Skip to main content

Petri Nets Approach to Modeling of Immune System and Autism

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7597))

Abstract

Algorithms based on graphs and networks offer great potential for modeling of physiological processes. In this paper bipartite graphs called Petri Nets (PN) are presented and their utility in modeling of the immune system is highlighted. We present our improved PN model of the immune system. The coupling between fever and autism is studied using this model. It is shown that fever may shift the level of IL-1, IL-6 cytokines in autistic subjects closer to standard physiological values. This is in accordance with a recent observation that fever improves behavior of autistic children, reported in medical literature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Forrest, S., Beauchemin, C.: Computer immunology. Immunological Reviews 216, 176–197 (2007)

    Google Scholar 

  2. Bernaschi, M., Castiglione, F.: Design and implementation of an immune system simulator. Computers in Biology and Medicine 31, 303–331 (2001)

    Article  Google Scholar 

  3. Burroughs, N., Ferreira, M., Oliveira, B., Pinto, A.: Autoimmunity arising from bystander proliferation of T cells in an immune response model. Mathematical and Computer Modelling 53, 1389–1393 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Goldstein, B., Faeder, J.R., Hlavacek, W.S.: Mathematical and computational models of immune-receptor signalling. Nature Reviews Immunology 4, 445–456 (2004)

    Article  Google Scholar 

  5. Eftimie, R., Bramson, J.L., Earn, D.J.D.: Interactions between the immune system and cancer: a brief review of non-spatial mathematical models. Bulletin of Mathematical Biology 73, 2–32 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Li, X., Wang, Z., Lu, T., Che, X.: Modelling immune system: principles, models, analysis and perspectives. Journal of Bionic Engineering 6, 77–85 (2009)

    Article  Google Scholar 

  7. Liò, P., Nicosia, G., Stibor, T. (eds.): ICARIS 2011. LNCS, vol. 6825. Springer, Heidelberg (2011)

    Google Scholar 

  8. Petri, C.A.: Kommunikation mit automaten (1962)

    Google Scholar 

  9. Zurawski, R., Zhou, M.C.: Petri nets and industrial applications: A tutorial. IEEE Transactions on Industrial Electronics 41, 567–583 (1994)

    Article  Google Scholar 

  10. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice-Hall Inc., Englewood Cliffs (1981)

    Google Scholar 

  11. Sackmann, A., Formanowicz, D., Formanowicz, P., Koch, I., Blazewicz, J.: An analysis of the Petri net based model of the human body iron homeostasis process. Computational Biology and Chemistry 31, 1–10 (2007)

    Article  MATH  Google Scholar 

  12. Grunwald, S., Speer, A., Ackermann, J., Koch, I.: Petri net modelling of gene regulation of the Duchenne muscular dystrophy. Biosystems 92, 189–205 (2008)

    Article  Google Scholar 

  13. Genrich, H., Küffner, R., Voss, K.: Executable Petri net models for the analysis of metabolic pathways. International Journal on Software Tools for Technology Transfer (STTT) 3, 394–404 (2001)

    MATH  Google Scholar 

  14. Koch, I., Reisig, W., Schreiber, F.: Modeling in systems biology: The Petri Net Approach. Springer, London (2011)

    MATH  Google Scholar 

  15. Na, D., Park, I., Lee, K.H., Lee, D.: Integration of Immune Models Using Petri Nets. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 205–216. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Park, I., Na, D., Lee, K.H., Lee, D.: Fuzzy Continuous Petri Net-Based Approach for Modeling Helper T Cell Differentiation. In: Jacob, C., Pilat, M., Bentley, P., Timmis, J. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 331–338. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Park, I., Na, D., Lee, D., Lee, K.: Fuzzy Continuous Petri Net-Based Approach for Modeling Immune Systems. In: Apolloni, B., Marinaro, M., Nicosia, G., Tagliaferri, R. (eds.) WIRN 2005 and NAIS 2005. LNCS, vol. 3931, pp. 278–285. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Gogolinska, A., Ochmanski, E., Nowak, W.: Petri Nets in Immunological System Modeling. In: Ochmanski, O., Penczek, W. (eds.) Matematyczne Metody Modelowania i Analizy Systemow Wspolbieznych, MASYW 2010, pp. 35–46 (2012)

    Google Scholar 

  19. David, R., Alla, H.: Discrete, continuous, and hybrid Petri Nets. Springer (2005)

    Google Scholar 

  20. Reisig, W.: Petri nets: an introduction. Springer-Verlag New York, Inc. (1985)

    Google Scholar 

  21. Male, D.: Immunology: an illustrated outline. Mosby Ltd. (2004)

    Google Scholar 

  22. Parkin, J., Cohen, B.: An overview of the immune system. The Lancet 357, 1777–1789 (2001)

    Article  Google Scholar 

  23. Paul, W.E.: Fundamental immunology. Wolters Kluwer/Lippincott Williams & Wilkins (2008)

    Google Scholar 

  24. Germain, R., Meier-Schellersheim, M., Nita-Lazar, A., Fraser, I.: Systems Biology in Immunology: A Computational Modeling Perspective. Annual Review of Immunology 29, 527–585 (2011)

    Article  Google Scholar 

  25. Yan, Q.: Immunoinformatics and systems biology methods for personalized medicine. Methods in Molecular Biology (Clifton, NJ) 662, 203–220 (2010)

    Article  Google Scholar 

  26. Ashwood, P., Wills, S., Van de Water, J.: The immune response in autism: a new frontier for autism research. Journal of Leukocyte Biology 80, 1 (2006)

    Article  Google Scholar 

  27. Rohr, C., Marwan, W., Heiner, M.: Snoopy - a unifying Petri net framework to investigate biomolecular networks. Bioinformatics 26, 974 (2010)

    Article  Google Scholar 

  28. Freitag, C.M.: The genetics of autistic disorders and its clinical relevance: a review of the literature. Molecular Psychiatry 12, 2–22 (2006)

    Article  Google Scholar 

  29. Patterson, P.H.: Maternal infection and immune involvement in autism. Trends in Molecular Medicine 17, 389–394 (2011)

    Article  Google Scholar 

  30. Duch, W., Nowak, W., Meller, J., Osiński, G., Dobosz, K., Mikołajewski, D., Wójcik, G.: Consciousness and attention in autism spectrum disorders. In: Proceedings of Cracow Grid Workshop 2010, pp. 202–211 (2011)

    Google Scholar 

  31. Curran, L.K., Newschaffer, C.J., Lee, L.C., Crawford, S.O., Johnston, M.V., Zimmerman, A.W.: Behaviors associated with fever in children with autism spectrum disorders. Pediatrics 120, e1386 (2007)

    Article  Google Scholar 

  32. Molloy, C., Morrow, A., Meinzen-Derr, J., Schleifer, K., Dienger, K., Manning-Courtney, P., Altaye, M., Wills-Karp, M.: Elevated cytokine levels in children with autism spectrum disorder. Journal of Neuroimmunology 172, 198–205 (2006)

    Article  Google Scholar 

  33. Chez, M.G., Dowling, T., Patel, P.B., Khanna, P., Kominsky, M.: Elevation of tumor necrosis factor-alpha in cerebrospinal fluid of autistic children. Pediatric Neurology 36, 361–365 (2007)

    Article  Google Scholar 

  34. Parker-Athill, E.C., Tan, J.: Maternal immune activation and autism spectrum disorder: interleukin-6 signaling as a key mechanistic pathway. Neurosignals 18, 113–128 (2010)

    Article  Google Scholar 

  35. Pickett, J., London, E.: The neuropathology of autism: a review. Journal of Neuropathology & Experimental Neurology 64, 925 (2005)

    Article  Google Scholar 

  36. Mehler, M.F., Purpura, D.P.: Autism, fever, epigenetics and the locus coeruleus. Brain Research Reviews 59, 388–392 (2009)

    Article  Google Scholar 

  37. Szelényi, J.: Cytokines and the central nervous system. Brain Research Bulletin 54, 329–338 (2001)

    Article  Google Scholar 

  38. Quan, N., Banks, W.A.: Brain-immune communication pathways. Brain, Behavior, and Immunity 21, 727–735 (2007)

    Article  Google Scholar 

  39. Hasday, J.D., Fairchild, K.D., Shanholtz, C.: The role of fever in the infected host. Microbes. Infect. 2, 1891–1904 (2000)

    Article  Google Scholar 

  40. Ostberg, J.R., Gellin, C., Patel, R., Repasky, E.A.: Regulatory potential of fever-range whole body hyperthermia on Langerhans cells and lymphocytes in an antigen-dependent cellular immune response. J. Immunol. 167, 2666–2670 (2001)

    Google Scholar 

  41. Jampel, H.D., Duff, G.W., Gershon, R.K., Atkins, E., Durum, S.K.: Fever and immunoregulation. III. Hyperthermia augments the primary in vitro humoral immune response. J. Exp. Med. 157, 1229–1238 (1983)

    Article  Google Scholar 

  42. Mullbacher, A.: Hyperthermia and the generation and activity of murine influenza-immune cytotoxic T cells in vitro. J. Virol. 52, 928–931 (1984)

    Google Scholar 

  43. Duff, G.W., Durum, S.K.: Fever and immunoregulation: hyperthermia, interleukins 1 and 2, and T-cell proliferation. Yale. J. Biol. Med. 55, 437–442 (1982)

    Google Scholar 

  44. Kluger, M.J.: Is fever beneficial? Yale. J. Biol. Med. 59, 89–95 (1986)

    Google Scholar 

  45. Meinander, A., Soderstrom, T.S., Kaunisto, A., Poukkula, M., Sistonen, L., Eriksson, J.E.: Fever-like hyperthermia controls T Lymphocyte persistence by inducing degradation of cellular FLIPshort. J. Immunol. 178, 3944–3953 (2007)

    Google Scholar 

  46. Evans, S.S., Wang, W.C., Bain, M.D., Burd, R., Ostberg, J.R., Repasky, E.A.: Fever-range hyperthermia dynamically regulates lymphocyte delivery to high endothelial venules. Blood 97, 2727–2733 (2001)

    Article  Google Scholar 

  47. Huang, Y.H., Haegerstrand, A., Frostegard, J.: Effects of in vitro hyperthermia on proliferative responses and lymphocyte activity. Clinical & Experimental Immunology 103, 61–66 (1996)

    Article  Google Scholar 

  48. Ashwood, P., Corbett, B.A., Kantor, A., Schulman, H., Van de Water, J., Amaral, D.G.: In Search of Cellular Immunophenotypes in the Blood of Children with Autism. PLoS ONE 6, e19299 (2011)

    Article  Google Scholar 

  49. Cohly, H.H.P., Panja, A.: Immunological findings in autism. International Review of Neurobiology 71, 317–341 (2005)

    Article  Google Scholar 

  50. McAfoose, J., Baune, B.: Evidence for a cytokine model of cognitive function. Neuroscience & Biobehavioral Reviews 33, 355–366 (2009)

    Article  Google Scholar 

  51. Zanzoni, A., Soler-López, M., Aloy, P.: A network medicine approach to human disease. FEBS Letters 583, 1759–1765 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gogolinska, A., Nowak, W. (2012). Petri Nets Approach to Modeling of Immune System and Autism. In: Coello Coello, C.A., Greensmith, J., Krasnogor, N., Liò, P., Nicosia, G., Pavone, M. (eds) Artificial Immune Systems. ICARIS 2012. Lecture Notes in Computer Science, vol 7597. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33757-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33757-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33756-7

  • Online ISBN: 978-3-642-33757-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics