some limitations, how to deal with higher dimensional models, and how it would
be possible to speed up the computations. Another possible extension is to fit
multiple models and we will briefly discuss how this can be done.

A pathological example. The experiments show that using the standard zero-
error minimal solver indeed yields poorer results than the proposed method.
However, the difference is typically small. So how bad can it get? Will the stan-
dard solver always perform reasonably well? Fig. 7 shows the contrary. For this
line-fitting example the standard solver finds a solution with 50% outliers com-
pared to the optimal outlier-free solution.

Higher dimensions. All the theoretical results in this paper are stated for
d-dimensional models, but the exhaustive search algorithm quickly becomes im-
practical for large d. Still, all hope is not lost. A possibility is to apply a ran-
dom sampling strategy, similar to ransac. Another alternative is to use some
other pruning technique for some of the dimensions, and then our robust search
method for the other ones. For example, in [17], a branch-and-bound technique
over SO(3) is proposed for estimating relative orientation (without any outlier
rejection). In each bounding step, one needs to solve for the translation compo-
nent which has two degrees of freedom. This step can be replaced by the method
proposed here. This would lead to an algorithm that computes a global optimal
solution with a robust error norm.

Speed-ups. In our current matlab implementation, we do not use a specialized
polynomial equation solver. Replacing this component with a state-of-the-art
method such as [15] would speed up the computations significantly as each min-
imal problem typically can be solved in a couple of milliseconds. Another easily
accomplished speed-up would be to do the computations in parallel. Each min-
imal problem can be solved independently from the others.
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Multiple models. If one were to compute multiple models as, for example, in mo-
tion segmentation, a greedy approach is often used. This might lead to far from
optimal results. However, with similar techniques as developed in this paper, it
is actually possible to find optimal solutions in the multi-model case as well. One
can show that the optimal N -model solution consists of N models from the set
of hypotheses generated by the single-model case.
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15. Byröd, M., Josephson, K., Åström, K.: Fast and stable polynomial equation solving
and its application to computer vision. Int. Journal of Computer Vision (2009)
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